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Content of Session

▪ Fundamental graphics in the NDS

▪ Graphics subsystem

▪ Concepts: colours and bitmaps

▪ NDS video modes

▪ Review of the (V)RAM structure

▪ Drawing graphics in framebuffer mode

▪ Implementation of fundamental graphic functions to draw lines and 

filling colours on areas of the background 

▪ Drawing basic shapes on the NDS screen (rectangles, lines, triangles) 

with different colours



©ESL/EPFL   
3

Graphics subsystem in the NDS:

The screens and the engines

▪ Two screens on the NDS, both use memory-mapped graphical I/O interface
▪ Resolution of 192x256 pixels each screen
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(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9

(66 MHz)

A, B, L, R 

keys

←, ↑, →, ↓ 

keys

LCD TFT

Select, Start

keys

Screen

open-close GBA Flash
Fast memory

(WRAM)

Audio

▪ Two 2D graphics engines in the NDS
▪ Main: it can display both video memory content or bitmaps of 256 colours

- Also it can use the proprietary 3D graphics engine for backgrounds

▪ Sub: secondary display that can only use the video memory content
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Graphics subsystem in the NDS:

Registers and Memories

▪ Graphics Control Registers and VRAM memory banks
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Configuration Sequence of Framebuffer 

Mode 

1. Power Manager configuration (REG_POWERCNT)

▪ Performed with default settings in system boot-up

2. Graphical engines configuration (REG_DISPCNT)

▪ Configure mode.

3. VRAM configuration (VRAM_x_CR)

▪ Activate banks and configure them (depending on used framebuffer mode)

Ready to filling the screen canvas with graphics!
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Graphics subsystem in the NDS:

Activating screens and graphic coprocessors

▪ Control register for powering up I/O NDS devices: REG_POWERCNT

▪ It is mapped on the memory address: 0x4000304

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 6 5 4 3 2 1 0

POWER_2D_A Main 2D core

POWER_LCD LCD Screen

POWER_MATRIX 3D Matrix

POWER_3D_CORE Main 3D core

POWER_2D_B Sub 2D core

POWER_SWAP_LCDS Screen used by the 

main core

REG_POWERCNT

▪ In libnds, activating the LCD and engines can be done with macros:

REG_POWERCNT = POWER_LCD | POWER_2D_A;
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Pixels, colours and bitmaps

▪ Resolution relates to draw (render) raster graphic bitmaps: matrix of pixels
▪ 49152 pixels: 192 rows of 256 points each
▪ The screen draws sequentially each point from left to right and up to down

- Two interrupts occurs from the screen drawing
Libnds: IRQ_MASK Description

IRQ_VBLANK Vertical blank

IRQ_HBLANK Horizontal blank

▪ Pixels: the basic screen drawing elements
▪ Each pixel has an RGB (Red-Green-Blue) representation of 16 bits 

- 5 bits to show the intensity of each colour (0: none, 31: maximum value)
- 1 bit for transparency (0: pixel is transparent, 1: pixel is opaque)

Libnds: RGB15 Colour

RGB15(31,0,0) Red

RGB15(0,31,0) Green

RGB15(0,0,31) Blue

RGB15(0,0,0) Black

▪ In libnds, macros ARGB16() and RGB15() can 
create each pixel:

static uint16 shape_color = ARGB16(1, 31, 0, 0);

static uint16 shape_color = RGB15(31, 0, 0); 

▪ When do we change the bitmap content to draw?
- In the interval between VBLANK and start 

redrawing again from the top-left pixel

But where are the pixels stored?
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Nintendo DS memory range:                      

Video memory or VRAM

▪ The bitmaps are stored in a fast RAM memory: VRAM 
▪ ARM9: 0x06000000 - 0x068A0000 (656KB);

▪ Divided in 9 banks

▪ Different uses/modes

▪ Backgrounds                                                                              

or layers

▪ Different bank sizes

CPU Core

Data TCM
16 KB

Inst. TCM
16 KB

Data Cache
4 KB
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Interface Unit
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CPU Core

Interface Unit

ARM7

WRAM (64 KB)

SRAM
(Main Memory) 

4MB Rendering Engine
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ARM9 BIOS
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(32 KB)
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(2 KB)

WRAM0 (16 KB)
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VRAM A (128 KB)

VRAM B (128 KB)
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VRAM E (64 KB)

VRAM

VRAM F (16 KB)
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Accessing the video memory (VRAM)

▪ Control register for each bank: control select and activate: VRAM_?_ CR

–VRAM_A (128KiB)

–VRAM_B (128KiB)

–VRAM_C (128KiB)

–VRAM_D (128KiB)

–VRAM_E (64KiB)

–VRAM_F (16KiB)

–VRAM_G (16KiB)

–VRAM_H (32KiB)

–VRAM_I (16KiB)
▪ Example: activate bank A and map it to the 2D 

background representation with the main 2D core

VRAM_A_CR = VRAM_ENABLE | VRAM_A_LCD;

▪ Set functions are also available: /opt/devkitPro/libnds/include/nds/arm9/video.h

▪ Example: VRAM_A bank mapped to main 2D core background

vramSetBankA(VRAM_A_LCD);

Shifting

VRAM_?_CR

7 6 5 4 3 2 1 0

VRAM_ENABLE

Mode
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NDS screen modes: 2D engines configuration

▪ Each engine has four backgrounds (or layers): BG0, BG1, BG2 and BG3
▪ Final view on the screen will be their combination based on used graphic mode

M o de B G0 B G1 B G2 B G3

0 Tiled/3D Tiled Tiled Tiled

1 Tiled/3D Tiled Tiled Rotoscale

2 Tiled/3D Tiled Rotoscale Rotoscale

3 Tiled/3D Tiled Tiled Ext. Rotoscale

4 Tiled/3D Tiled Rotoscale Ext. Rotoscale

5 Tiled/3D Tiled Ext. Rotoscale Ext. Rotoscale

6 3D N/A Large Bitmap N/A

FrameBuf.        Direct VRAM  display as a bitmap

▪ Each 2D engine has different sets of four possible modes: 

▪ Tiled 

▪ Rotation or rotoscale

▪ Extended rotation 

▪ Framebuffer (special rendering mode, without backgrounds)

▪ Main engine
▪ 7 modes and framebuffer

▪ Sub engine
▪ 6 modes, without 3D or framebuffer

M o de B G0 B G1 B G2 B G3

0 Tiled Tiled Tiled Tiled

1 Tiled Tiled Tiled Rotoscale

2 Tiled Tiled Rotoscale Rotoscale

3 Tiled Tiled Tiled Ext. Rotoscale

4 Tiled Tiled Rotoscale Ext. Rotoscale

5 Tiled Tiled Ext. Rotoscale Ext. Rotoscale



©ESL/EPFL   
11

NDS screen mode control

▪ REG_DISPCNT: display register to control mode and active backgrounds

ENABLE_3D

MODE_{0..6}_2D

DISPLAY_{BG0,BG1,BG2,BG3,SPR}_ACTIVE

DISPLAY_{WIN0,WIN1,SPR_WIN}_ON

REG_DISPCNT
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2D mode

MODE_FB{0..3}

▪ Example: activate mode 0 and background 1 (BG1)
REG_DISPCNT = MODE_0_2D | DISPLAY_BG1_ACTIVE;
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Configuring Memory-Mapped

I/O Peripheral Registers

▪ LibNDS library under /opt/devkitPro defines the registers ID

#define REG_DISPCNT *(vu32*)0x04000000

*(vu32*)0x04000000

▪ Hint: Use the following command in the virtual image 

terminal to find any macro’s value:

$: grep –rnw ‘/opt/devkitPro/libnds/include/nds’ –e ‘MACRO_NAME’

Volatile 32 bit 

Unsigned integer

0000 0000 0100 0000 0000 0000 0000 0000 0000
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Example: Enabling and Assigning VRAM 

Block A to Main Screen in Mode 0

▪ C language operation meaning:

REG_DISPCNT= MODE_0_2D | DISPLAY_BG1_ACTIVE

0x10000

Non- exclusive 

binary OR

vu32

0000 0000 0000 0001 0000 0000 0000 0000

1<<9

0000 0000 0000 0000 0000 0010 0000 0000
OR

0000 0000 0000 0001 0000 0010 0000 0000

0x00010200
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The framebuffer mode

▪ Framebuffer mode: drawing the map of pixels directly
▪ Screen mapped to a portion of memory: bitmap or matrix of pixels (192 x 256)

▪ Writing data to this memory results in data represented onto the screen

Mode VRAM bank

FB0 VRAM_A

FB1 VRAM_B

FB2 VRAM_C

FB3 VRAM_D

▪ Four different framebuffers: FB0.. FB3

▪ Mapped to the 128KiB VRAM banks

▪ Support for double buffering:                   

hiding changes in the pixels content
▪ One buffer is being read to write on the screen, 

while another one is being written in memory

▪ Exchange during VBLANK interrupt

▪ Example of use: Use of FB0, so two steps:
1. Framebuffer configured in VRAM bank A (VRAM_A)

2. VRAM_A activated and configured to work with the LCD screen

REG_DISPCNT = MODE_FB0;

VRAM_A_CR = VRAM_ENABLE | VRAM_A_LCD; 
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Display format in framebuffer mode

▪ A framebuffer is characterized by three elements:

▪ The memory portion where it is mapped to

- FB0 in VRAM_A, FB1 in VRAM_B, ...

▪ The line length

- In the NDS it is of 256 pixels per line

▪ The pixel format: 

- RGB15(r,g,b)

– R, G, B: 5 bits per channel (0..31)

– Most significant bit (Bit15) is not used: pixels are always opaque
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Practical Work 6: Graphics (Part 1):

Framebuffer Mode

▪ Example: 

Plot a 7x7 pixels

black rectangle

in coordinates (1,1)

(0,0) (0,255)

(191,0)
(191,255)
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Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

(0,0) (0,255)

(191,0)
(191,255)
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Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

(0,0) (0,255)

(191,0)
(191,255)
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Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

(0,0) (0,255)

(191,0)
(191,255)
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Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

1792 = 7 * 256 + 0

1793 = 7 * 256 + 1

1794 = 7 * 256 + 2

….

(0,0) (0,255)

(191,0)
(191,255)
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Practical Work 6: Graphics (Part 1):

Framebuffer Mode

▪ Solution to the example: code that fills the screen 

with white, and then draws a black-filled rectangle

▪ White => RGB15(31,31,31)

▪ Black => RGB15(0,0,0)
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Practical Work 5: Graphics (Part 1):

Framebuffer Mode

▪ Exercises (and homework)

▪ Exercise 1 – Initializing the main graphical engine

▪ Exercise 2 – Changing the color of the screen

▪ Exercise 3 – Filling a rectangle

▪ Exercise 4 – Drawing an horizontal line

▪ Exercise 5 – Drawing a vertical line

▪ Exercise 6 – Drawing a rectangle - reusing code

▪ Exercise 7 – Integrating the code (Tetris tiles)

▪ *Exercise 8 – Color degradation

▪ *Exercise 9 – Shifting data

▪ *Exercise 10 – Grayscale transformation

* Additional exercises
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Questions?

Let’s use the screen of the NDS!


