
1Prof. David Atienza Alonso, SEL-STI 

Systèmes Embarqués Microprogrammés

Topic 3: (Part B)

I/O and Peripheral Devices Management

GRAPHICS in the Nintendo DS



©ESL/EPFL   
2

Content of Session

▪ Fundamental graphics in the NDS

▪ Graphics subsystem

▪ Concepts: colours and bitmaps

▪ NDS video modes

▪ Review of the (V)RAM structure

▪ Drawing graphics in framebuffer mode

▪ Implementation of fundamental graphic functions to draw lines and 

filling colours on areas of the background 

▪ Drawing basic shapes on the NDS screen (rectangles, lines, triangles) 

with different colours



©ESL/EPFL   
3

Graphics subsystem in the NDS:

The screens and the engines

▪ Two screens on the NDS, both use memory-mapped graphical I/O interface
▪ Resolution of 192x256 pixels each screen

ARM7

(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9

(66 MHz)

A, B, L, R 

keys

←, ↑, →, ↓ 

keys

LCD TFT

Select, Start

keys

Screen

open-close GBA Flash
Fast memory

(WRAM)

Audio

▪ Two 2D graphics engines in the NDS
▪ Main: it can display both video memory content or bitmaps of 256 colours

- Also it can use the proprietary 3D graphics engine for backgrounds

▪ Sub: secondary display that can only use the video memory content



©ESL/EPFL   
4

Graphics subsystem in the NDS:

Registers and Memories

▪ Graphics Control Registers and VRAM memory banks

A
R

M
9

 B
U

S 
32

-b
it

ARM 9
CPU

NDS GRAPHICS

REG_POWERCNT

REG_DISPCNT

REG_DISPCNT_SUB

BGCTRL[x]
x=0,1,2,3

BGCTRL_SUB[x]
x=0,1,2,3

VRAM_x_CR
x=A,B,C,D,E,F,G,H,I

VRAM A (128 KB)

VRAM B (128 KB)

VRAM C (128 KB)

VRAM D (128 KB)

VRAM E (64 KB)

VRAM

VRAM F (16 KB)

VRAM G (16 KB)

VRAM H (32 KB)

VRAM I (16 KB)

M
e

m
o

ry
 B

u
s 

(1
6-

B
it

)

Memory Interface

Rendering Engine

Display 

GRAPHICS CONTROL 
REGISTERS

OAM RAM 
(2 KB)

Palette RAM
(2 KB)



©ESL/EPFL   
5

Configuration Sequence of Framebuffer 

Mode 

1. Power Manager configuration (REG_POWERCNT)

▪ Performed with default settings in system boot-up

2. Graphical engines configuration (REG_DISPCNT)

▪ Configure mode.

3. VRAM configuration (VRAM_x_CR)

▪ Activate banks and configure them (depending on used framebuffer mode)

Ready to filling the screen canvas with graphics!



©ESL/EPFL   
6

Graphics subsystem in the NDS:

Activating screens and graphic coprocessors

▪ Control register for powering up I/O NDS devices: REG_POWERCNT

▪ It is mapped on the memory address: 0x4000304

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 6 5 4 3 2 1 0

POWER_2D_A Main 2D core

POWER_LCD LCD Screen

POWER_MATRIX 3D Matrix

POWER_3D_CORE Main 3D core

POWER_2D_B Sub 2D core

POWER_SWAP_LCDS Screen used by the 

main core

REG_POWERCNT

▪ In libnds, activating the LCD and engines can be done with macros:

REG_POWERCNT = POWER_LCD | POWER_2D_A;



©ESL/EPFL   
7

Pixels, colours and bitmaps

▪ Resolution relates to draw (render) raster graphic bitmaps: matrix of pixels
▪ 49152 pixels: 192 rows of 256 points each
▪ The screen draws sequentially each point from left to right and up to down

- Two interrupts occurs from the screen drawing
Libnds: IRQ_MASK Description

IRQ_VBLANK Vertical blank

IRQ_HBLANK Horizontal blank

▪ Pixels: the basic screen drawing elements
▪ Each pixel has an RGB (Red-Green-Blue) representation of 16 bits 

- 5 bits to show the intensity of each colour (0: none, 31: maximum value)
- 1 bit for transparency (0: pixel is transparent, 1: pixel is opaque)

Libnds: RGB15 Colour

RGB15(31,0,0) Red

RGB15(0,31,0) Green

RGB15(0,0,31) Blue

RGB15(0,0,0) Black

▪ In libnds, macros ARGB16() and RGB15() can 
create each pixel:

static uint16 shape_color = ARGB16(1, 31, 0, 0);

static uint16 shape_color = RGB15(31, 0, 0); 

▪ When do we change the bitmap content to draw?
- In the interval between VBLANK and start 

redrawing again from the top-left pixel

But where are the pixels stored?



©ESL/EPFL   
8

Nintendo DS memory range:                      

Video memory or VRAM

▪ The bitmaps are stored in a fast RAM memory: VRAM 
▪ ARM9: 0x06000000 - 0x068A0000 (656KB);

▪ Divided in 9 banks

▪ Different uses/modes

▪ Backgrounds                                                                              

or layers

▪ Different bank sizes

CPU Core

Data TCM
16 KB

Inst. TCM
16 KB

Data Cache
4 KB

Inst. Cache
8 KB

Interface Unit

ARM9

CPU Core

Interface Unit

ARM7

WRAM (64 KB)

SRAM
(Main Memory) 

4MB Rendering Engine

Display 

ARM9 BIOS
(32 KB)

ARM7 BIOS
(32 KB)

OAM RAM 
(2 KB)

Palette RAM
(2 KB)

WRAM0 (16 KB)

WRAM1 (16 KB)

WRAM

VRAM A (128 KB)

VRAM B (128 KB)

VRAM C (128 KB)

VRAM D (128 KB)

VRAM E (64 KB)

VRAM

VRAM F (16 KB)

VRAM G (16 KB)

VRAM H (32 KB)

VRAM I (16 KB)

A
R

M
9

 B
U

S 
32

-b
it

A
R

M
7

 B
U

S 
32

-b
it

M
e

m
o

ry
 B

u
s 

(1
6-

B
it

)

Memory Interface

Nintendo DS
Memory Architecture

Firmware (256 KB)



©ESL/EPFL   
9

Accessing the video memory (VRAM)

▪ Control register for each bank: control select and activate: VRAM_?_ CR

–VRAM_A (128KiB)

–VRAM_B (128KiB)

–VRAM_C (128KiB)

–VRAM_D (128KiB)

–VRAM_E (64KiB)

–VRAM_F (16KiB)

–VRAM_G (16KiB)

–VRAM_H (32KiB)

–VRAM_I (16KiB)
▪ Example: activate bank A and map it to the 2D 

background representation with the main 2D core

VRAM_A_CR = VRAM_ENABLE | VRAM_A_LCD;

▪ Set functions are also available: /opt/devkitPro/libnds/include/nds/arm9/video.h

▪ Example: VRAM_A bank mapped to main 2D core background

vramSetBankA(VRAM_A_LCD);

Shifting

VRAM_?_CR

7 6 5 4 3 2 1 0

VRAM_ENABLE

Mode



©ESL/EPFL   
10

NDS screen modes: 2D engines configuration

▪ Each engine has four backgrounds (or layers): BG0, BG1, BG2 and BG3
▪ Final view on the screen will be their combination based on used graphic mode

M o de B G0 B G1 B G2 B G3

0 Tiled/3D Tiled Tiled Tiled

1 Tiled/3D Tiled Tiled Rotoscale

2 Tiled/3D Tiled Rotoscale Rotoscale

3 Tiled/3D Tiled Tiled Ext. Rotoscale

4 Tiled/3D Tiled Rotoscale Ext. Rotoscale

5 Tiled/3D Tiled Ext. Rotoscale Ext. Rotoscale

6 3D N/A Large Bitmap N/A

FrameBuf.        Direct VRAM  display as a bitmap

▪ Each 2D engine has different sets of four possible modes: 

▪ Tiled 

▪ Rotation or rotoscale

▪ Extended rotation 

▪ Framebuffer (special rendering mode, without backgrounds)

▪ Main engine
▪ 7 modes and framebuffer

▪ Sub engine
▪ 6 modes, without 3D or framebuffer

M o de B G0 B G1 B G2 B G3

0 Tiled Tiled Tiled Tiled

1 Tiled Tiled Tiled Rotoscale

2 Tiled Tiled Rotoscale Rotoscale

3 Tiled Tiled Tiled Ext. Rotoscale

4 Tiled Tiled Rotoscale Ext. Rotoscale

5 Tiled Tiled Ext. Rotoscale Ext. Rotoscale



©ESL/EPFL   
11

NDS screen mode control

▪ REG_DISPCNT: display register to control mode and active backgrounds

ENABLE_3D

MODE_{0..6}_2D

DISPLAY_{BG0,BG1,BG2,BG3,SPR}_ACTIVE

DISPLAY_{WIN0,WIN1,SPR_WIN}_ON

REG_DISPCNT
1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 6 5 4 3 2 1 0

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

2D mode

MODE_FB{0..3}

▪ Example: activate mode 0 and background 1 (BG1)
REG_DISPCNT = MODE_0_2D | DISPLAY_BG1_ACTIVE;



©ESL/EPFL   
12

Configuring Memory-Mapped

I/O Peripheral Registers

▪ LibNDS library under /opt/devkitPro defines the registers ID

#define REG_DISPCNT *(vu32*)0x04000000

*(vu32*)0x04000000

▪ Hint: Use the following command in the virtual image 

terminal to find any macro’s value:

$: grep –rnw ‘/opt/devkitPro/libnds/include/nds’ –e ‘MACRO_NAME’

Volatile 32 bit 

Unsigned integer

0000 0000 0100 0000 0000 0000 0000 0000 0000



©ESL/EPFL   
13

Example: Enabling and Assigning VRAM 

Block A to Main Screen in Mode 0

▪ C language operation meaning:

REG_DISPCNT= MODE_0_2D | DISPLAY_BG1_ACTIVE

0x10000

Non- exclusive 

binary OR

vu32

0000 0000 0000 0001 0000 0000 0000 0000

1<<9

0000 0000 0000 0000 0000 0010 0000 0000
OR

0000 0000 0000 0001 0000 0010 0000 0000

0x00010200



©ESL/EPFL   
14

The framebuffer mode

▪ Framebuffer mode: drawing the map of pixels directly
▪ Screen mapped to a portion of memory: bitmap or matrix of pixels (192 x 256)

▪ Writing data to this memory results in data represented onto the screen

Mode VRAM bank

FB0 VRAM_A

FB1 VRAM_B

FB2 VRAM_C

FB3 VRAM_D

▪ Four different framebuffers: FB0.. FB3

▪ Mapped to the 128KiB VRAM banks

▪ Support for double buffering:                   

hiding changes in the pixels content
▪ One buffer is being read to write on the screen, 

while another one is being written in memory

▪ Exchange during VBLANK interrupt

▪ Example of use: Use of FB0, so two steps:
1. Framebuffer configured in VRAM bank A (VRAM_A)

2. VRAM_A activated and configured to work with the LCD screen

REG_DISPCNT = MODE_FB0;

VRAM_A_CR = VRAM_ENABLE | VRAM_A_LCD; 



©ESL/EPFL   
15

Display format in framebuffer mode

▪ A framebuffer is characterized by three elements:

▪ The memory portion where it is mapped to

- FB0 in VRAM_A, FB1 in VRAM_B, ...

▪ The line length

- In the NDS it is of 256 pixels per line

▪ The pixel format: 

- RGB15(r,g,b)

– R, G, B: 5 bits per channel (0..31)

– Most significant bit (Bit15) is not used: pixels are always opaque



©ESL/EPFL   
16

Practical Work 6: Graphics (Part 1):

Framebuffer Mode

▪ Example: 

Plot a 7x7 pixels

black rectangle

in coordinates (1,1)

(0,0) (0,255)

(191,0)
(191,255)



©ESL/EPFL   
17

Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

(0,0) (0,255)

(191,0)
(191,255)



©ESL/EPFL   
18

Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

(0,0) (0,255)

(191,0)
(191,255)



©ESL/EPFL   
19

Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

(0,0) (0,255)

(191,0)
(191,255)



©ESL/EPFL   
20

Practical Work 6: Graphics (Part 1):

Framebuffer Mode

VRAM_A[0] RBG15(31,31,31)

VRAM_A[1] RBG15(31,31,31)

VRAM_A[2] RBG15(31,31,31)

VRAM_A[256] RBG15(31,31,31)

VRAM_A[257] RBG15(0,0,0)

VRAM_A[258] RBG15(0,0,0)

VRAM_A[1792] RBG15(31,31,31)

VRAM_A[1793] RBG15(0,0,0)

VRAM_A[1794] RBG15(0,0,0)

VRAM_A
The pointer VRAM_A

points to the beginning of

the buffer

1792 = 7 * 256 + 0

1793 = 7 * 256 + 1

1794 = 7 * 256 + 2

….

(0,0) (0,255)

(191,0)
(191,255)



©ESL/EPFL   
21

Practical Work 6: Graphics (Part 1):

Framebuffer Mode

▪ Solution to the example: code that fills the screen 

with white, and then draws a black-filled rectangle

▪ White => RGB15(31,31,31)

▪ Black => RGB15(0,0,0)



©ESL/EPFL   
22

Practical Work 5: Graphics (Part 1):

Framebuffer Mode

▪ Exercises (and homework)

▪ Exercise 1 – Initializing the main graphical engine

▪ Exercise 2 – Changing the color of the screen

▪ Exercise 3 – Filling a rectangle

▪ Exercise 4 – Drawing an horizontal line

▪ Exercise 5 – Drawing a vertical line

▪ Exercise 6 – Drawing a rectangle - reusing code

▪ Exercise 7 – Integrating the code (Tetris tiles)

▪ *Exercise 8 – Color degradation

▪ *Exercise 9 – Shifting data

▪ *Exercise 10 – Grayscale transformation

* Additional exercises



©ESL/EPFL   
23

Questions?

Let’s use the screen of the NDS!


