g

wsLABORATORY

Topic 3: (Part B)
/O and Peripheral Devices Management
GRAPHICS in the Nintendo DS

Systemes Embarqués Microprogrammeés

Prof. David Atienza Alonso, SEL-STI 1

=Pr-L Content of Session

= Use of one background in NDS: extended rotoscale mode
= NDS video modes for rotoscale mode
= Palettes and backgrounds
= Data storage in VRAM structure for rotoscale mode
= Data transfer functions
= Transformation matrix

= Drawing graphics in extended rotoscale mode
= Examples of transformation matrix in the NDS
= Converting images to bitmaps: grit tool

©ESL/EPFL

=PrL Configuration Sequence of Rotoscale Mode

1. Power Manager configuration (REG_POWERCNT)
= Performed with default settings in system boot-up

2. VRAM configuration (VRAM_x_CR)
= Activate banks and configure them (depending on used graphical engines)

3. Graphical engines configuration (REG_DISPCNT)
= Configure mode and backgrounds

4. Configure each active background (BGCTRL[N])

= Set Bitmap base address, background size and pixel configuration (8 or 16
bits color mode).

5. Initialize palettes when using 8 bits mode (BG_PALETTEJ[0...255])

6. Optional: Adjust affine transformation matrix for each background

Ready to filling the bitmap with your graphics!

©ESL/EPFL

=prp Revision: Graphics subsystem in the NDS
e i Activating screens and graphic coprocessors

= Control register for powering up I/0 NDS devices: REG_ POWERCNT
= [t is mapped on the memory address: 0x4000304
REG_POWERCNT

1(1|]1(1|1]1
5(4(3[2]|1]0

9|18|7(6|5|4(3(2]|1]0

—> POWER_LCD LCD Screen
—> POWER 2D A Main 2D core
—> POWER_MATRIX 3D Matrix
> POWER 3D CORE Main 3D core
> POWER_2D B Sub 2D core
> POWER_SWAP_LCDS Scr.een used by the
main core

= LCD and engines activated by default during the boot-up process

= Possible to enable / disable them manually to save power at run-time
Activation; REG_POWERCNT = POWER_LCD | POWER_2D_A;

Deactivation: REG_POWERCNT &= ~(POWER_LCD) & ~(POWER_2D_A);

©ESL/EPFL 4

=prp NDS screen modes: 2D engines configuration
e i Choosing extended rotoscale mode

= Each engine has four backgrounds (or layers): BGO, BG1, BG2 and BG3

= Final view on the screen will be their combination based on used graphic mode
= Typically BGO is the most external one and BG3 is the most internal one

= Multiple modes possible in 2D engines, select the most appropriate one

= Main engine: 7 modes and framebuffer = Sub engine: 6 modes

Mode BGO BG1
Tiled/3D| Tiled

Tiled

Tiled

Tiled Tiled

Tiled/3D| Tiled Tiled Rotoscale Tiled | Tiled Tiled Rotoscale
Tiled/3D]| Tiled Rotoscale Rotoscale Tiled | Tiled | Rotoscale Rotoscale
Tiled/3D| Tiled Tiled Ext. Rotoscale Tiled | Tiled Tiled Ext. Rotoscale

Tiled | Tiled| Rotoscale |Ext.Rotoscale
Tiled | Tiled |Ext. Rotoscale|Ext. Rotoscale

Tiled/3D| Tiled | Rotoscale |Ext.Rotoscale
Tiled/3D| Tiled |Ext. Rotoscale|Ext. Rotoscale
6 3D N/A | Large Bitmap N/A
FrameB uf. Direct VRAM display as a bitmap

= |n the case of extended rotation or extended rotoscale mode?
= Configure REG_DISPCNT with one of the possible modes: 3, 4 and 5 (Extended)

= Example: activate mode 5 and background 2 (BG2)
REG_DISPCNT = MODE_5 2D | DISPLAY_BG2_ACTIVE;

©ESL/EPFL

=PFL Reminder: Graphics Engine Control Register

= REG_DISPCNT: display register to control mode and active backgrounds

REG_DISPCNT

3|13|2|2|2(2|2|2|2|2(2|2|1|1|j1|1|1f1]|]1f1]1]1
110(9|8(7|6|5[4]|3[2|1(0(9|8|7]|6|5|4|3|2|1(0

> MODE_{0..6} 2D
> ENABLE_3D
DISPLAY {BGO0,BG1,BG2,BG3,SPR} ACTIVE
> DISPLAY_{WINO,WIN1,SPR_WIN} ON
2 2D mode
> MODE_FB{0..3}

= Example: activate mode 0 and background 1 (BG1)
REG_DISPCNT = MODE_0_2D | DISPLAY_BG1_ACTIVE;

©ESL/EPFL

cpr| Configuring Memory-Mapped
/O Peripheral Registers

= LibNDS library under /opt/devkitPro defines the registers ID

#define REG_DISPCNT *(vu32*)0x04000000

(vu32)0x04000000

| J \ J
Volatile 32 bit
Unsigned integer

0000 0000 0100 0000 0000 OO00 0000 0000 0000

= Hint: Use the following command in the virtual image
terminal to find any macro’s value:
$: grep —rnw ‘/opt/devkitPro/libnds/include/nds’ —e ‘MACRO_NAME’

©ESL/EPFL

=prp Example: Enabling and Assigning VRAM
Block A to Main Screen in Mode 0

= C language operation meaning:

Non- exclusive
binary OR

/ REG_DISPCNT= MODE_O0_2D | DISPLAY_BG1_ACTIVE
|] \ J] |\)

| { |
vu32 0x10000 1<<9

\

\ OR 0000 0000 0000 0001 0000 0000 0000 0000

0000 0000 0000 0000 0000 0010 0000 0000

0000 0000 0000 0001 0000 0010 OO00 0000

!

0x00010200

©ESL/EPFL

The extended rotoscale mode:
Drawing options and colours palette

= Drawing functionality
= Transparency in pixels representation (not used in framebuffer mode)
= Transformation matrix: rotate, scale and displacement of backgrounds

= Use of palettes: compact representation of colours

= Collection of 256 colors in ARGB16 W] ARGB16(1,0,0,0)
- 5 bits per colour, and 1 bit of transparence

= 8 bits per pixel: color index number in palette

ARGB16(1,31,31,0)
ARGB16(1,0,31,0)
ARGB16(1,0,31,31)

= Video representation storage requirements?
= Pixels: representation using palettes
= Palette: representation of colours

ARGB16(1,31,31,31)

00O NO Ol WDN P

Almost half memory size is used with respect
to framebuffer format!

255

©ESL/EPFL

BG PALETTE
16 Bits Values

ARGB16(1,0,0,0)

ARGB16(1,31,31,0)

ARGB16(1,0,31,31)

ARGB16(1,31,31,31)

0O NO O & WDNPEFL O

255

Palette

©ESL/EPFL

The extended rotoscale mode:

Palette exam

E 8-Bit Values
BG_GFX [769] 1
BG_GFX [770] 1
BG_GFX [771] 1

I
BG_GFX [1789] 4
BG_GFX [1790] 4
BG_GFX [1791] 4

|
BG_GFX [2809] 6
BG_GFX [2810] 6
BG_GFX [2811] 6

I

[

VRAM Buffer

le

(0,0) (0,255)

(191,0) (191,255)

NDS Screen

10

Nintendo DS memory range:
Storage of rotoscale video mode data

=PrFL

: i | gl s
Dedlpated fast memories for E : J[3 J]
CaCh I n g (Data%ache] [Inst.%ache] WRAM

= Object Attribute Memory s st g [[GO .
(OAM) -
- Sprites or 2D images |/ [g T :
an|mati0ns integrated ‘\\ % Memory Interface P)
. te ~
into larger scene N . ~ 7N
(Main4l|\\/ln(;m0rv) § ’(% \
) = Y
= Palette RAM Nintendo DS a3 |
.] (VRAM D (128KB))
- 1 x 256 colours Memory Architecture | § ,}
- 16 x 16 colours \ /
v a2 !
VRAM | (16 KB) ¢

= Background memory: VRAM portions with pixels and palettes
= Enable the necessary VRAM banks: VRAM_ ? CR
- Example: store image of 256x256 pixels with palette format (8 bits / pixel)
64KB needed: enough with one bank (bank A), assign to main 2D core

VRAM_A_CR = VRAM_ENABLE | VRAM_A_MAIN_BG:

©ESL/EPFL 1

Structure of background memory:
Organized in data blocks

=PrFL

= Background memory divided in 32 blocks of 16KB VRAM
= Pointers in libnds: BG_ BMP_RAM(O .. 31) or BG_ MAP_RAM(O .. 31) Address

= BG_GFX s an alias for BG_BMP_RAM(0) A
0x060000000| BG_BMP_RAMO

= Two steps to configure the background

controller: BGCTRL[X] 0x060004000 BG_BMP_RAM 1

* Indicate slot in dedicated memory for backgrounds: 4, 050008000 BG_BMP_RAM 2
BG_BMP_BASE(x) or BG_MAP_BASE(x) -
I

= Indicate background size and format (multiple

options exist in libnds) 0x600074000 | BG_BMP_RAM_29

Example of 256x256 pixels background with
palette format: BgSize B8 256x256

0x600078000 BG_BMP_RAM 30

0x60007c000| BG_BMP_RAM 31

+ €

= Example with main 2D engine
= Configure to use background 2
= Map data starts at base map address 0 of background memory
= Image size is 256x256 in palette format (8 bits per pixel index)

BGCTRL[2] = BG_BMP_BASE(0) | BgSize_B8_256x256: 12

©ESL/EPFL

Structure of background memory and
VRAM banks mapping

=PrFL

= Background memory has a limited size, and fixed banks assignments
= For main 2D engine: 512KB
= For sub 2D engine: 128KB

Sub

Main

Backgrounds

Framebuffer

Backgrounds

©ESL/EPFL 13

Initializing the colours palette and
the background memory content

=PrFL

= Palette memory without banks, colours stored linearly from base address
= Pointer to indicate start in libnds: BG_PALETTE

uint 16* myPalette = BG_ PALETTE;

= Initialization of palette as pixels in framebuffer mode: ARGB16 function
= Loop up to 256 values
= Example of palette with all possible blue scales:
Inti;
for (i=0; i1<32; i++)
myPalette[i] = ARGB16(1,0, 0, i);

= Background initialization with aux. variable: VRAM writes only of 16/32 bits
= Declare an 8-bit variable for the screen line of NDS: uint8 myLine[256];

= Initialize the variable with a double loop to cover the whole screen,
and copy to memory after each line: use BG_GFX libnds macro for video memory

How can we copy large amount of data (instead of one by one) and
with sizes of 8 bits instead of 16 or 32 bit?

©ESL/EPFL 14

cpr| Data transfers between CPU and I/O
== subsystems: Two methods

= Standard C function: stdio.h / string.h
void* memcpy (void * destination, const void * source, size_t num);

= destination: Destination memory address for data to transfer
= source: Origin memory address of data to transfer
= num: Data size in bytes to transfer

= Example: copy line of data in extended rotoscale mode: uint8 myLine[256];

uint8* mymemory = (uint8*) BG_GFX;
memcpy (mymemory, myLine, 256);

/[Copy 1st line of NDS screen

= Alternative: Software Interrupt mode (SWI) - Bios function: nds/bios.h
void swiCopy (const void *source, void *dest, int flags)

= source: Origin memory address of data to transfer
= dest: Destination memory address for data to transfer
= flags: Data size in 2-byte words to transfer

= Example: copy line of data in extended rotoscale mode using SWI: uint8 myLine[256];

uint8* mymemory = (uint8*) BG_GFX;
swiCopy(myLine, mymemory, 128); // Copy 1st line NDS screen - BIOS

©ESL/EPFL 15

Structure of colours palette memory
and VRAM banks mapping

=PrFL

= Palettes have a limited size, and fixed banks assignments
= For main 2D engine: 96KB
= For Sub 2D engine: 48KB

Sub
Main
Backgrounds
Framebuffer
Extended
Palettes
Backgrounds
Extended
Palettes

©ESL/EPFL 16

Complete display configuration in extended
rotoscale mode

=PrFL

= A extended rotoscale configuration is characterized by three elements:
= Displacement in VRAM for multiple backgrounds

- Banks: BG_BMP_BASE(0) in VRAM_A, ... BG_BMP_BASE (31) in VRAM_G, ...

= Inform 2D engine of image size and pixel configuration (8 or 16 bits):
libnds list of BgSize enumerator type options in background.h

BgSize B8 256x256 : 256 x 256 pixel 8-bit bitmap background
BgSize B8 1024x512 : 1024 x 512 pixel 8-bit bitmap background
BgSize B16 128x128 : 128 x 128 pixel 16-bit bitmap background

= Configure the colour palette for 2D engine: BG_PALETTE
Initialize palette to use in BG_PALETTE

Use of auxiliary variable to write correctly in VRAM!

= Possible to configure background effects: affine transformation matrix

©ESL/EPFL 17

=Pr-L Affine transformation matrix

= Rotoscale mode allows the designer to apply a Rotation
and Scaling operation on the different backgrounds

= Affine transformation matrix:
= Special matrix that sets the transformation factors per background

= For a given pixel with coordinates (x,y) the transformation
gives the following new coordinates

(x’)_ (a b)* (x —xo)
y' c d Y — Yo
= a, b, c and d are the factors to scale and rotate

= (Xq, Yo) correspond to the coordinates of the origin of the system

©ESL/EPFL 18

=Pr-L Affine transformation matrix

= Graphical engines calculate the inverse operation of an affine
transformation: for a given pair of coordinates, the corresponding pixel
In the original image is obtained

= They avoid making calculations for areas out of the screen

= The screen can be sequentially refreshed (pixel by pixel) from left to
right horizontally and line by line from top to bottom

= The engines calculate the coordinates of the pixel in the original image that
corresponds to a specific pair of coordinates (X,y)

xdx, xdy

(x,y)= (x"y',1) = | ydx,ydy
dx,dy

(x’, y’) are the coordinates of the pixel to render on the screen
(x, y) are the coordinates of the pixel value en the original image

©ESL/EPFL 19

Affine transformation matrix:
Well-known transformations

=PrFL

= No transformation applied ©.© Desmume - 59fps

File Emulation Config Tools ?

xdx, xdy 1, 0
ydx,ydy | =10, 1

dx,dy 0, 0
= Vertical mirror oo oe;mumef;safpf ?
xdx, xdy 1, 0
ydx,ydy | = 0, —1
dx,dy 0, 192

©ESL/EPFL 20

S —— Affine transformation matrix:
P-L .
Well-known transformations

= Horizontal mirror

xdx, xdy -1, O
ydx, ydy =(0, 1)

dx,dy 256 0

= Vertical and horizontal mirror

xdx, xdy -1, 0
ydx, ydy =(0, —1)

dx,dy 256, 192

©ESL/EPFL 21

n

= Vertical shrink

vdx, ydy 0,

xdx, xdy (1,
dx,dy 0,

= Horizontal shrink

yvdx,ydy | =1 0,

xdx, xdy (2,
dx, dy 0,

©ESL/EPFL

- Affine transformation matrix:
PFL .
Well-known transformations

® @® Desmume - 58fps

File Emulation Config Tools ?

0 @ Desmume - 59fps

File Emulation Config Tools ?

22

S —— Affine transformation matrix:
P=L .
Well-known transformations

= Clockwise angle Y’ 0.0 esmume - saips
xdx, xdy cos(Y),—sin(Y)
ydx,ydy | =| sin(Y), cos(Y)
dx,dy 0, 0

= The angle "Y' must be in radians (rad)

©ESL/EPFL 23

- The affine transformation matrix
=PrL

In the NDS
= Transformations configured using
C typedef struct {

bgTransform structure in libnds s16 xdx:
: : s16 ydx;
= Although fields declared as signed s16 ;/dy'
integers, they use fixed-point numbers s16 ydy;

with 8 bits for decimal part (format: Q, g) s32 dx;

s32 dy;

so in reality it is: 256 (1<<8)
= A number x in NDS fixed-point arithmetic equals: 256 * x

= One matrix per background: bgTransform[background_nr]

= Example: set 1:1 scale and bgTransform[2]->xdx =256;

no rotation or translation for BG2 Sg UrESIBITIZ-=1E ¢ = O
bgTransform[2]->xdy = 0;

= Note: in Latest NDS libs, it changed to; PgTransform[2]->ydy = 256;
bgTransform[2]->dx =0;
= bgTransform[2]->hdx bgTransform[2]->dy = 0:
= bgTransform[2]->vdx ’

©ESL/EPFL 24

=PrL Images for the NDS - grit

= DevkitPro provides a useful tool to transform images from
Portable Network Graphics (png) format into a readable
format for NDS

= grit : “GBA Raster Image Transmogrifier”
= Converts the images into assembly code that can be introduced in
the final program as a data segment
Assembly code generated with user-defined configurable parameters

The generated code corresponds to the declaration of: palettes, maps
and graphic data

= Apart from assembly code, it generates a header file to be included
C code with all necessary declarations
Link between C code and Assembly Code

©ESL/EPFL 25

=PrL Images for the NDS - grit

= grit can be used from a terminal
= Example: grit mylmage.png —g —gB16
2 output files will be obtained: “ mylmage.h” and “mylmage.s”

= Conversion is automated for NDS using few rules included in the
Makefile of the Eclipse project and a configuration file (extension .grit)

= Place image to transform (“mylmage.png”) and
configuration file (“mylmage.grit”) in the project folder data

= During the compilation process grit will be called and the output files will be
placed automatically in the temporary building folder build

= The configuration file must have the same name of the image to
transform and contains the necessary formatting parameters

= In the previous example: -g -gB16

©ESL/EPFL 26

cprp Images for the NDS — grit:
Conversion parameters

= Main parameters for the grit configuration file

= -g|-g! =Include or do not include graphic data (include always!)
= -gb|-gt = Generate Bitmap or Tiles (depends on video mode)
= -p|-p! =Include or do not include the palette (usually generate)
= -m | -m! = Include or do not include the map (used in tiled graphics)
= -pnX = Restrict the palette size to X components
= -gBX = Sets the pixel size to X bits. X can be 1, 2, 4, 8 or 16
for NDS: —gB8 or —gB16 are used -g
-gb
= Example of a configuration file ! >| -gB8
-m
= Complete list of the parameters P

= Type: grit --help in a terminal

©ESL/EPFL 27

cpe| Images for the NDS — grit

= PNG Image : .
_ J = Qutput header file = Qutput assembly file
(splraljpn.g) (spiral.h) (spiral.s)
+ Config file 3
iral) //{{BLOCK (spiral) :
(Splra 'g”t) 7 .section .rodata
% iral, 256x192@16 -align 2
spiral, X , : - :
77+ bitmap not compressed " .glt_:bal ?plralBltmap @ 98304 unsigned
// Total size: 98304 = 98304 iplralBitmap:
// .word @x14A514A5,0x14A514A5,0x14A514A5,0x14A5
// Time-stamp: 2011-04-06, 22:13:25 .word 0x14A514A4,0x108414A5,0x14A514A5,0x10A5

// Exported by Cearn's GBA Image Transmot word Ox4A533DFO,0x673A5AD7,0x6F7C6B5B, 0x7390
jj (nttp://ww.coranac.com/projects/#gri \ord Ox0C6A252A, 0x14A60001, OXSEF84210, 06734
" .word 0x00000000,0x00000000,0x00000000 , OXxA00E

.word 0x00000000,0x00000000,0x00010000,0x0422

#ifndef GRIT SPIRAL H .word 0x04010401,0x00000000,0x00000000,0x000C

-g #define GRIT SPIRAL H .word Bx0000AAAA,0x0AARAOOO, OxANOEERR , AXOOOE
#define spiralBitmapLen 98304

-8 b extern const unsigned int spiralBitmap(24¢ -Word ©x00000000,0x00000000,0x00000000,OXOO0E

.word 0x04210401,0x08430842,0x08640864,0x108¢

- 8316 #endif // GRIT_SPIRAL H .word 0x00010002,0x00010001,0x00010001,0x000C
.word 0x00000000,0x00000000,0x00000000,0x000C
.word Ox6F7D739E, @x5AD8737D,0x5275671A,0x0C44
.word 0x739D739D,@x739D739D,0x739D739D, 0x739E
0x20E92D6C, 0x18A618C7,0x14A514A5, 0x14A5

-//}}BLOCK(spiral)

©ESL/EPFL

Practical Work 7: Graphics (Part 2):
Extended rotoscale mode

® @ Desmume - 47fps

= Exercises (and homework) File Emulation Config Tools ?
Exercise 1 — Changing conditional flag
Exercise 2 — Configuring the main engine
Exercise 3 — Configuring the background

Exercise 4 — Configuring sub engine and
background

Exercise 5 — Transforming image
Exercise 6 — Displaying transformed image

n

PrL

*Exercise 8 — Color degradation with rotoscale

*Exercise 8 — Color degradation with palette in
rotoscale mode

*Exercise 9 — Helicopter animation

* Additional exercises

©ESL/EPFL

1 Practical Work 7: Additional Exercise 9
Helicopter animation

n

PF

= How can we create an animation of a rotating
helicopter blade from the image on the right?

Solution: Alternate the three image frames fast
enough to create the rotating blade effect

192

= Provided image: 256x586 pixels
Bitmap size: 144 kB for 8-bit pixel depth

The image consists of 3 different frames
Each frame is 256x192 pixels
Bitmap size per frame: 48 kB

= Solution: Use timer + interrupt to change the
displayed frame periodically

Display a different frame in each timer interrupt

30

©ESL/EPFL

e Helicopter animation - Solution 1:
=PrL .
Copyv frame content each interrupt

= |dea: Load only the desired frame in VRAM

= Only 48 kB needed per frame
(8-bit pixel depth) BG_GFX

= One VRAM bank is enough (i.e., VRAM_A)

0x060000000

Frame x

= Configure a timer (fast enough to hide the
animation: 100ms) and every timer
Interrupt:
= Select which frame to display
= Copy the bitmap of the desired frame to BG_GFX VRAM A

©ESL/EPFL 31

=PrFL

Im

1. Engine, Background, //Engine and background configuration
VRAM configuration REG DISPCNT = MODE 5 2D | DISPLAY BG2 ACTIVE;
VRAM A CR = VRAM ENABLE | VRAM A MAIN BG;
BGCTRL[2] = BG_BMP BASE(®) | BgSize B8 256x256;
2. Copy bitmap and palette
. //Transfer of the image and the palette to the engine
(generated by g”t) memcpy (BG GFX, helicopterBitmap,|256*192);

- start with Frame 1 memcpy (BG_PALETTE, helicopterPal,
- copy first 256x192 pixels

//This variable tells us which image to render (0,1 or 2)

3. Setup timer with interrupt i+ jnage = o;
and associate ISR

;_use g,l’obal variable void Timer6ISR()
image” to select frame {

4. - copy the bitmap of the

//Timer@ ISR for changing the image every 100 ms

//Change image and copy it to
image = (image + 1) % 3;

Helicopter animation - Solution 1
lementation code

helicopterPallLen);

the engine memory

selected frame int offset = image*256*192/4:
memcpy (BG GFX, &helicopterBitmap[offset], 256%192);

}

Intuitive solution, but requires copying 48 kB to VRAM per timer interrupt!
How can we avoid the overhead of memory copies?

©ESL/Er+c

I Helicopter animation - Solution 2:
Pr-L .
Changing the map base

BG BMP_BASE(0),0x060000000

= |dea: Load the full image in VRAM and inform the
background where to look for the bitmap

= Load all 144 kB in VRAM VRAM_A |
= Modify BGCTRL register accordingly sl g
= Remember BG_BMP_BASE indicates BG_BMP_BASE(8) i

where the bitmap starts

= In each timer interrupt:
= Select which frame to display

= Modify the BGCTRL register to change the bitmap start
location

= Use BG_BMP_BASE(x)

VRAM_B

BG_BMP_BASE(0) 0x060000000
16 kB

= But can we fit the full image in a VRAM? BG_BMP_BASE(1)

= |mage is 144 kB, VRAM_A has only 128 kB! 16 kB
= Activate both VRAM_A and VRAM_B
= Continuous memory of 128 + 128 = 256 kB

©ESL/EPFL 33

Helicopter animation - Solution 2
Implementation code

=PrFL

1. Engine, Background,

] i //Engine and background configuration
VRAM configuration REG DISPCNT = MODE 5 2D | DISPLAY BG2 ACTIVE;

VRAM_ENABLE | VRAM A MAIN BG;
VRAM ENABLE | VRAM B MAIN BG;
BG_BMP_BASE(0) | BgSize B8 256x256;

- VRAM_A and VRAM_B ﬁﬁ:_g_gg
- VRAM_x_MAIN _BG to BGCTRL[2]
ensure VRAM_A and B are

assigned to main engine

2. Copy bitmap and palette

. //Transfer of the image and the palette to the engine
(generated by gl’lt) memcpy (BG _GFX, helicopterBitmap,| helicopterBitmapLen);
- copy full image memcpy (BG PALETTE, helicopterPal, helicopterPallLen);

3. Setup timer with mterrupt //This variable tells us which image to render (0,1 or 2)

and associate ISR int image = ©;
- ISR Iogic: //Timer@ ISR for changing the image every 100 ms
modify BGCTRL and void Timer©ISR()

{
Change BG—BMP—BASE //Change image and copy it to the engine memory
- use global variable image = (image + 1) % 3;:

BGCTRL[2] = BG BMP BASE(image * 3) | BgSize B8 256x256;

“image” to select frame

©ESL/EPFL 34

Questions?

o fl

Let’s use the screen of the NDS!

35

EEEEEEEEE

	Slide 1: Systèmes Embarqués Microprogrammés
	Slide 2: Content of Session
	Slide 3: Configuration Sequence of Rotoscale Mode
	Slide 4: Revision: Graphics subsystem in the NDS Activating screens and graphic coprocessors
	Slide 5: NDS screen modes: 2D engines configuration Choosing extended rotoscale mode
	Slide 6: Reminder: Graphics Engine Control Register
	Slide 7: Configuring Memory-Mapped I/O Peripheral Registers
	Slide 8: Example: Enabling and Assigning VRAM Block A to Main Screen in Mode 0
	Slide 9: The extended rotoscale mode: Drawing options and colours palette
	Slide 10
	Slide 11: Nintendo DS memory range: Storage of rotoscale video mode data
	Slide 12: Structure of background memory: Organized in data blocks
	Slide 13: Structure of background memory and VRAM banks mapping
	Slide 14: Initializing the colours palette and the background memory content
	Slide 15: Data transfers between CPU and I/O subsystems: Two methods
	Slide 16: Structure of colours palette memory and VRAM banks mapping
	Slide 17: Complete display configuration in extended rotoscale mode
	Slide 18: Affine transformation matrix
	Slide 19: Affine transformation matrix
	Slide 20: Affine transformation matrix: Well-known transformations
	Slide 21: Affine transformation matrix: Well-known transformations
	Slide 22: Affine transformation matrix: Well-known transformations
	Slide 23: Affine transformation matrix: Well-known transformations
	Slide 24: The affine transformation matrix in the NDS
	Slide 25: Images for the NDS - grit
	Slide 26: Images for the NDS - grit
	Slide 27: Images for the NDS – grit: Conversion parameters
	Slide 28: Images for the NDS – grit Example
	Slide 29: Practical Work 7: Graphics (Part 2): Extended rotoscale mode
	Slide 30: Practical Work 7: Additional Exercise 9 Helicopter animation
	Slide 31: Helicopter animation - Solution 1: Copy frame content each interrupt
	Slide 32: Helicopter animation - Solution 1 Implementation code
	Slide 33: Helicopter animation - Solution 2: Changing the map base
	Slide 34: Helicopter animation - Solution 2 Implementation code
	Slide 35

