g

sLABORATORY

Topic 3: (Part B)
/O and Peripheral Devices Management
GRAPHICS in the Nintendo DS

Systemes Embarqués Microprogrammes

Prof. David Atienza Alonso, SEL-STI 1

=PrL Content of Session

= Use of backgrounds in the NDS: tiled/text mode
= NDS video modes for tiled mode
= Concepts: tiles and their effects
= Multi-palettes with tiles
= Background representations with tiles
= Review of the (V)RAM structure
= Copying large data sets: direct memory address (DMA) controller

= Drawing graphics in tiled/text mode in the NDS
= Example of custom background definition in tiled mode
= Converting images to tiles: revisit the grit tool
= Implementation of effects using multiple backgrounds

O©ESL/EPFL

cpr| NDS screen modes: 2D engines configuration
e Tiled modes

" From the four 2D engines modes, select appropriate one
(= Tiled
= Rotation or rotoscale
= Extended rotation
= Framebuffer

Main engine: 7 modes and framebuffer Sub engine: 6 modes

BG1 BG2
Tiled Tiled

Tiled | Tiled Tiled Rotoscale
Tiled | Tiled | Rotoscale Rotoscale
Tiled | Tiled Tiled Ext. Rotoscale
Tiled | Tiled | Rotoscale |Ext. Rotoscale

Tiled/3D | Tiled Tiled Tiled

Tiled/3D | Tiled Tiled Rotoscale
Tiled/3D| Tiled Rotoscale Rotoscale

Tiled/3D| Tiled Tiled Ext. Rotoscale
Tiled/3D| Tiled Rotoscale Ext. Rotoscale

Tiled/3D | Tiled |Ext. Rotoscale |Ext. Rotoscale
3D N/A | Large Bitmap N/A
FrameBuf. Direct VRAM display as a bitmap

Tiled | Tiled |Ext. Rotoscale |Ext. Rotoscale

= In the case of tiled in different backgrounds?
= All modes are valid, just configure REG_DISPCNT with BGO: Modes 0 to 5
= Example: activate mode 0 and background 0 (BGO) to plot tiles first

REG_DISPCNT = MODE_0_2D | DISPLAY_BGO_ACTIVE; 3

O©ESL/EPFL

???

Page

		Mode

		BG0

		BG1

		BG2

		BG3

		

		0

		Tiled/3D

		Tiled

		Tiled

		Tiled

		

		1

		Tiled/3D

		Tiled

		Tiled

		Rotoscale

		

		2

		Tiled/3D

		Tiled

		Rotoscale

		Rotoscale

		

		3

		Tiled/3D

		Tiled

		Tiled

		Ext. Rotoscale

		

		4

		Tiled/3D

		Tiled

		Rotoscale

		Ext. Rotoscale

		

		5

		Tiled/3D

		Tiled

		Ext. Rotoscale

		Ext. Rotoscale

		

		6

		3D

		N/A

		Large Bitmap

		N/A

		

		FrameBuf.

		 Direct VRAM display as a bitmap

						

		

???

Page

		Mode

		BG0

		BG1

		BG2

		BG3

		

		0

		Tiled

		Tiled

		Tiled

		Tiled

		

		1

		Tiled

		Tiled

		Tiled

		Rotoscale

		

		2

		Tiled

		Tiled

		Rotoscale

		Rotoscale

		

		3

		Tiled

		Tiled

		Tiled

		Ext. Rotoscale

		

		4

		Tiled

		Tiled

		Rotoscale

		Ext. Rotoscale

		

		5

		Tiled

		Tiled

		Ext. Rotoscale

		Ext. Rotoscale

		

										

		

The tiled/text mode:
Tiles and drawing options

=PrFL

= Backgrounds are composed of smaller blocks Tile for letter ‘A’

= Tile/text: minimum unit to compose tiled 0|1
backgrounds made of blocks of 8x8 pixels 8

_ Game Yoshi Island

= Two components to create ol B
effects in tiled backgrounds San
= Palettes: different colours sets

] S |
= Transformations: tiles rotations Essss =
- Horizontal , vertical or both - e e

Horizontal
mirror effect

| | B
©ESL/EPFL Game: Power Puff Girls

Complete display configuration tiled mode:
Three elements to store and use

=PrFL

= Maps of tiles for background: references to tiles
= |f multiple palettes are used, sets which one to use

e ey : i as Mai | MAPS
= Definitions of tiles that 2P Engine: Main/Sub =
can be usea PALETTE: 1x256
. 1 1x =
o pp to 1024_t|Ies as colors or 16x16 1R / 120132
index map is 10 bits colours 4 Index to |
palette
(4bit color)
= Palettes: trade-offs of i_ TILES
memory use :
; S .
R_esolutlon. 1)_(256 colors - .
= Little memory: 16 palettes Index to palette
of 16 colors position

= We need to configure the engine background: BGCTRL[x]

O©ESL/EPFL

The tiled/text mode:
Representations options for tiles

= Two possibilities of RGB palettes for tiles
= 1 palette of 256 colors each: 8 bits per pixel
= 16 palettes of 16 colors each: 4 bits per pixel

= Tile: matrix of color indexes in a palette
= Little endian: least significant nibble is left pixel

RGB15(0,0,0)

RGB15(0,0,0)

// With 256-color palette
unsigned char A256[] =
{

// With 16-color palette

unsigned char Al6[] = {
0x00,0x10,0x01, 0x00,
0x00,0x11,0x11,0x00,
0x00,0x01,0x10,0x00,
0x10,0x01,0x10,0x01,
0x10,0x11,0x11,0x01,
0x10,0x01,0x10,0x01,

i 0x00, 0x00, 0x00,0x00,

RGB15(31,31,0)
RGB15(31,31,0)

~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~

RGB15(0,31,31)

cNeoNoNoNoNoNoNe!
~ ~

o PR P OoOOO
~ ~

ORrRr PR RERELRFEO
~

~

oNeoNoN oMo -l
~

oNeNoN oMo -l
~

~

~ ~
~
ORrRr PR RERELRFEO
~ ~
o PR P OoOOO
~ ~
cNeoNoNoNoNoNoNe!
~ ~

RGB15(0,31,31)

~

~
~
~
~
~

RGB15(31,31,31)

~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~

O ~NO OO WODN O

s 00 N OO O A W N~ O

—
~e
—

~
~
~
~
~
~
~
~

15
O©ESL/EPFL 255

The tiled/text mode:
le of color representation

=PrFL

Exam

= Define an 8-colour tile 5|6
- Each color in the palette is 15-bit RGB pixel 13 | 14
5 bits per color, the transparence bit is ignored 21 | 22
= Two steps 29 | 30
1. Choose palette in 15-bit RGB pixel 37 | 38
2. Implement color index table in tile 45 | 46
Index 0 represents ‘transparency’: it displays 53 | 54
the color 0 of the palette if there is no opaque
pixel behind (e.g. from other background) 61 | 62
Palette 0 BB CEAE(HA) unsigned long my8-colorTile[] =
1 {
2 0x12345678,
3 RGB15(3131,0) | 0x12345678,
4 0x12345678,
5 _RGB15(0,31.31) | 0x12345678,
] RGB15(31,0,31) 0123456078,
7| RGB15(31,31,31) | Ox12345678,
8 0x12345678,
) 0x12345678,
}i v
©ESL/EPFL

cPrL Tiles access and storage in memory

= Tiles stored from base address: BG_TILE_RAM(x) 256KiB

2D graphic engines only allow tile base

addresses as multiple of 16KB (0x4000) 0x00000
The maximum size is 256KB 0x04000
= Libnds reference them with form: 0x08000

BG_TILE_BASE(x): configure BG control register
BG TILE RAM(x) | BG_TILE RAM_SUB(x):
access the tile set or modify it

Up to 16 values of base address: x=0..15 ©*>%0%°

0x3c000

* Limit due BGCTRL/[n]. 4 bits reserved to store
displacement from TILE_BASE address

slalalalilolelelz|elsla|3[2|1]|0o| REG_BG<n>CNT
—

O©ESL/EPFL

BG_TILE_RAM 0

BG_TILE_RAM 1

BG_TILE_RAM 14

BG_TILE_RAM 15 |,

> Tiles' position (TILE_BASE)

A

256KIE

=P L Color palettes access and storage in memory

= Referenced in libnds as background palette: BG_PALETTE,
access using consecutive positions in memory with 8 bits

1 palette with 256 colors: colors from 0x00 to Oxff }G_PALETTE
16 palettes with 16 colors: two steps
Palette from 0x0 to Oxf 000/ Palette 0
Color from 0x0 to Oxf 0x10] " Palette
0%20
L

= Example: Which color is BG_PALETTE[0x25]?

Oxe0
256-palette: color 37 (0x25) © Palette 14
0x£f0
16-Dbit palettes: 5th color in Palette 2 Palette 15

O©ESL/EPFL

cpr| Screen representation:
o Tiled maps and scroll

Example: 32x32 tiles create
= Screen: map of tiles, but it can be a map of 256x256 pixels

larger than the actual screen

Not all the tiles can be visible
Scrolling effect. visible area is adjusted

Visible part of the map
on the screen

= 4 possibilities for the map on the NDS:

32x32 tiles, 32x64 tiles, 64x32 tiles,

64x64 tiles

64X64

32X64

O©ESL/EPFL

10

=PrL Tiles map format and storage

= Each tile is represented with 16 bits
= 10 bits: Tile number from 0 to 1023 Vertical mirror &
=2 b!ts: Horlzon.tal and/or vertical mirror Horizontal mirror EI
= 4 bits: Palette if 16-color

one used by the tile 15 | 14 | 13 | 12 o8 |7 |6 |5[4|3|2[1]0
\ " S S g
If 16-colour Tile number
palette used 64KiB

. .) A
= Amap can start in an address multiple """ | BG_MAP_RAMO

of 2KB (0x800) 020800 | Bg MAP RAM 1
= Most used BG: 32x32 tiles (2B/tile) = 2KB 0x1000
R
= Libnds allows referencing them with: e

= BG_MAP_BASE(x): config. BG reg. Controller
« BG_MAP_RAM(x) /| BG_TILE_RAM_SUB(x): °*f°°° | BG_MAP_RAM 30
access the tile set or modify it 0x£800

= Up to 31 values of base address: x=0..31
©ESL/EPFL

BG_MAP_RAM 31 | |,

=PrL Configuring a tiled background

= Three options to configure
= Number of tiles: {32 or 64}x{32 or 64}
= Number of colours: 16 or 256
= Memory positions: For each map and for tiles

alalilalildlelelz|e|sl4|3|2|1|0| BGCTRL[n] (or REG_BG<n>CNT)

T Y 7 —vr lhdl_)
Background priority

> Tiles' position (TILE_BASE)

> Tiled Mode

» 0=16 colors, 1=256 colors

» Map position (MAP_BASE)

¥ End connection (wrap)

» Map size (32x32, 64x32, 32x64, 64x64)

= Example: Config. background 0 in SUB engine: 32x32 tiles, use 1 palette of
256 colors, tiles map stored in MAP_BASEOQ, and tiles at 2KB from TILE_ BASE

BGCTRL SUB[0] = BG_32x32 | BG_COLOR 256

| BG_MAP BASE(0) | BG_TILE_BASE(1l); ,,
©ESL/EPFL — - — —

=preL Example of Memory Use of
BG TILE BASE and BG_ MAP_BASE

= Background configuration example

// 3) Configure the background
BGCTRL SUB[©] = BG MAP BASE(®) | BG TILE BASE(1) | BG 32x32 | BG COLOR 256; |

= Location of BG_TILE BASE and BG_MAP_BASE overlap at 0x4000
BG_MAP_RAM_SUB(0)

0x04000 =y P BASE 0 | TILE BASE 0
0x04800 | MAP BASE 1
MAP BASE 2
MAP BASE 3
MAP BASE 4
MAP BASE 5
MAP BASE 6
MAP BASE 7 0x08000
MAP BASE 8 R TILE BASE 1
MAP BASE 9

=P A<

xXZ> W

&

BG_TILE_RAM_SUB(1)

O©ESL/EPFL 13

Structure of tiled background in
VRAM banks mapping

=PrFL

* Fixed location in VRAM banks for each type of data

Main Sub
Framebuffer = Backgrounds
Backgrounds ¢
i SPILEE
Sprites / !
Extended Extended
Palettes Palettes

= Enable the necessary VRAM banks: VRAM_? CR

= Example: store 32 tiles, 1 palette of 16 colors, 1 map of 32x32 tiles
~4KB needed: enough with one bank (bank A), assign to main 2D core

VRAM_A_CR = VRAM_ENABLE | VRAM_A_MAIN_BG; 14

O©ESL/EPFL

Efficient data transfer between CPU and I/O
subsystem: Direct Memory Address (DMA)

=PrFL

= Mechanism to perform data transfers DMA
without CPU intervention, use of Controller
specialized module: DMA Controller <

1. CPU configures DMA controller to make
data transfer between peripherals
Base address
Destination address
Data size to transfer

2. DMA controller performs I/O operation
autonomously when bus is available

= Several function in libnds: /opt/devkitpro/libnds/include/nds/dma.h
= CPU configures DMA controller to make data transfer between peripherals
void dmaCopy (const void *source, void *dest, uint32 size)

- source/dest: Origin /Destination memory address of data to transfer
- size: Data size in bytes to transfer

MEMORIES

1L

= Example: copy map data in tiled mode: uint8 myMap[256];

dmaCopy(myMap, mymemory, 256); // Copy 128 map components (16b/comp.) '

O©ESL/EPFL

lines

Example: Full stripped screen with 2-color
crossin

=PrFL

(191,255)

16

O©ESL/EPFL

cpr| Example: Full stripped screen with 2-color
crossing lines

= Define the palette and colors map of first tile: red diagonal

BG_PALETTE 8 pixels
RBG15(0,0,0)

RBG15(31,31,0)

RBG15(0,31,31)

Tile #0

0
1
2
3
4
5
6
7| RBG15(31,31,31)
8

255

O©ESL/EPFL

cpr| Example: Full stripped screen with 2-color
crossing lines

= The elements of the diagonal take color index 1 (red)

BG_PALETTE 8 pixels
0 RBG15(0,0,0)
1| RBG15(31,00)
2| RBG15(31,15,0) | .
3| RBG15(31,31,0)
4| RBG15(0,31,0)
5| RBG15(0,31,31)
6| RBG15(31,0,31) ——rrs
7| RBG15(31,31,31)
8| RBG15(7,7,7)

O©ESL/EPFL 18

cpr| Example: Full strlpped screen with 2-color
crossing lines

= Assign a white color for the rest of the tiles components

BG_PALETTE 8 pixels

o/ RBG15(0,0,0)
1| RBG15(31,0,0)
2| RBG15(31,15,0) | . 7|\ 7|7 |7 |7 |7]|7
3| RBG15(31,31,0)
4| RBG15(0,31,0) 7 7|7 |7 |7 |7 |7
5/ RBG15(0,31,31)
6| RBG15(31,0,31) Tile #0 7|7 7|7 |7 |7 |7
7] RBG15(31,31,31)
8] RBG15(7.7,7) T\ 7\7 LA I I A
. 7 7 7 7 7 7 7
S 7| 7|7|7|7 7|7
7 7 7 7 7 7 7
7 7 7 7 7 7 7

O©ESL/EPFL 19

cpr| Example: Full stripped screen with 2-color
crossing lines

= Define the second tile: yellow diagonal and the rest of the
points with white color

BG_PALETTE
0 RBG15(0,0,0) 7 7 7 14 7 7 7 3
1
2 77|77 |7|7|3]|7
3 RBG15(31,31,0)
4 77|77 7]3|7|7
3 RBG15(0,31,31)
5 77773 |7|7|7
7| RBG15(31,31,31 8 pixels .
: (! 8 pixels 77|73 |7|7|7|7
: 773 7|7|7|7|7
255
73|77 7| 7|7|7
s 7|7 |7|7|7|7]|7

Tile #1

O©ESL/EPFL

cpr| Example: Full strlpped spreen with 2-color
crossing lines

= C declaration of the two tiles for the background

BG_PALETTE 8 pixels Two arrays
//Tile#0
0 RBG15(0,0,0) ud tile0[64] = {
1 1, 7, 7,7, 7,7, 7, 7
2] 7,1, 7,7, 7,7, 7, 7
7,7, 1,7, 7,7, 7. 7
3 RBG15(31,31,0) 7,7, 7,1, 7,7, 7, 7
5 RBG15(0,31,31) YTy
o EESEEIEN il %0 TR
7| RBG15(31,31,31)
8| RBG15(7,7,7) . //Tile#1
. 8 pixels ug tilel[64] = {
- 7,7, 7,7, 7,7, 7. 3
T, 7, 7, 7, 7, 7, 3, 7
25— 7, 7,7, 7,7, 3,7, 7
_ 7,7, 7,7, 3,7, 7,7
T, 7,7, 3, 7, 7, 7, 7
7, 7,3, 7,7, 7, 7. 7
T, 3, 7,7, 7, 7, 7, 7
3, 7,7, 7,7, 7, 7. 7
}
Tile #1

O©ESL/EPFL 21

cpr| Example: Full strlpped screen with 2-color
crossing lines

= Define background

map after creating tiles and palette

\\\\\\\\\\\\\\\\ _____________
AN i b

\

™,

SO \\ \\ oy TTTTTmm————__ (0,255)
L

.-
T
A
Q%SQS&Q(Q&QQ\Q\\
\

v
o

7

\

7

\
\ (191,0) (191,255) 22
©ESL/EPFL \

cpr| Example: Full stripped screen with 2-color
crossing lines

= Define background map after creating tiles and palette
BG_MAP_RAM(x)

(0,255)
MAP]0] 0 (0.0
MAP[1] 1
| |
| |
| |
MAP[32] 1
MAP[33] (]
| |
| |
| |
| |
(191,0) ' (191,255)

O©ESL/EPFL 23

cpr| Example: Full stripped screen with 2-color
crossing lines

= Define background map after creating tiles and palette

BG_MAPR_RAM(x)

(0,255)
MAPIO]

MAP[1]

MAP[32]

MAP[33]

(191,0) (191,255)

O©ESL/EPFL 24

cpr| Example: Full stripped screen with 2-color
crossing lines

= Define background map after creating tiles and palette

BG_MAP_RAM(x)
MAPI[O]
MAP[1]

MAP[32] 1

(0.0) (0,255)

MAP[33] 0

(191,0) ' (191,255)

O©ESL/EPFL 25

cpr| Example: Full stripped screen with 2-color
crossing lines

= Define background map after creating tiles and palette
BG_MAP_RAM(x)

(0,255)
MAP]0] 0 (0.0
MAP[1] 1
| |
| |
| |
MAP[32] 1
MAP[33]
| |
| |
| |
| |
(191,0) ' (191,255)

O©ESL/EPFL 26

cpr| Example: Full stripped screen with 2-color
crossing lines

= Define background map after creating tiles and palette

BG_MAP_RAM(x)

(0,255)
MAP]0] 0 (0.0

MAP[1] 1

MAP[32]
MAP[33]
I I \

(191,0) ' (191,255)

O©ESL/EPFL 27

cpr| Example: Full strlpped screen with 2-color
crossing lines

= Four steps to configure engine with initialized tiled background

1. Configure the engine in //Configure the Engine and the VRAM bank
REG _DISPCNT = MODE @ 2D | DISPLAY BGO ACTIVE;
Mode O and the VRAM block yram A" cr = vRAM ENABLE | VRAM A MAIN BG;

//Configure the activated background BGO

2. Use Background O BGCTRL[O] = BG 32x32 | BG COLOR 256
| BG_ MAP BASE(1) | BG TILE BASE(0);

: : //Copy the tiles
3. Transfer the tiles to the Tile dnaCopy (tile0, 86 TILE RAM(0)[0], 64);

memory using a DMA dmaCopy(tilel, &BG TILE RAM(0)[32], 64);

transfer //Generate the map
for(i = 0;i<32; i+=2)
for(j=0; j<32; j+=2)

4. Create the map by alternating {
the tiles and the lines to BG_MAP_RAM(1) [32*(1)+]] = 0;
) BG MAP RAM(1)[32*(i+1)+j] = 1;
create the grid BG MAP RAM(1)[32*(i)+j+1] = 1:

BG MAP RAM(1) [32*(i+1)+j+1] = 0O;

28

O©ESL/EPFL

=PFL Creating images with tiles using «grit»

= grit can also transform an image into a tiles input for NDS

= -gt: option used to generate tiles (it can be combined with other
options)
= Recommended to generate the palette (option —p)

= The image to transform should have sizes multiple of 8

= The map can be generated if the full image is going to be
displayed (option —m)

= The tiles, the palette and/or the map will be created in an
assembly file and will be declared in a header file
= Link with the C code

29

O©ESL/EPFL

n
v
i1
=

Creating tiles using «grit»: Example

N = 32 x 704 pixels = 352 tiles

R 32 px 4 tiles

O©ESL/EPFL

704 px
PP W] o o D s T D i WAL WO e (S

1

2

5

6

9

10

11

(7))}
Q
— 12 13 | 14 | 15
)
O 16 | 17 | 18 | 19
20 | 21 | 22 | 23
24 | 25 | 26 | 27
28 | 29 | 30 | 31

30

cpr| NDS screen modes: 2D engines configuration
L 8 Using multiple backgrounds

= Each engine has four backgrounds (or layers): BGO, BG1, BG2 and BG3

= Final view on the screen will be their combination based on used graphic mode
= Typically BGO is the most external one and BG3 is the most internal one

= Multiple modes possible in 2D engines, select the most appropriate one

= Main engine: 7 modes and framebuffer = Sub engine: 6 modes

BG1 BG2
Tiled

Tiled/3D | Tiled Tiled Tiled Tiled

Tiled/3D | Tiled Tiled Rotoscale Tiled | Tiled Tiled Rotoscale
Tiled/3D| Tiled Rotoscale Rotoscale Tiled | Tiled Rotoscale Rotoscale
Tiled/3D | Tiled Tiled Ext. Rotoscale Tiled | Tiled Tiled Ext. Rotoscale

Tiled/3D| Tiled Rotoscale Ext. Rotoscale Tiled | Tiled Rotoscale Ext. Rotoscale
Tiled/3D | Tiled |Ext. Rotoscale |Ext. Rotoscale
3D N/A | Large Bitmap N/A

FrameBuf. Direct VRAM display as a bitmap

Tiled | Tiled |Ext. Rotoscale |Ext. Rotoscale

= How to use tiled mode and extended rotoscale backgrounds in one mode?
= Tiled mode always possible in BGO
= Configure REG_DISPCNT with one of the possible modes: 3, 4 and 5 (Extended)
= Example: activate mode 5 and background 1 (BG1) and 3 (BG3);
REG_DISPCNT = MODE_5_2D | DISPLAY_BG1_ACTIVE | DISPLAY_BG3_ACTIVE; 34

O©ESL/EPFL -

???

Page

		Mode

		BG0

		BG1

		BG2

		BG3

		

		0

		Tiled/3D

		Tiled

		Tiled

		Tiled

		

		1

		Tiled/3D

		Tiled

		Tiled

		Rotoscale

		

		2

		Tiled/3D

		Tiled

		Rotoscale

		Rotoscale

		

		3

		Tiled/3D

		Tiled

		Tiled

		Ext. Rotoscale

		

		4

		Tiled/3D

		Tiled

		Rotoscale

		Ext. Rotoscale

		

		5

		Tiled/3D

		Tiled

		Ext. Rotoscale

		Ext. Rotoscale

		

		6

		3D

		N/A

		Large Bitmap

		N/A

		

		FrameBuf.

		 Direct VRAM display as a bitmap

						

		

???

Page

		Mode

		BG0

		BG1

		BG2

		BG3

		

		0

		Tiled

		Tiled

		Tiled

		Tiled

		

		1

		Tiled

		Tiled

		Tiled

		Rotoscale

		

		2

		Tiled

		Tiled

		Rotoscale

		Rotoscale

		

		3

		Tiled

		Tiled

		Tiled

		Ext. Rotoscale

		

		4

		Tiled

		Tiled

		Rotoscale

		Ext. Rotoscale

		

		5

		Tiled

		Tiled

		Ext. Rotoscale

		Ext. Rotoscale

		

										

		

=P~L Use of multiple backgrounds concurrently

= Up to 4 backgrounds can be used at a time in each engine
Superposition of backgrounds from BG3 to BGO

= One color can be set as transparent in the palette
In the next example the black color is set to transparent

D @ Desmume - 59fps

File Emulation Config Tools ?

= Background X can be shifted using write-only registers REG_BGXHOFS
and REG_BGXVFS (where X is the number of the background

O©ESL/EPFL 32

Example: Use of overlapping backgrounds
Grit configuration

=PrFL

= A single image (“clouds.png”) combining all the 512 px (32 tiles)
backgrounds has been used \
Multiple images can also be used instead

= Configuration of grit to use tiled mode

4bit pixel depth can also be used
Black color is set as ‘transparent’ color (-gT flag)

-g
- = data -gt
clouds.grit |:> -gB8
8, clouds.png -m
-p
-gTeoeRee

576 px (72 tiles)

= Grit creates the necessary files storing the
palette, the map and the tiles

- & build
background_shift. map
clouds.d
l¢ clouds.h

lord clouds.o J
|8 clouds.s
rmain

©ESL/EPFL

~~>r—; EXxample: Use of overlapping backgrounds
=PrL . .
Backgrounds configuration

= Configuration of VRAM bank, engine and background registers
= BGO, BG1 and BG2 are activated using Mode 0 (all tiled mode)

= Different parts of the same image are used to render the different backgrounds
—> Different map bases for each background but shared tile base

// Activate main engine and backgrounds ©, 1 and 2 in standard tiled mode
VRAM A CR = VRAM ENABLE | VRAM A MAIN BG;
REG DISPCNT = MODE @ 2D | DISPLAY BGO ACTIVE | DISPLAY BG1l ACTIVE | DISPLAY BG2 ACTIVE;

BGCTRL[®] = BG COLOR 256 | BG_MAP BASE(0) | BG TILE BASE(1) | BG 32x32;
BGCTRL[1] = BG COLOR 256 | BG _MAP BASE(1) | BG TILE BASE(1) | BG 32x32;
BGCTRL[2] = BG COLOR 256 | BG MAP BASE(2) | BG TILE BASE(1) | BG 32x32;

= Transfer grit information to the proper locations
= Palette and tiles are shared by the 3 backgrounds
= Maps are different for each of them - select different part of the map

//Copy tiles and palette (shared by all backgrounds in this case)
swiCopy(cloudsTiles, BG TILE RAM(1), cloudsTilesLen/2);
swiCopy(cloudsPal, BG PALETTE, cloudsPallLen/2);

//Copy maps (32x24 components of 2 bytes for each of the map bases)
swiCopy (&cloudsMap[@], BG_MAP_RAM(1), 32%*24);

swiCopy (&cloudsMap[32#%24], BG MAP RAM(0), 32%24);

swiCopy (&cloudsMap[32*48], BG MAP RAM(2), 32%*24);

O©ESL/EPFL 34

cpr| Example: Use of overlapping backgrounds
e E Shifting backgrounds

= Backgrounds are shifted horizontally creating an effect of moving clouds
= Shift registers are not readable - need of a variable to track previous assigned value
= BGO is shifted to the right decreasing by one pixel the horizontal shift register
= BG1 is shifted to the left increasing by one pixel the horizontal shift register
= BG2 is still (the moon does not move)

//Local variables to track the shifting
int bgd = 0, bgl = 0;

//Shifting background
while(1) {
//Assign shift registers (they are not readable!)
REG_BGOHOFS = bg0;
REG_BG1HOFS = bgl;
//Update local variables that track the shifting
if(--bgd < 0) bgd = 255;
if(++bgl > 255) bgl = 0;
swiWaitForVBlank();

O©ESL/EPFL 35

=PrL Use of Big Maps in Tiled Mode

= Screen size is limited to 32x24 tiles (256x192 pixels)
= Screen is only the visible part of the map stored in memory
= Normally 32x32 maps are used in tiled mode

= Different map sizes are available
= 32x32, 32x64, 64x32 and 64x64

512 px

D ©® Desmume - 58fps

32)(24 File Emulation Config Tools ?
tiles

64X64
tiles

512 px

= Background can be rotated changing the visible part of the map
= Horizontal and Vertical Shifting using rotation registers

O©ESL/EPFL 36

Example: Use of Big Maps in Tiled Mode
Grit file and transfer of palette and tiles

=PrFL

= A big image (“background.png”) has

been used in this project 9 1
= Grit is configured in the standard way in order _gga §
to generate the tiles, maps and palette and -m g
the corresponding files are generated -p ‘g
B
= Engine, VRAM and background configuration J

= 64x64 grid size instead of standard 32x32

= Since the image is 4x bigger, a block of 4 consecutive map bases are necessary
—> only the first one is set in the background control register

// Activate main engine and background © in tiled mode using 64x64 map
VRAM A CR = VRAM ENABLE | VRAM A MAIN BG;

REG DISPCNT = MODE 5 2D | DISPLAY BGO ACTIVE;

BGCTRL[O] = BG COLOR 256 | BG MAP BASE(0) | BG TILE BASE(1l) | BG 64x64;

= Tiles and palette transfer is done in the standard way

// Copy tiles and palette to the corresponding place
swiCopy(backgroundTiles, BG TILE RAM(1), backgroundTilesLen/2);
swiCopy(backgroundPal, BG PALETTE, backgroundPallen/2);

O©ESL/EPFL 37

Example: Use of Big Maps in Tiled Mode
Transfer map to map bases

=PrFL

= A 64x64 tiles map requires more space in the VRAM memory
= 64x64 tiles * 2 Bytes/tile = 8 KB > 4 Map bases of 2 KB
= Placement in memory is not linear! - Divided in quadrants

// TOP LEFT quadrant of the image in first map base
for(i=0; i<32; i++)
dmaCopy (&backgroundMap[i*64], &BG MAP RAM(0)[i*32], 64),;

// TOP RIGHT quadrant of the image in second map base
for(i=0; i<32; i++)
dmaCopy (&backgroundMap[i*64+32], &BG MAP RAM(1)[1*32], 64);

// BOTTOM LEFT quadrant of the image in third map base
for(i=0; i<32; i++)
dmaCopy (&backgroundMap[(1+32)*64], &BG MAP RAM(2)[1*32], 64);

// BOTTOM RIGHT quadrant of the image in fourth map base
for(i=0; i<32; i++)
dmaCopy (&backgroundMap[(1i+32)*64+32], &BG MAP RAM(3)[i*32], 64);

O©ESL/EPFL 38

cpr| Example: Use of Big Maps in Tiled Mode
i Shifting the background

= The visible part of the //Shift background
while(1) {
background (256)(192 //shifting horizontally from left to right
pixels) is limited by the for(i=0; i<=512-256; i++){
: swiWaitForVBlank() ;
scr_een sge and depends REG BGOHOFS = i
on its horizontal and }
vertical shift //shifting vertically from up to down
_ _ for(i=0; 1<=512-192; i++){
= Shift background in order to swiWaitForVBlank();
“move” the visible part in the REG BGOVOFS = 1i;
}
256x192 //shifting horizontally from right to left
pixe|s for{i=512—255; i'.-'='='3; i——]{
swiWaitForVBlank();
64X64 REG BGOHOFS = 1;
tiles }

//shifting vertically from down to up
for(i=512-192; i>=0; i--){
swiWaitForVBlank();
REG BGOVOFS = 1;

O©ESL/EPFL 39

=PrL Advance graphics: Sprites

= Sprites are small graphic objects that can be rendered on top of the
backgrounds and provide extended features

Different sizes (8x8, 16x16, 32x32, 64x64, 16x8, 32x8, 32x16, 64x32, 8x32, 16x32)
Free position: they can be rendered in any point of the screen (even outside)
Transformation capabilities: they can be rotated, scaled or flipped in 2D

Different modes (bitmap, tiled...)

= Graphic engine features and limitations

The amount of sprites is fixed to 128 and they are hidden by default

A special mode has to be configured in a VRAM mode: this bank cannot be used for
anything else (e.g.: for backgrounds)

A sprite is associated to a graphic stored in memory and several sprites can be
associated to the same graphic (i.e.: we can have several sprites with a single
graphic loaded in memory)

They use a special palette (different from the one used for backgrounds) and it can
use extended palettes

= |[ibNDS support through means of an API

O©ESL/EPFL

See more information in file Jopt/devkitPro/libnds/include/nds/arm9/sprite.h

Some examples can be found at
http://sourceforge.net/projects/devkitpro/files/examples/nds/ 40

=pr| Example:. Slmp_le Sprllte Usage
rit configuration

= The sprite of a ball (image “ball.png”) will be displayed over a
background of a football field (image “field.png”)

field.pn o D » - 59f
PRI | 256 px (32 tiles) " DEsUme

Cil = Crn ~¥43 ™~ e T e]
riig emulation cLonng 1ools f

192 px (24 tiles)

&

= Grit has been configured to generate the tiled version of both images
= Green has been selected as transparent color in the ball graphic (-gT flag)

-g

_gt

-gB8
-gTOOFFEO

field.grit ball.grit

O©ESL/EPFL 41

=pr| Example: Simple Sprite Usage
Engine and background configuration

= Engine is configured normally in mode 0 activating one background
= Any other configuration could be possible

//MAIN engine

REG DISPCNT = MODE 0 2D | DISPLAY_BGE&_ACTIUE;'

= Background is configured in the standard way
= VRAM bank A enabled in background mode
= Tiled mode using 32x32 grid and 256 colors

void configureBGO() {
//Activate and configure VRAM bank to work in background mode
VRAM A CR = VRAM ENABLE | VRAM A MAIN BG;

//BGO configuration for the background
BGCTRL[@] = BG COLOR 256 | BG_MAP_BASE(0) | BG TILE BASE(1l) | BG 32x32;

//Copy data to display background (tiles, palette and map)
swiCopy(fieldTiles, BG TILE RAM(1), fieldTilesLen/2);
swiCopy(fieldPal, BG PALETTE, fieldPallLen/2);
swiCopy(fieldMap, BG MAP RAM(®), fieldMapLen/2);

O©ESL/EPFL 42

cpr| Example:. Slmplg Sprltg Usage
Sprite configuration

= Sprite configuration

= VRAM bank B initialization in sprite mode and offset (since A is also used)

= Sprite manager initialization: constant oamMain is declared in libnds as the sprite
manager of the system

= Allocate space for the graphic (size and format necessary)
= Copy graphic bitmap into the allocated space and palette in the sprite palette

void configureSprites() {

//Set up memory bank to work in sprite mode (offset since we are using VRAM A for backgrounds)
VRAM B CR = VRAM ENABLE | VRAM B MAIN SPRITE 0x06400000;

//Initialize sprite manager and the engine
oamInit(&oamMain, SpriteMapping 1D 32, false);

//Allocate space for the graphic to show in the sprite
gfx = oamAllocateGfx(&oamMain, SpriteSize 32x32, SpriteColorFormat 256Color);

//Copy data for the graphic (palette and bitmap)
swiCopy(ballPal, SPRITE PALETTE, ballPalLen/2);
swiCopy(ballTiles, gfx, ballTilesLen/2);

= Important: The sprite manager has been initialized and the graphic

loaded in memory but the sprite has not been displayed yet!
©ESL/EPFL 43

=pr| Example:. Slmplg Sprltg Usage
Sprite configuration

= Keys tracking to //Position
. g int x =0, y =0, keys;
modify coordinates while(1){
//Read held keys
= x andy represent the scanKeys () ;
position of the top left keys = keysheld();

corner of the ball and //Modify position of the sprite accordingly

P if((keys & KEY RIGHT) & (x < (SCREEN WIDTH - SPRITE WIDTH))) x+=2;
are modified within the if((keys & KEY DOWN) & (y < (SCREEN_HEIGHT - SPRITE_HEIGHT))) y+=2;
screen if((keys & KEY LEFT) & (x > 0)) x-=2;

. if((keys & KEY UP) && (y > 0)) y-=2;
= Sprite set-up:

_ oamSet (&amMain, // oam handler
= coordinates 0, // Number of sprite
. Xr Y // Coordinates
= Slze e, // Priority
- f t e, // Palette to use
orma SpriteSize 32x32, // Sprite size
; ; SpriteColorFormat 256Color, // Color format
| -
associated graphlc gfx, // Loaded graphic to display
= rotation -1, // Affine rqtation to use (-1 none)
false, // Double size if rotating
"L false, // Hide this sprite
false, false, // Horizontal or vertical flip
= Refresh screen ;‘else // Mosaic
= Renders all the not swilWaitForVBlank();

//Update the sprites
oamUpdate(&oamMain) ;

hidden sprites

©ESL/EPFL 44

=PrFL

Rotoscale and tiled

= Exercises (and homework)

O©ESL/EPFL

Exercise 1 — Configure the engine

Exercise 2 — Load the background image in the
main engine

Exercise 3 — Create user-define tiles for the Tetris =

blocks
Exercise 4 — Use multiple backgrounds

Exercise 5 — Plot background image using tiles
created with grit

Exercise 6 - Sprites
*Exercise 7 — Chrono display: Plot a number

*Exercise 8 — Chrono display: Plot the value of the
chrono

*Exercise 9 — Chrono display: Change the color of
the chrono display

* Additional exercises

Practical Work 8: Graphics (Part 3):

mode

® & Desmume - 59fps

File Emulation Config Tools ?

© @ Desmume - 59fps

File Emulation Config Tools ?

Questions?

5 @

Let’s use the screen with tiles

and multi-background in the
NDS! p

EEEEEEEEE

	Systèmes Embarqués Microprogrammés
	Content of Session
	NDS screen modes: 2D engines configuration�Tiled modes
	The tiled/text mode:�Tiles and drawing options
	Complete display configuration tiled mode:�Three elements to store and use
	The tiled/text mode: �Representations options for tiles
	Slide Number 7
	Tiles access and storage in memory
	Color palettes access and storage in memory
	Slide Number 10
	Tiles map format and storage
	Configuring a tiled background
	Example of Memory Use of BG_TILE_BASE and BG_MAP_BASE
	Structure of tiled background in VRAM banks mapping
	Efficient data transfer between CPU and I/O subsystem: Direct Memory Address (DMA)
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Example: Full stripped screen with 2-color crossing lines
	Creating images with tiles using «grit»
	Creating tiles using «grit»: Example
	NDS screen modes: 2D engines configuration�Using multiple backgrounds
	Use of multiple backgrounds concurrently
	Example: Use of overlapping backgrounds Grit configuration
	Example: Use of overlapping backgrounds Backgrounds configuration
	Example: Use of overlapping backgrounds Shifting backgrounds
	Use of Big Maps in Tiled Mode
	Example: Use of Big Maps in Tiled Mode�Grit file and transfer of palette and tiles
	Example: Use of Big Maps in Tiled Mode�Transfer map to map bases
	Example: Use of Big Maps in Tiled Mode�Shifting the background
	Advance graphics: Sprites
	Example: Simple Sprite Usage�grit configuration
	Example: Simple Sprite Usage�Engine and background configuration
	Example: Simple Sprite Usage�Sprite configuration
	Example: Simple Sprite Usage�Sprite configuration
	Practical Work 8: Graphics (Part 3):�Rotoscale and tiled mode
	Slide Number 46

