
1Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Topic 3: (Part B)

I/O and Peripheral Devices Management

GRAPHICS in the Nintendo DS

©ESL/EPFL
2

Content of Session

▪ Use of one background in NDS: extended rotoscale mode

▪ NDS video modes for rotoscale mode

▪ Palettes and backgrounds

▪ Data storage in VRAM structure for rotoscale mode

▪ Data transfer functions

▪ Transformation matrix

▪ Drawing graphics in extended rotoscale mode

▪ Examples of transformation matrix in the NDS

▪ Converting images to bitmaps: grit tool

©ESL/EPFL
3

Configuration Sequence of Rotoscale Mode

1. Power Manager configuration (REG_POWERCNT)

▪ Performed with default settings in system boot-up

2. VRAM configuration (VRAM_x_CR)

▪ Activate banks and configure them (depending on used graphical engines)

3. Graphical engines configuration (REG_DISPCNT)

▪ Configure mode and backgrounds

4. Configure each active background (BGCTRL[n])

▪ Set Bitmap base address, background size and pixel configuration (8 or 16

bits color mode).

5. Initialize palettes when using 8 bits mode (BG_PALETTE[0…255])

6. Optional: Adjust affine transformation matrix for each background

Ready to filling the bitmap with your graphics!

©ESL/EPFL
4

Revision: Graphics subsystem in the NDS

Activating screens and graphic coprocessors

▪ Control register for powering up I/O NDS devices: REG_POWERCNT

▪ It is mapped on the memory address: 0x4000304

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

POWER_2D_A Main 2D core

POWER_LCD LCD Screen

POWER_MATRIX 3D Matrix

POWER_3D_CORE Main 3D core

POWER_2D_B Sub 2D core

POWER_SWAP_LCDS Screen used by the
main core

REG_POWERCNT

▪ LCD and engines activated by default during the boot-up process

▪ Possible to enable / disable them manually to save power at run-time

Activation:

Deactivation:

REG_POWERCNT = POWER_LCD | POWER_2D_A;

REG_POWERCNT &= ~(POWER_LCD) & ~(POWER_2D_A);

©ESL/EPFL
5

NDS screen modes: 2D engines configuration

Choosing extended rotoscale mode

▪ Each engine has four backgrounds (or layers): BG0, BG1, BG2 and BG3
▪ Final view on the screen will be their combination based on used graphic mode

▪ Typically BG0 is the most external one and BG3 is the most internal one

M o de B G0 B G1 B G2 B G3

0 Tiled/3D Tiled Tiled Tiled

1 Tiled/3D Tiled Tiled Rotoscale

2 Tiled/3D Tiled Rotoscale Rotoscale

3 Tiled/3D Tiled Tiled Ext. Rotoscale

4 Tiled/3D Tiled Rotoscale Ext. Rotoscale

5 Tiled/3D Tiled Ext. Rotoscale Ext. Rotoscale

6 3D N/A Large Bitmap N/A

FrameBuf. Direct VRAM display as a bitmap

▪ Multiple modes possible in 2D engines, select the most appropriate one

▪ Main engine: 7 modes and framebuffer ▪ Sub engine: 6 modes

M o de B G0 B G1 B G2 B G3

0 Tiled Tiled Tiled Tiled

1 Tiled Tiled Tiled Rotoscale

2 Tiled Tiled Rotoscale Rotoscale

3 Tiled Tiled Tiled Ext. Rotoscale

4 Tiled Tiled Rotoscale Ext. Rotoscale

5 Tiled Tiled Ext. Rotoscale Ext. Rotoscale

▪ In the case of extended rotation or extended rotoscale mode?
▪ Configure REG_DISPCNT with one of the possible modes: 3, 4 and 5 (Extended)

▪ Example: activate mode 5 and background 2 (BG2)

REG_DISPCNT = MODE_5_2D | DISPLAY_BG2_ACTIVE;

©ESL/EPFL
6

Reminder: Graphics Engine Control Register

▪ REG_DISPCNT: display register to control mode and active backgrounds

ENABLE_3D

MODE_{0..6}_2D

DISPLAY_{BG0,BG1,BG2,BG3,SPR}_ACTIVE

DISPLAY_{WIN0,WIN1,SPR_WIN}_ON

REG_DISPCNT
1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 6 5 4 3 2 1 0

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

2D mode

MODE_FB{0..3}

▪ Example: activate mode 0 and background 1 (BG1)
REG_DISPCNT = MODE_0_2D | DISPLAY_BG1_ACTIVE;

©ESL/EPFL
7

Configuring Memory-Mapped

I/O Peripheral Registers

▪ LibNDS library under /opt/devkitPro defines the registers ID

#define REG_DISPCNT *(vu32*)0x04000000

(vu32)0x04000000

▪ Hint: Use the following command in the virtual image

terminal to find any macro’s value:

$: grep –rnw ‘/opt/devkitPro/libnds/include/nds’ –e ‘MACRO_NAME’

Volatile 32 bit

Unsigned integer

0000 0000 0100 0000 0000 0000 0000 0000 0000

©ESL/EPFL
8

Example: Enabling and Assigning VRAM

Block A to Main Screen in Mode 0

▪ C language operation meaning:

REG_DISPCNT= MODE_0_2D | DISPLAY_BG1_ACTIVE

0x10000

Non- exclusive

binary OR

vu32

0000 0000 0000 0001 0000 0000 0000 0000

1<<9

0000 0000 0000 0000 0000 0010 0000 0000
OR

0000 0000 0000 0001 0000 0010 0000 0000

0x00010200

©ESL/EPFL
9

The extended rotoscale mode:

Drawing options and colours palette

▪ Drawing functionality
▪ Transparency in pixels representation (not used in framebuffer mode)

▪ Transformation matrix: rotate, scale and displacement of backgrounds

▪ Use of palettes: compact representation of colours
▪ Collection of 256 colors in ARGB16

- 5 bits per colour, and 1 bit of transparence

▪ 8 bits per pixel: color index number in palette

▪ Video representation storage requirements?
▪ Pixels: representation using palettes

▪ Palette: representation of colours

ARGB16(1,31,0,0)

ARGB16(1,31,15,0)

ARGB16(1,31,31,0)

ARGB16(1,0,31,0)

ARGB16(1,0,31,31)

ARGB16(1,31,0,31)

ARGB16(1,31,31,31)

ARGB16(1,7,7,7)

ARGB16(1,0,0,0)0

1

2

3

4

5

6

7

8…

255

Almost half memory size is used with respect
to framebuffer format!

©ESL/EPFL
10

VRAM Buffer

BG_GFX [769] 1

BG_GFX [770] 1

BG_GFX [771] 1

BG_GFX [1789] 4

BG_GFX [1790] 4

BG_GFX [1791] 4

BG_GFX [2809] 6

BG_GFX [2810] 6

BG_GFX [2811] 6Palette

(0,0) (0,255)

(191,0) (191,255)

NDS Screen

BG_PALETTE
16 Bits Values

8-Bit Values

ARGB16(1,31,0,0)

ARGB16(1,31,15,0)

ARGB16(1,31,31,0)

ARGB16(1,0,31,0)

ARGB16(1,0,31,31)

ARGB16(1,31,0,31)

ARGB16(1,31,31,31)

ARGB16(1,7,7,7)

ARGB16(1,0,0,0)0

1

2

3

4

5

6

7

8 …

255

The extended rotoscale mode:

Palette example

…

©ESL/EPFL
11

Nintendo DS memory range:

Storage of rotoscale video mode data

▪ Background memory: VRAM portions with pixels and palettes
▪ Enable the necessary VRAM banks: VRAM_?_CR

- Example: store image of 256x256 pixels with palette format (8 bits / pixel)
64KB needed: enough with one bank (bank A), assign to main 2D core

▪ Dedicated fast memories for

caching
▪ Object Attribute Memory

(OAM)

- Sprites or 2D images

animations integrated

into larger scene

▪ Palette RAM

- 1 x 256 colours

- 16 x 16 colours

VRAM_A_CR = VRAM_ENABLE | VRAM_A_MAIN_BG;

CPU Core

Data TCM
16 KB

Inst. TCM
16 KB

Data Cache
4 KB

Inst. Cache
8 KB

Interface Unit

ARM9

CPU Core

Interface Unit

ARM7

WRAM (64 KB)

SRAM
(Main Memory)

4MB Rendering Engine

Display

ARM9 BIOS
(32 KB)

ARM7 BIOS
(32 KB)

OAM RAM
(2 KB)

Palette RAM
(2 KB)

WRAM0 (16 KB)

WRAM1 (16 KB)

WRAM

VRAM A (128 KB)

VRAM B (128 KB)

VRAM C (128 KB)

VRAM D (128 KB)

VRAM E (64 KB)

VRAM

VRAM F (16 KB)

VRAM G (16 KB)

VRAM H (32 KB)

VRAM I (16 KB)

A
R

M
9

 B
U

S
32

-b
it

A
R

M
7

 B
U

S
32

-b
it

M
e

m
o

ry
 B

u
s

(1
6-

B
it

)

Memory Interface

Nintendo DS
Memory Architecture

Firmware (256 KB)

©ESL/EPFL
12

▪ Example with main 2D engine

▪ Configure to use background 2

▪ Map data starts at base map address 0 of background memory

▪ Image size is 256x256 in palette format (8 bits per pixel index)

Structure of background memory:

Organized in data blocks

▪ Two steps to configure the background

controller: BGCTRL[x]

▪ Indicate slot in dedicated memory for backgrounds:

BG_BMP_BASE(x) or BG_MAP_BASE(x)

▪ Indicate background size and format (multiple

options exist in libnds)

− Example of 256x256 pixels background with

palette format: BgSize_B8_256x256

▪ Background memory divided in 32 blocks of 16KB

▪ Pointers in libnds: BG_BMP_RAM(0 .. 31) or BG_MAP_RAM(0 .. 31)

▪ BG_GFX is an alias for BG_BMP_RAM(0)

+

BG_BMP_RAM 0

BG_BMP_RAM 1

BG_BMP_RAM 2

BG_BMP_RAM 30

BG_BMP_RAM 31

0x060000000

0x060004000

0x060008000

...

0x600074000

0x600078000

0x60007c000

-

VRAM
Address

BG_BMP_RAM_29

BGCTRL[2] = BG_BMP_BASE(0) | BgSize_B8_256x256;

©ESL/EPFL
13

Structure of background memory and

VRAM banks mapping

VRAM
C

VRAM
D

VRAM
E

VRAM
F

VRAM
G

VRAM
B

VRAM
A

VRAM
H

VRAM
I

Main

Framebuffer

Backgrounds

Sub

Backgrounds

▪ Background memory has a limited size, and fixed banks assignments

▪ For main 2D engine: 512KB

▪ For sub 2D engine: 128KB

©ESL/EPFL
14

Initializing the colours palette and

the background memory content

▪ Palette memory without banks, colours stored linearly from base address

▪ Pointer to indicate start in libnds: BG_PALETTE

▪ Initialization of palette as pixels in framebuffer mode: ARGB16 function

▪ Loop up to 256 values

▪ Example of palette with all possible blue scales:

uint 16* myPalette = BG_PALETTE;

int i;
for (i=0; i<32; i++)

myPalette[i] = ARGB16(1,0, 0, i);

▪ Background initialization with aux. variable: VRAM writes only of 16/32 bits

▪ Declare an 8-bit variable for the screen line of NDS: uint8 myLine[256];

▪ Initialize the variable with a double loop to cover the whole screen,

and copy to memory after each line: use BG_GFX libnds macro for video memory

How can we copy large amount of data (instead of one by one) and
with sizes of 8 bits instead of 16 or 32 bit?

©ESL/EPFL
15

Data transfers between CPU and I/O

subsystems: Two methods

▪ Standard C function: stdio.h / string.h
void* memcpy (void * destination, const void * source, size_t num);

▪ destination: Destination memory address for data to transfer

▪ source: Origin memory address of data to transfer

▪ num: Data size in bytes to transfer

▪ Example: copy line of data in extended rotoscale mode: uint8 myLine[256];

uint8* mymemory = (uint8*) BG_GFX;
memcpy (mymemory, myLine, 256); // Copy 1st line of NDS screen

▪ Alternative: Software Interrupt mode (SWI) - Bios function: nds/bios.h
void swiCopy (const void *source, void *dest, int flags)

▪ source: Origin memory address of data to transfer

▪ dest: Destination memory address for data to transfer

▪ flags: Data size in 2-byte words to transfer

▪ Example: copy line of data in extended rotoscale mode using SWI: uint8 myLine[256];

uint8* mymemory = (uint8*) BG_GFX;
swiCopy(myLine, mymemory, 128); // Copy 1st line NDS screen - BIOS

©ESL/EPFL
16

Structure of colours palette memory

and VRAM banks mapping

VRAM
C

VRAM
D

VRAM
E

VRAM
F

VRAM
G

VRAM
B

VRAM
A

VRAM
H

VRAM
I

Main

Framebuffer

Backgrounds

Extended
Palettes

Sub

Backgrounds

Extended
Palettes

▪ Palettes have a limited size, and fixed banks assignments

▪ For main 2D engine: 96KB

▪ For Sub 2D engine: 48KB

©ESL/EPFL
17

Complete display configuration in extended

rotoscale mode

▪ A extended rotoscale configuration is characterized by three elements:

▪ Displacement in VRAM for multiple backgrounds

- Banks: BG_BMP_BASE(0) in VRAM_A, … BG_BMP_BASE (31) in VRAM_G, ...

▪ Inform 2D engine of image size and pixel configuration (8 or 16 bits):

libnds list of BgSize enumerator type options in background.h

- BgSize_B8_256x256 : 256 x 256 pixel 8-bit bitmap background

- BgSize_B8_1024x512 : 1024 x 512 pixel 8-bit bitmap background

- BgSize_B16_128x128 : 128 x 128 pixel 16-bit bitmap background

- …

▪ Configure the colour palette for 2D engine: BG_PALETTE

- Initialize palette to use in BG_PALETTE

- Use of auxiliary variable to write correctly in VRAM!

▪ Possible to configure background effects: affine transformation matrix

©ESL/EPFL
18

Affine transformation matrix

▪ Rotoscale mode allows the designer to apply a Rotation

and Scaling operation on the different backgrounds

▪ Affine transformation matrix:

▪ Special matrix that sets the transformation factors per background

▪ For a given pixel with coordinates (x,y) the transformation

gives the following new coordinates

▪ a, b, c and d are the factors to scale and rotate

▪ (x0, y0) correspond to the coordinates of the origin of the system

©ESL/EPFL
19

Affine transformation matrix

▪ Graphical engines calculate the inverse operation of an affine

transformation: for a given pair of coordinates, the corresponding pixel

in the original image is obtained

▪ They avoid making calculations for areas out of the screen

▪ The screen can be sequentially refreshed (pixel by pixel) from left to

right horizontally and line by line from top to bottom

▪ The engines calculate the coordinates of the pixel in the original image that

corresponds to a specific pair of coordinates (x,y)

− (x’, y’) are the coordinates of the pixel to render on the screen

− (x, y) are the coordinates of the pixel value en the original image

©ESL/EPFL
20

Affine transformation matrix:

Well-known transformations

▪ No transformation applied

▪ Vertical mirror

©ESL/EPFL
21

Affine transformation matrix:

Well-known transformations

▪ Horizontal mirror

▪ Vertical and horizontal mirror

©ESL/EPFL
22

Affine transformation matrix:

Well-known transformations

▪ Vertical shrink

▪ Horizontal shrink

©ESL/EPFL
23

Affine transformation matrix:

Well-known transformations

▪ Clockwise angle ‘Y’

▪ The angle ‘Y’ must be in radians (rad)

©ESL/EPFL
24

The affine transformation matrix

in the NDS

▪ Transformations configured using

bgTransform structure in libnds

▪ Although fields declared as signed

integers, they use fixed-point numbers

with 8 bits for decimal part (format: Q1.8)

− Set 1:1 scale => 1.00000000,

so in reality it is: 256 (1<<8)

typedef struct {
s16 xdx;
s16 ydx;
s16 xdy;
s16 ydy;
s32 dx;
s32 dy;

} bg_transform;

▪ One matrix per background: bgTransform[background_nr]

▪ Example: set 1:1 scale and

no rotation or translation for BG2

▪ Note: in Latest NDS libs, it changed to:
▪ bgTransform[2]->hdx

▪ bgTransform[2]->vdx

bgTransform[2]->xdx =256;
bgTransform[2]->ydx = 0;
bgTransform[2]->xdy = 0;
bgTransform[2]->ydy = 256;
bgTransform[2]->dx = 0;
bgTransform[2]->dy = 0;

▪ A number x in NDS fixed-point arithmetic equals: 256 * x

©ESL/EPFL
25

Images for the NDS - grit

▪ DevkitPro provides a useful tool to transform images from

Portable Network Graphics (png) format into a readable

format for NDS

▪ grit : “GBA Raster Image Transmogrifier”

▪ Converts the images into assembly code that can be introduced in

the final program as a data segment

− Assembly code generated with user-defined configurable parameters

− The generated code corresponds to the declaration of: palettes, maps

and graphic data

▪ Apart from assembly code, it generates a header file to be included

C code with all necessary declarations

− Link between C code and Assembly Code

©ESL/EPFL
26

Images for the NDS - grit

▪ grit can be used from a terminal

▪ Example: grit myImage.png –g –gB16

− 2 output files will be obtained: “ myImage.h” and “myImage.s”

▪ Conversion is automated for NDS using few rules included in the

Makefile of the Eclipse project and a configuration file (extension .grit)

▪ Place image to transform (“myImage.png”) and

configuration file (“myImage.grit”) in the project folder data

▪ During the compilation process grit will be called and the output files will be

placed automatically in the temporary building folder build

▪ The configuration file must have the same name of the image to

transform and contains the necessary formatting parameters

▪ In the previous example: -g -gB16

©ESL/EPFL
27

Images for the NDS – grit:

Conversion parameters

▪ Main parameters for the grit configuration file

▪ -g | -g! = Include or do not include graphic data (include always!)

▪ -gb | -gt = Generate Bitmap or Tiles (depends on video mode)

▪ -p | -p! = Include or do not include the palette (usually generate)

▪ -m | -m! = Include or do not include the map (used in tiled graphics)

▪ -pnX = Restrict the palette size to X components

▪ -gBX = Sets the pixel size to X bits. X can be 1, 2, 4, 8 or 16

− for NDS: –gB8 or –gB16 are used

▪ Example of a configuration file

▪ Complete list of the parameters

▪ Type: grit --help in a terminal

-g
-gb
-gB8
-m
-p

©ESL/EPFL
28

Images for the NDS – grit

Example

▪ Output assembly file

(spiral.s)

▪ Output header file

(spiral.h)

▪ PNG Image

(spiral.png)

+ Config file

(spiral.grit)

-g
-gb
-gB16

©ESL/EPFL
29

Practical Work 7: Graphics (Part 2):

Extended rotoscale mode

▪ Exercises (and homework)

▪ Exercise 1 – Changing conditional flag

▪ Exercise 2 – Configuring the main engine

▪ Exercise 3 – Configuring the background

▪ Exercise 4 – Configuring sub engine and

background

▪ Exercise 5 – Transforming image

▪ Exercise 6 – Displaying transformed image

▪ *Exercise 8 – Color degradation with rotoscale

▪ *Exercise 8 – Color degradation with palette in

rotoscale mode

▪ *Exercise 9 – Helicopter animation

* Additional exercises

©ESL/EPFL
30

Practical Work 7: Additional Exercise 9

Helicopter animation

▪ How can we create an animation of a rotating

helicopter blade from the image on the right?

▪ Solution: Alternate the three image frames fast

enough to create the rotating blade effect

▪ Provided image: 256x586 pixels

▪ Bitmap size: 144 kB for 8-bit pixel depth

▪ The image consists of 3 different frames

− Each frame is 256x192 pixels

− Bitmap size per frame: 48 kB

▪ Solution: Use timer + interrupt to change the

displayed frame periodically

▪ Display a different frame in each timer interrupt

1
9
2

256

©ESL/EPFL
31

Helicopter animation - Solution 1:

Copy frame content each interrupt

▪ Idea: Load only the desired frame in VRAM

▪ Only 48 kB needed per frame

(8-bit pixel depth)

▪ One VRAM bank is enough (i.e., VRAM_A)

▪ Configure a timer (fast enough to hide the

animation: 100ms) and every timer

interrupt:
▪ Select which frame to display

▪ Copy the bitmap of the desired frame to BG_GFX VRAM A

Frame x

0x060000000
BG_GFX

©ESL/EPFL
32

Helicopter animation - Solution 1

Implementation code

1. Engine, Background,

VRAM configuration

2. Copy bitmap and palette

(generated by grit)
- start with Frame 1

- copy first 256x192 pixels

3. Setup timer with interrupt

and associate ISR
- use global variable

“image” to select frame

4. - copy the bitmap of the

selected frame

Intuitive solution, but requires copying 48 kB to VRAM per timer interrupt!
How can we avoid the overhead of memory copies?

©ESL/EPFL
33

Helicopter animation - Solution 2:

Changing the map base

▪ Idea: Load the full image in VRAM and inform the

background where to look for the bitmap

▪ Load all 144 kB in VRAM

▪ Modify BGCTRL register accordingly

▪ Remember BG_BMP_BASE indicates

where the bitmap starts

▪ In each timer interrupt:

▪ Select which frame to display

▪ Modify the BGCTRL register to change the bitmap start

location

▪ Use BG_BMP_BASE(x)

▪ But can we fit the full image in a VRAM?

▪ Image is 144 kB, VRAM_A has only 128 kB!

▪ Activate both VRAM_A and VRAM_B

▪ Continuous memory of 128 + 128 = 256 kB

16 kB

16 kB

.

.

.

BG_BMP_BASE(0)

BG_BMP_BASE(1)

0x060000000

Full image

VRAM_A

VRAM_B

0x060000000BG_BMP_BASE(0)

BG_BMP_BASE(8)

©ESL/EPFL
34

Helicopter animation - Solution 2

Implementation code

1. Engine, Background,

VRAM configuration
- VRAM_A and VRAM_B

- VRAM_x_MAIN_BG to

ensure VRAM_A and B are

assigned to main engine

2. Copy bitmap and palette

(generated by grit)
- copy full image

3. Setup timer with interrupt

and associate ISR

- ISR logic:

modify BGCTRL and

change BG_BMP_BASE

- use global variable

“image” to select frame

©ESL/EPFL
35

Questions?

Let’s use the screen of the NDS!

	Slide 1: Systèmes Embarqués Microprogrammés
	Slide 2: Content of Session
	Slide 3: Configuration Sequence of Rotoscale Mode
	Slide 4: Revision: Graphics subsystem in the NDS Activating screens and graphic coprocessors
	Slide 5: NDS screen modes: 2D engines configuration Choosing extended rotoscale mode
	Slide 6: Reminder: Graphics Engine Control Register
	Slide 7: Configuring Memory-Mapped I/O Peripheral Registers
	Slide 8: Example: Enabling and Assigning VRAM Block A to Main Screen in Mode 0
	Slide 9: The extended rotoscale mode: Drawing options and colours palette
	Slide 10
	Slide 11: Nintendo DS memory range: Storage of rotoscale video mode data
	Slide 12: Structure of background memory: Organized in data blocks
	Slide 13: Structure of background memory and VRAM banks mapping
	Slide 14: Initializing the colours palette and the background memory content
	Slide 15: Data transfers between CPU and I/O subsystems: Two methods
	Slide 16: Structure of colours palette memory and VRAM banks mapping
	Slide 17: Complete display configuration in extended rotoscale mode
	Slide 18: Affine transformation matrix
	Slide 19: Affine transformation matrix
	Slide 20: Affine transformation matrix: Well-known transformations
	Slide 21: Affine transformation matrix: Well-known transformations
	Slide 22: Affine transformation matrix: Well-known transformations
	Slide 23: Affine transformation matrix: Well-known transformations
	Slide 24: The affine transformation matrix in the NDS
	Slide 25: Images for the NDS - grit
	Slide 26: Images for the NDS - grit
	Slide 27: Images for the NDS – grit: Conversion parameters
	Slide 28: Images for the NDS – grit Example
	Slide 29: Practical Work 7: Graphics (Part 2): Extended rotoscale mode
	Slide 30: Practical Work 7: Additional Exercise 9 Helicopter animation
	Slide 31: Helicopter animation - Solution 1: Copy frame content each interrupt
	Slide 32: Helicopter animation - Solution 1 Implementation code
	Slide 33: Helicopter animation - Solution 2: Changing the map base
	Slide 34: Helicopter animation - Solution 2 Implementation code
	Slide 35

