&

sLABORATORY

Topic 3: (Part B)
I/O and Peripheral Devices Management
GRAPHICS in the Nintendo DS

Systemes Embarqués Microprogrammes

Prof. David Atienza Alonso, SEL-STI 1

=P-L Content of Session

= Fundamental graphics in the NDS
= Graphics subsystem
= Concepts: colours and bitmaps
= NDS video modes
= Review of the (V)RAM structure

= Drawing graphics in framebuffer mode

= Implementation of fundamental graphic functions to draw lines and
filling colours on areas of the background

= Drawing basic shapes on the NDS screen (rectangles, lines, triangles)
with different colours

©ESL/EPFL

Graphics subsystem in the NDS.:
The screens and the engines

=PFL

= Two screens on the NDS, both use memory-mapped graphical 1/O interface
= Resolution of 192x256 pixels each screen

———————
-~

Touchscreen

-

m ARMY7 ARMO9 Select, Start
(33 MHz) (66 MHz) keys
open-close Fast memory

= Two 2D graphics engines in the NDS
= Main: it can display both video memory content or bitmaps of 256 colours
- Also it can use the proprietary 3D graphics engine for backgrounds

= Sub: secondary display that can only use the video memory content

GBA Flash

©ESL/EPFL

Graphics subsystem in the NDS.:
Registers and Memories

=PFL

= Graphics Control Registers and VRAM memory banks

(N
ARM 9
CPU
=
4 k{ Memory Interface }
N | 4
GRAPHICS CONTROL /,> - .
REGISTERS = VRAM
L) & C::)(VRAM A (128 KB))
i
([OAMRAM |1 V—::’ REG-POWERCNT) - (' VRAM B (128KB)
=
2kB) v 5) k N n:. (" VRAM C (128 KB))
8 v——»)[A bl) E (" VRAM D (128KB))
(7]
RIS o)
Palette RAM |A_ | @ [REG DISPCNT SUBN é’ (__VRAME(64KB))
(2 KB) — |2 v - = <_b (VRAMF (16 KB))
o
el BeCTRd) (VRAMG (16KB))
N x=0,1,2,3 (VRAMH(32KB))
(VRAMI(16KB) |
f— |\ J
—

::){ BGCTRL_SUB[x])

x=0,12,3 | ‘ ‘
| VRAM_x_CR) :>£Rendering Engine]
x=A,B,C,D,E,F,GH,l i L
NDS GRAPHICS [> | \

©ESL/EPFL N J

%;

cpe| Configuration Sequence of Framebuffer
Mode

1. Power Manager configuration (REG_POWERCNT)
= Performed with default settings in system boot-up

2. Graphical engines configuration (REG_DISPCNT)
= Configure mode.

3. VRAM configuration (VRAM_x_CR)
= Activate banks and configure them (depending on used framebuffer mode)

Ready to filling the screen canvas with graphics!

©ESL/EPFL

o Graphics subsystem in the NDS:
=PrL - .
Activating screens and graphic coprocessors

= Control register for powering up I/0 NDS devices: REG_ POWERCNT
= [t is mapped on the memory address: 0x4000304
REG_POWERCNT

1|]1)]1(1|1]1
5432109876543210

—>» POWER_LCD LCD Screen
» POWER_2D A Main 2D core
—3> POWER_MATRIX 3D Matrix
» POWER_3D _CORE Main 3D core
> POWER 2D B Sub 2D core
> POWER_SWAP_LCDS Scr.een used by the
main core

= In libnds, activating the LCD and engines can be done with macros:
REG_POWERCNT = POWER_LCD | POWER_2D_A;

©ESL/EPFL 6

=PrL Pixels, colours and bitmaps

= Pixels: the basic screen drawing elements

Each pixel has an RGB (Red-Green-Blue) representation of 16 bits
5 bits to show the intensity of each colour (0: none, 31: maximum value)
1 bit for transparency (0: pixel is transparent, 1: pixel is opaque)

Libnds: RGB15 Colour
In libnds, macros ARGB16() and RGB15() can RGB15(31,0,0) Red
Creat? ea.Ch pixel: RGB15(0,31,0) Green
stat.lc u.lnt16 shape_color = ARGB16(1, 31, 0, 0); RGB15(0,0,31) Blue
static uint16 shape_color = RGB15(31, 0, 0); RGB15(0,0,0) Black

= Resolution relates to draw (render) raster graphic bitmaps: matrix of pixels
49152 pixels: 192 rows of 256 points each

The screen draws sequentially each point from left to right and up to down
Two interrupts occurs from the screen drawing
Libnds: IRQ_MASK Description
When do we change the bitmap content to draw?

In the interval between VBLANK and start
redrawing again from the top-left pixel

IRQ_VBLANK Vertical blank

IRQ_HBLANK Horizontal blank

But where are the pixels stored?

©ESL/EPFL

cprs| Nintendo DS memory range:
Video memory or VRAM

= The bitmaps are stored in a fast RAM memory: VRAM
= ARMS9: 0x06000000 - Ox068A0000 (656KB);

ARM9
. . . DataTCM Inst. TCM ARM7
= Divided in 9 banks et ige”)
= CPU Core
= Different uses/modes ($ 3) - WRAM N
Data Cache Inst. Cache
= Backgrounds Z™) ™) S weavosie)) | ‘
I (Interface Unit) [Y (16 KB)] 3
or layers § &
. . s p 4 P WRAM (64 KB)
| | OAM RAM g ARM9 BIOS . ARM?7 BIOS 2
Different bank sizes 2 Hrmware (256 K} :
g O J m
Palette RAM [-)) <
(2 KB) E Memory Interface ppr— >
< - ~ v
~ —~ N
SRAM = .ﬁﬁf VRAM »
(Main Wemory) @ | /
= H
Nintendo DS 8 |
. S H
Memory Architecture | & |1
< A
\
\ |(VRAMH(32KB))
N[VRAM 1 (16KB)
N\ v
N\ pa
‘~~_—’,

©ESL/EPFL

cPrL Accessing the video memory (VRAM)

= Control register for each bank: control select and activate: VRAM_? CR

“VRAM_A (128KiB) VRAM_? CR

-VRAM_B (128KiB) 706|5|4|3|2[1]0

VRAM_C (128KiB)

-VRAM_D (128KiB)

VRAM_E (64KiB) > Mode
“VRAM_F (16KiB) > Shifting
“VRAM_G (16KiB) > VRAM_ENABLE
“VRAM_H (32KiB)

_ = Example: activate bank A and map it to the 2D
-VRAM_I (16KiB) background representation with the main 2D core

VRAM_A_CR = VRAM_ENABLE | VRAM_A_LCD;

= Set functions are also available: /opt/devkitPro/libnds/include/nds/arm9/video.h
= Example: VRAM_A bank mapped to main 2D core background

vramSetBankA(VRAM_A LCD);

©ESL/EPFL

=Pr~L NDS screen modes: 2D engines configuration

= Each engine has four backgrounds (or layers): BGO, BG1, BG2 and BG3
= Final view on the screen will be their combination based on used graphic mode

= Each 2D engine has different sets of four possible modes:

= Tiled

= Rotation or rotoscale
= Extended rotation
= Framebuffer (special rendering mode, without backgrounds)

= Main engine
= 7 modes and framebuffer

Mode B GO

Tiled/3D

BG1
Tiled

Tiled

Tiled

Tiled/3D| Tiled Tiled Rotoscale
Tiled/3D| Tiled Rotoscale Rotoscale
Tiled/3D| Tiled Tiled Ext. Rotoscale
Tiled/3D| Tiled Rotoscale |Ext.Rotoscale

Tiled/3D

Tiled

Ext. Rotoscale

Ext. Rotoscale

6 3D

N/A

Large Bitmap

N/A

FrameB uf.

Direct VRAM display as a bitmap

©ESL/EPFL

= Sub engine
= 6 modes, without 3D or framebuffer

Tiled

Tiled

Tiled | Tiled Tiled Rotoscale
Tiled | Tiled| Rotoscale Rotoscale
Tiled | Tiled Tiled Ext. Rotoscale
Tiled | Tiled | Rotoscale |Ext.Rotoscale
Tiled | Tiled |Ext. Rotoscale]Ext. Rotoscale

10

NDS screen mode control

= REG_DISPCNT: display register to control mode and active backgrounds

REG_DISPCNT

3|13|2|2|2(2|2|2|2|2(2|2|1|1|j1|1|1f1]|]1f1]1]1
1({0(9|8|7|6(5]4|3|2|1|0(9|8|7|6(5([4[3]2]1]0

> MODE_{0..6} 2D
> ENABLE_3D
DISPLAY {BGO0,BG1,BG2,BG3,SPR} ACTIVE
> DISPLAY_{WINO,WIN1,SPR_WIN} ON
2 2D mode
> MODE_FB{0..3}

= Example: activate mode 0 and background 1 (BG1)
REG_DISPCNT = MODE_0_2D | DISPLAY_BG1_ACTIVE;

©ESL/EPFL 1

cpe| Configuring Memory-Mapped
/O Peripheral Registers

= LibNDS library under /opt/devkitPro defines the registers ID

#define REG_DISPCNT *(vu32*)0x04000000

(vu32)0x04000000

| J \ J
Volatile 32 bit
Unsigned integer

0000 0000 0100 0000 0000 OO00 0000 0000 0000

= Hint: Use the following command in the virtual image
terminal to find any macro’s value:
$: grep —rnw ‘/opt/devkitPro/libnds/include/nds’ —e ‘MACRO_NAME’

12

©ESL/EPFL

cpe| Example: Enabling and Assigning VRAM
Block A to Main Screen in Mode 0

= C language operation meaning:

Non- exclusive
binary OR

/ REG_DISPCNT= MODE_O0_2D | DISPLAY_BG1_ACTIVE
|] \ J] |\)

| { |
vu32 0x10000 1<<9

\

\ OR 0000 0000 0000 0001 0000 0000 0000 0000

0000 0000 0000 0000 0000 0010 0000 0000

0000 0000 0000 0001 0000 0010 OO00 0000

!

0x00010200

©ESL/EPFL 13

=PFL

The framebuffer mode

= Framebuffer mode: drawing the map of pixels directly
Screen mapped to a portion of memory: bitmap or matrix of pixels (192 x 256)
Writing data to this memory results in data represented onto the screen

= Four different framebuffers: FBO.. FB3

- Mapped to the 128KiB VRAM banks
- Support for double buffering: \\,/Sﬁm_AB
hiding changes in the pixels content EB2 VRAM C
One buffer is being read to write on the screen, FB3 VRAM_ D

while another one is being written in memory
Exchange during VBLANK interrupt

= Example of use: Use of FBO, so two steps:
1. Framebuffer configured in VRAM bank A (VRAM_A)
2. VRAM_A activated and configured to work with the LCD screen

REG_DISPCNT = MODE_FBO:
VRAM_A_CR = VRAM_ENABLE | VRAM_A_LCD;

©ESL/EPFL 14

Display format in framebuffer mode

= A framebuffer is characterized by three elements:

= The memory portion where it is mapped to
- FBOin VRAM_A, FB1in VRAM B, ...

= The line length
In the NDS it is of 256 pixels per line

= The pixel format:

RGB15(r,g,b)

- R, G, B: 5 bits per channel (0..31)
- Most significant bit (Bit15) is not used: pixels are always opaque

©ESL/EPFL 15

Practical Work 6: Graphics (Part 1):
Framebuffer Mode

(0,255)

= Example:
Plot a 7x7 pixels \
black rectangle N

In coordinates (1,1) \

\191,0) (19116255)

©ESL/EPFL

p=| Practical Work 6: Graphics (Part 1):
' Framebuffer Mode

m

VRAM_A[0] | RBG15(31,31,31) | ¢ \/RAM A Th.e pointer VRA.M —.A
— points to the beginning of

VRAM_A[1] | RBG15(31,31,31)
©.0) the buffer (0,255

VRAM_A[2] | RBG15(31,31,31)

VRAM_A[256] | RBG15(31,31,31)

VRAM_A[257] EEEEICHEI(OXoN))

VRAM_A[258] [EICHEI(0XoKe)

VRAM_A[1792] | RBG15(31,31,31)

VRAM_A[1793] LTI oXs)

VRAM_A[1794] [T EI(foXo)

[[(191,0) (19]:}7255)

©ESL/EPFL

Practical Work 6: Graphics (Part 1):
Framebuffer Mode

VRAM_A[0] | RBG15(31,31,31)

VRAM_A[1] | RBG15(31,31,31)

VRAM_A[2] | RBG15(31,31,31)

VRAM_A[256] | RBG15(31,31,31)

VRAM_A[257]

RBG15(0,0,0)

VRAM_A[258] [EICHEI(0XoKe)

VRAM_A[1792] | RBG15(31,31,31)

VRAM_A[1793] LTI oXs)

VRAM_A[1794]

RBG15(0,0,0)

| |
©ESL/EPFL

—— \/RAM A The pointer VRAM_A

points to the beginning of

the buffer (0.255)

(191,0)

191,255
(L)

cpr| Practical Work 6: Graphics (Part 1):
Framebuffer Mode

VRAM_A[0] | RBG15(31,31,31) | ¢ \/RAM A Th.e pointer VRA.M —.A
— points to the beginning of

VRAM_A[1] | RBG15(31,31,31)
©.0) the buffer (0,255

./

VRAM_A[2] | RBG15(31,31,31)

VRAM_A[256] | RBG15(31,31,31)

VRAM_A[257] EEEEICHEI(OXoN))

VRAM_A[258] [EICHEI(0XoKe)

VRAM_A[1792] | RBG15(31,31,31)

VRAM_A[1793] LTI oXs)

VRAM_A[1794] [T EI(foXo)

[[(191,0) (19]:}9255)

©ESL/EPFL

cpr| Practical Work 6: Graphics (Part 1):
Framebuffer Mode

VRAM_A[0] | RBG15(31,31,31) | ¢ \/RAM A Th.e pointer VRA.M —.A

— points to the beginning of
VRAM_A[1] | RBG15(31,31,31) the buffer

(0,0) (0,255)

VRAM_A[2] | RBG

1792 =7%*256+0
1793 =77*256+1
1794 =7 * 256 +

VRAM_A[1792]

VRAM_A[1793] LTI oXs)

VRAM_A[1794] [T EI(foXo)

, L (oLb) (192,255)
©ESL/EPFL

Practical Work 6: Graphics (Part 1):
Framebuffer Mode

= Solution to the example: code that fills the screen
with white, and then draws a black-filled rectangle EEXEEIILIEELE

. File Emulation Config Tools ?
= White => RGB15(31,31,31)
= Black => RGB15(0,0,0)

//counters for the for loops
int row, column;

//Polnter to the buffer
ule* buff = (ul6*) VRAM A;

//F111 the screen with white
for(row = 0; row < 192; row++)
for(column = 0; column < 256; column++)
buff[row * 256 + column] = RGB15(31,31,31);

//Draw the 7x7 pixels rectangle
for(row = 1; row < 8; row++)
for(column = 1; column < 8; column++)
buff[row * 256 + column] = RGB15(0,0,0);

©ESL/EPFL 21

Practical Work 5: Graphics (Part 1):
Framebuffer Mode

m

P-L

= Exercises (and homework) ©®® bDesmume . 71fps
Exercise 1 — Initializing the main graphical engine File_Emulation Config Tools Help
Exercise 2 — Changing the color of the screen
Exercise 3 — Filling a rectangle
Exercise 4 — Drawing an horizontal line
Exercise 5 — Drawing a vertical line
Exercise 6 — Drawing a rectangle - reusing code
Exercise 7 — Integrating the code (Tetris tiles)

*Exercise 8 — Color degradation
*Exercise 9 — Shifting data
*Exercise 10 — Grayscale transformation

Running ...

* Additional exercises

©ESL/EPFL 22

Questions?

ofl

Let’s use the screen of the NDS!

23

EEEEEEEEE

