&

Topic 3: (Part B)
Advance Graphics in Ext. Rotoscale
Affine Matrix Manipulation

cPrL s ABJRATORY

Systemes Embarques Microprogrammes

Prof. David Atienza Alonso, SEL-STI 1

=PrL

Affine transformation matrix

= Graphical engines calculate the inverse operation of an affine
transformation: for a given pair of coordinates, the corresponding pixel
In the original image is obtained

= They avoid making calculations for areas out of the screen

= The screen can be sequentially refreshed (pixel by pixel) from left to
right horizontally and line by line from top to bottom

= The engines calculate the coordinates of the pixel in the original image that
corresponds to a specific pair of coordinates (X,y)

xdx, xdy

(x,y)= (x"y',1) = | ydx,ydy
dx,dy

(x’, y’) are the coordinates of the pixel to render on the screen
(x, y) are the coordinates of the pixel value en the original image

©ESL/EPFL

= The image to be rendered in the screen can be

rotated clockwise Y radians with respect to the
upper-left corner of the screen

(xdx,xdy\ (cos(Y),—sin(Y)"
ydx,ydy |=| sin(Y), cos(Y)

\dx,dy) \0,0)

= |t can also be translated with respect to the
coordinates of the system (upper-left corner)

(xdx, xdy\ (1, 0

ydx,ydy |=| 0, 1
\dxady y, _5 09 _40)

©ESL/EPFL

2 @ Desmume - 58fps

File Emulation Config Tools 7

® @ Desmume - 59fps

File Emulation Config Tools ?

=PrL

Rotation with respect to another point

= Can the the image be rotated Y radians with respect to another pair of
coordinates (x', y')?

D @ Desmume - 58fps

File Emulation Config Tools 7

\ 8 @ Desmume - 59fps

File Emulation Config Tools ?

(cos(Y),—sin(Y)\
= sin(Y), cos(Y)
%7 y

©ESL/EPFL

cPFL Rotation with respect to the
center of the screen (O rads

= Let's assume no rotation, i.e. the displacement in | 9.0 Desmume - 5ofps
X and Yy (dX and dy) must be O File Emulation Config Tools ?

= R is the distance from the rotation point (X', y’) to the
system origin and to the upper left image corner

R=\(x")+y')* =128 +96> =160
= a is the angle defined by the coordinates of the
rotation point and the rotation angle 3 (O rads in this

case)
x' 128 3T .
o= arctan[J+ﬁ arctan[)—l— 0=0,9273rads B/
y' 96 rx
= dx and dy are the difference between the coordinates \ﬂ
of the rotation point (x’, y’) and the projections of R in <r—>i
the x and y axis (rx and ry) y

dx=x"-rx=x"-R*sm(a)=128-160*0,8=0
dy=y'-ry=y'—R*cos(a)=96—-160*0,6=0

©ESL/EPFL

cPFL Rotation with respect to the
center of the screen (0.5 rads

DO Ne=myme - 59fps
File a.l|a _* Config Tools ?
Fl

= Let's rotate the image 0.5 radians (~28,7°) with
respect to the center of the screen

= R is still the distance from the rotation point (X', y’) to
the system origin and to the upper left image corner

R=\(x")+y')* =128 +96> =160
= ais the angle defined by the coordinates of the

rotation paint and the rotation angle (0.5 radians)
'

o = arctan| = |+ $=0,9273+0.5=1.4273rads 12
Y R
= dx and dy are the difference between the coordinates X R
of the rotation point (x’, y’) and the projections of R in -! a
the x and y axis (rx and ry) '\

dx=x"-rx=x'-R*sm(a)=128-160%*0,99 =-31 ry
dy=y'—-ry=y'—-R*cos(a)=96—-160%0,14 =173

©ESL/EPFL

“PFL C implementation
Parameter calculation

= The function rotatelmage BG2(int x, int y, float angle_rads) modifies
the affine transform matrix of BG2 of the MAIN graphical engin to rotate
the displayed image clockwise an angle of “angle_rads” radians with
respect to the rotation point with coordinates “x” and “y”

1. Calculate R:

//Distance from rotation point to system origin
float r = sqrt(x*x + y*y); l

2. Calculate angle a

//Angle alpha
float alpha = atan((float)x/(float)y) + angle rads; l

©ESL/EPFL

“PFL C implementation
uration of affine matrix

3. Configure image rotation (with input argument)

//Image rotation

REG BG2PA = cos(angle rads) * 256; //xdx
REG BG2PB = sin(angle rads) * 256; //xdy
REG BG2PC = -sin(angle rads) * 256; //ydx
REG BG2PD = cos(angle rads) * 256; //ydy

4. Configure image translation (with angle a and coordinates of rotation
point)

//Image translation
REG BG2X = (x - r*sin(alpha)) * 256; //dx
REG BG2Y = (y - r*cos(alpha)) * 256; //dy

O©ESL/EPFL

=PrL Final C implementation

#include "math.h"
void rotateImage BG2(int x, int y, float angle rads) {

//Distance from rotation point to system origin
float r = sqrt(x*x + y*y);

//Angle alpha
float alpha = atan((float)x/(float)y) + angle rads;

//Image rotation

REG BG2PA = cos(angle rads) * 256; //xdx
REG BG2PB = sin(angle rads) * 256; //xdy
REG BG2PC = -sin(angle rads) * 256; //ydx
REG BG2PD = cos(angle rads) * 256; //ydy

//Image translation
REG BG2X = (x - r*sin(alpha)) * 256; //dx
REG BG2Y = (y - r*cos(alpha)) * 256; //dy

O©ESL/EPFL °

=PrL

Implementation remarks

= In order to write this implementation, trigonometric functios for the
sine (sin), cosine (cos) and actangent (atan) have been used.
= These functions are included in the standard C math library (see math.h)

= These functions receive arguments of type float representing an angle in radians
(in the case of sine and cosine) or the tangent (in the arctangent function)

= These functions are usually computing-intensive, therefore the improper usage
can lead to large execution delays.

= 1 radian =180 / 1T degrees

= The values of the affine transform matrix are stored in Fixed-point
arithmetic using 8 bits for the decimal part of the number
= Therefore, the values are shifted 8 bits (or multiplied by 256)

= The used registers (REG_BG2PA, REG_BG2PB, etc) correspond to
the background affine matrix of BG2 of the main engine

= Similar registers can be used for the BG3 and for the SUB engine

©ESL/EPFL 10

	Systèmes Embarqués Microprogrammés
	Affine transformation matrix
	Image rotation and translation
	Rotation with respect to another point
	Rotation with respect to the�center of the screen (0 rads)
	Rotation with respect to the�center of the screen (0.5 rads)
	C implementation�(Parameter calculation)
	C implementation�(Configuration of affine matrix)
	Final C implementation
	Implementation remarks

