
1Prof. David Atienza Alonso, SEL-STI 

Systèmes Embarqués Microprogrammés

Topic 2:

Microprocessors and Memory Hierarchy

in Microprogrammed Embedded Systems



©ESL/EPFL   
2

Content of Session

▪ Introduction to microprocessors design and functionality

− Block diagram and types of instruction sets

− Link between memory, registers  and CPU 

− Microprocessor metrics: performance and power, why ARM?

▪ ARM microprocessor architectures for the NDS

− NDS history and boot-up for processor configuration

− Memory access sizes and addressing modes 

− Register file design and microprocessor modes

▪ ARM instruction set

− Memory access (read/writing) instructions

− Arithmetic-logic instructions

− Jump instructions 

▪ Assembly programming for ARM processor

− Conditional and loop construction

− How to include assembly in C programs

− Passing parameters between C and assembly: Registers and stack



©ESL/EPFL   
3

▪ Central Processing Unit (CPU): the primary element performing the 

computing function, it is the unit that carries out each instruction of a program 

stored in memory in sequence, to perform the basic arithmetical, logical, and 

input/output operations of the system

▪ Microprocessor: programmable machine that incorporates on a single 

integrated circuit (IC, or microchip) all the functions of a CPU 

Microprocessor architectures in 

computing systems

Access to 

I/O devices

MEMORY
Instruction 0

Instruction 1

…

Data 0

Data 1

…
B

u
s

 Arithmetic Logic Unit

(ALU)

Prog. Count. (PC) 

or accumulator

Control Unit (CU)

C

P

U

Instr. Reg. (IR)

“Stored program architecture“ or Von Neumann Architecture [1945]



©ESL/EPFL   
4

▪ Central Processing Unit (CPU): the primary element performing the 

computing function, it is the unit that carries out each instruction of a program 

stored in memory in sequence, to perform the basic arithmetical, logical, and 

input/output operations of the system

▪ Microprocessor: programmable machine that incorporates on a single 

integrated circuit (IC, or microchip) all the functions of a CPU 

Microprocessor architectures in 

computing systems

Access to 

I/O devices

MEMORY
Instruction 0

Instruction 1

…

Data 0

Data 1

…
B

u
s

 

Cont. Prog. (PC) 

or accumulator

Arithmetic Logic Unit 

(ALU)

Control Unit (UC)

C

P

U

Reg. Instr. (IR)
Manchester Small-Scale Experimental Machine 

(SSEM), nicknamed “Baby” [June 21st, 1948]



©ESL/EPFL   
5

Main features of Von Neumann architecture

◼ It is based on the concept of a memory stored program

◼ The memory content is organized in words, all of the same size (e.g., 32 bits)

◼ Words in memory follow a linear order (i.e., addresses), with endianness

◼ Two main memory contents, but no explicit distinction between them

◼ Instructions: program that controls what the microprocessor has to do

◼ Data: pieces of information that the program processes and generates

◼ The instructions execution order                                                                   

is sequential (0, 1, …)

◼ Determined by their                                                                                                  

addresses order                                                                                                         

in the memory

◼ The Program Counter (PC) register                                                                                            

keeps next instruction address                                                                                               

to execute

00000000

00000004

FFFFFFFC

.

.

.

.

.

Memory order (Little-Endian) 

Word Addr.

Byte 3 Byte 2

Byte 7

Byte 1 Byte 0

Byte 6 Byte 5 Byte 4

Half word #2 Half word #0

Half word #6 Half word #4



©ESL/EPFL   
6

Main features of Von Neumann architecture

◼ Five phases in program instruction execution 

1. Search instruction in memory (Fetch) and 

calculation next instruct. address

2. Decoding instruction by the CPU

3. Search of instruction operands                       

(in memory or registers)

4. Execution of the instruction                                  

(in ALU if an arithmetic one)

5. Write results of operation                                 

(in memory or registers)

Fetch 

instruction
Decode 

instruction

Search 

operands

Execute 

instruction
Write 

results

Access to 

I/O devices

MEMORY 

(Data and 

instruct.)

Program 

Counter 

(PC)

Control Unit (UC)
C

P

U

ALU

Reg. Instr. (IR)

Registers



©ESL/EPFL   
7

MEMORY 

(Data 

and 

instruct.)

Variations of baseline Von Neumann 

architecture

◼ Two alternatives in the definition of the instruction set of the CPU

• Complex instruction set computer (CISC): design strategy to bridge the 

semantic gap through single instructions that execute several low-level 

operations (e.g., load from memory, arithmetic operat., and memory store).

─ Examples: Intel x86, Motorola 68x, VAX, System/360, or PDP-11

• Reduced instruction set computer (RISC): design strategy based on 

simple instructions to provide higher performance through much faster 

execution of each instruction, i.e., load-store architectures

─ Examples: ARM, MIPS, Atmel AVR, Power, SPARC or AMD 29k.

Access to 

I/O devices
Registers

PC

Control Unit (UC) C

P

U

ALU

SR

R0

Rx
•
•

IR
MAR
MDR

◼ Harvard architecture

• Architectures with physically 

separated storage and signal 

buses for instruct., data and I/O

̶ Examples: ARM , MIPS, 

Blackfin, PowerPC

Instruct. 

MEMORY

Data 

MEMORY 
Trying to fix two problems:                  

(1) memory wall and                              

(2) interconnects saturation



©ESL/EPFL   
8

▪ Microprocessor have evolved since Nov. 15th, 1971 towards more 

complex functionality and performance, but at a cost of power…

Complexity

Intel 4004 [1971]
(2250 p-MOS trans., 108 KHz, 4-
bit,mem.:640B) 

- +

Microprocessor architectures: Evolution to 

microprogrammed embedded systems 

Busicon Calculator 141-PF

Intel Xeon [2006-]
(820M trans., 3.73GHz,             
64-bit, mem.:4MB/L2) 

Intel Many Integrated Core (MIC) [2011]

95-130 Watts!0.3 Watts



©ESL/EPFL   
9

▪ Microprocessor have evolved since Nov. 15th, 1971 towards more 

complex functionality and performance, but at a cost of power…

Complexity

Intel 4004 [1971]
(2250 p-MOS trans., 108 KHz, 4-
bit,mem.:640B) 

- +

Microprocessor architectures: Evolution to 

microprogrammed embedded systems 

Busicon Calculator 141-PF

Intel Xeon [2006-]
(820M trans., 3.73GHz,             
64-bit, mem.:4MB/L2) 

Intel Many Integrated Core (MIC) [2011]

95-130 Watts!0.3 Watts



©ESL/EPFL   
10

▪ Microprocessor have evolved since Nov. 15th, 1971 towards more 

complex functionality and performance, but at a cost of power…

Complexity

Intel 4004 [1971]
(2250 p-MOS trans., 108 KHz, 4-
bit,mem.:640B) 

- +

Microprocessor architectures: Evolution to 

microprogrammed embedded systems 

Busicon Calculator 141-PF

Intel Xeon [2006-]
(820M trans., 3.73GHz,             
64-bit, mem.:4MB/L2) 

Intel Many Integrated Core (MIC) [2011]

95-130 Watts!0.3 Watts

Principles remain, but in microprogrammed embedded systems it 
is key a new metric: MIPS/Watt 

New opportunities for business!



©ESL/EPFL   
11

▪ Advanced RISC Machines Ltd (ARM) was officially founded in 1990

▪ Reduced Instruction Set Computers (RISC)  for energy-efficient 

microprogrammed computing

▪ Instructions with minimum semantic (move data, add/sub/mult. 2 numbers, ...)

▪ ARM2 [1986], probably simplest 32-bit core ever: 30K transistors, no cache

▪ Large range of ARM designs: always basic RISC architecture + extensions

Advanced RISC Machines (ARM) for all flavours 

of microprogrammed embedded systems

▪ Business model: 

▪ Licensing ARM designs to 

semiconductor partners   

who fabricate and sell to 

customers “à la carte”



©ESL/EPFL   
12

▪ Advanced RISC Machines Ltd (ARM) was officially founded in 1990

▪ Reduced Instruction Set Computers (RISC)  for energy-efficient 

microprogrammed computing

▪ Instructions with minimum semantic (move data, add/sub/mult. 2 numbers, ...)

▪ ARM2 [1986], probably simplest 32-bit core ever: 30K transistors, no cache

▪ Large range of ARM designs: always basic RISC architecture + extensions

Advanced RISC Machines (ARM) for all flavours 

of microprogrammed embedded systems

▪ Business model: 

▪ Licensing ARM designs to 

semiconductor partners    

who fabricate and sell to 

customers “à la carte”

▪ ARM does not fabricate 

silicon itself, but 90% of all 

microprogrammed 

embedded systems use one 

or more ARM processors!

By Jun. 2015, 16.9 Billion ARM cores shipped,
By Feb. 2021, 180 Billion ARM cores shipped
Best sellers: ARM9 and ARM7TDMI



©ESL/EPFL   
13

Families of the ARM processor

▪ All of them are compatible with their core RISC architecture: 

▪ 32-bit instruction set architecture, 16 x 32-bit reg. file, load/store architecture

Family Microprocessor Version Examples of microprog. embedded systems

ARM1 ARM1 v1 Evaluation system BBC

ARM2 ARM2, ARM250 v2 Acorn Archimedes, Chessmachine

ARM3 ARM2a v2a Idem

ARM6 ARM60, ARM600, ARM610 v3 Acorn Risc PC 600, Apple Newton 100 series

ARM7 ARM700, ARM710 v3 Apple eMate 300, Psion Series 5

ARM7TDMI ARM7TDMI, ARM710T, ARM720T, 

ARM740T

v4T Game Boy Advance, Nintendo DS, Apple iPod

StrongARM SA-110, SA-1110 v4 Apple Newton 2x00 series, Ipaq H36x0,                      

Zaurus SL-5x00

ARM9TDMI ARM9TDMI, ARM920T, ARM940T v4T Hewlet Packard HP-49/50 Calculators, Sun SPOT

ARM9E ARM946E-S, ARM926EJ-S v5TE Nintendo DS, Nokia N-Gage, Nokia 32xx,                                      

Sony Ericsson (series K/W)

XScale PXA210/PXA250, PXA255, PXA27x, 

PXA900 

v5TE iPAQ H3900, HTC Universal, Dell Axim, Motorola Q, 

Blackberry Pearl

ARM11 ARM1136J(F)-S, ARM1176JZ(F)-S v6 Zune, Nokia N93, Apple iPhone, Motorola Z8 



©ESL/EPFL   
14

The history of the Nintendo DS (NDS) 

processors

▪ Precursor: Game Boy Advance (GBA), Mar. 2001
• Screen: 2.9 inches, TFT LCD (240x160 pixels)

• Processors
- ARM 7TDMI, 16.78 MHz: user sw processing
- Z80, 8MHz: microcontroller for I/O support

▪ Nintendo DS, Nov. 2004; and DS Lite, Mar. 2006
• Screen: 3 vs 3.1 inches, TFT LCD (256 x 192 pixels)

• Processors
- ARM 946E-S, 67.028 MHz: user software processing           

and main I/O peripherals
- ARM 7TDMI-S,16.78 MHz: dedicated I/O support (sound, wifi 

and specific keys)

▪ Nintendo DSi, Nov. 2008, and DSi XL, Oct. 2009
• Screen: 3.2 vs. 4.2 inches, TFT LCD (256 x 192 pixels)

• Processors
- ARM 946E-S, 133 MHz: user software processing                

and main I/O peripherals
- ARM 7TDMI-S, 16.78 MHz: dedicated I/O support (sound, 

wifi and specific keys)



©ESL/EPFL   
15

NDS processing and I/O management

▪ Two asymmetric 32-bit Advanced RISC Microprocessors (ARM) cores
• ARM 946E-S: user software processing and main I/O peripherals
• ARM 7TDMI-S: dedicated I/O support (sound, wifi and specific keys)

ARM946E-S 
ARM7TDMI-S 

ARM7
(33 MHz)

Touchscreen X, Y keys

Wifi

ARM9
(66 MHz)

A, B, L, R 
keys

←, ↑, →, ↓ 

keys

LCD TFT

Select, Start
keys

Screen
open-close GBA Flash

Fast memory
(WRAM)

Audio



©ESL/EPFL   
16

CPU Core

Data TCM
16 KB

Inst. TCM
16 KB

Data Cache
4 KB

Inst. Cache
8 KB

Interface Unit

ARM9

CPU Core

Interface Unit

ARM7

WRAM (64 KB)

SRAM
(Main Memory) 

4MB Rendering Engine

Display 

ARM9 BIOS
(32 KB)

ARM7 BIOS
(32 KB)

OAM RAM 
(2 KB)

Palette RAM
(2 KB)

WRAM0 (16 KB)

WRAM1 (16 KB)

WRAM

VRAM A (128 KB)

VRAM B (128 KB)

VRAM C (128 KB)

VRAM D (128 KB)

VRAM E (64 KB)

VRAM

VRAM F (16 KB)

VRAM G (16 KB)

VRAM H (32 KB)

VRAM I (16 KB)

A
R

M
9

 B
U

S 
32

-b
it

A
R

M
7

 B
U

S 
32

-b
it

M
e

m
o

ry
 B

u
s 

(1
6-

B
it

)

Memory Interface

Nintendo DS
Memory Architecture

Firmware (256 KB)

I/O peripherals

(memory mapped)

00000000

00000004

(1GB) FFFFFFFC

.

.

.

.

.

Memory order (Little-Endian) Word Addr.

Byte 3 Byte 2

Byte 7

Byte 1 Byte 0

Byte 6 Byte 5 Byte 4

Half word

Nintendo DS memory range and                           

start-up to initialize ARM processors 

▪ Cartridge ROM: 0x08000000 - 0x09ffffff (32MB)

▪ Main RAM: 0x02000000 - 0x023fffff (4MB)

▪ BIOS (Basic Input/Output System) in ROM, 
▪ ARM9: 0xffff0000 - 0xffff7fff (32KB); 

▪ ARM7: 0x00000000 - 0x00003fff (16KB)

Reset vector
0xffff0000

Reset vector
0x00000000

▪ Boot-up process 
configures the data 
instruction memories

1. Firmware in FLASH 
memory: menu, pictochat,               
and user preferences

2. Decoding carried                        
out from the BIOS                
into RAM

3. Firmware copies the 
cartridge ROM                     
to the RAM

4. ARM cores start running

Solving mem. 
wall problem: 

Fast data 
access is key, 

with Cache 
memories



©ESL/EPFL   
17

Memory hierarchy optimization: Caches

▪ Small and fast memory located between processor and main memory

▪ Stores copy of memory portion currently in use 

▪ Objetive: reduction of memory access time

▪ New memory structure: cache and main memory

▪ MM (Main memory):

− Composed of 2n addressable words

− “divided” in nB blocks of fixed size (2K words per block)

− Physical address

▪ CM (Cache memory) – Hardware controlled:

− nM block frames of 2K words each (nM<<nB)

▪ SPM (Scratch-Pad memory) – Software controlled

▪ Directory (in cache memory):

− Indicates which subset of  nB blocks are located

in nM block frames

CPU

Main

memory

Cache

memory

block

Block 

frame Word transfers

Block transfers

nB: number of blocks

nF: number of block frames

B: block address

F: address of block frame

P: word inside the block
B P

Add. Block

(n-k bits)

Word

(k bits)

Physical Address:



©ESL/EPFL   
18

Interaction cache-main memory

▪ Technological limitations require a complex interaction

Maximize the percentage
of hits

Minimize access time

Minimize the total 
penalty (misses)

Reduce hardware cost

Memory address

Get the block

from MM

Assign block frame

to the block

Store the block

in the block frame

NO 

(miss)

CPU

Cache 

memory

P
e

n
a

lt
y

ti
m

e

H
it

 t
im

e

id
e

n
ti

fi
c

a
ti

o
n

ti
m

e

Search in directory

Is the block in

the cache?

Access to the

block frame

Select word

YES

(hit)

a
c

c
e

s
s

ti
m

e

END

penaltyhittotal THTT )1( −+=

(% hits ratio)

Well-designed programs have  good locality: 
access the same data items over and over again:

4-8 KB caches in ARM = 80-90% hit ratio



©ESL/EPFL   
19

Main design aspects of cache memories

▪ Cache configuration:

▪ Size

▪ Block size

▪ Cache levels

▪ Unified or separated

▪ Behavior policies
1. Placement policy:

− Needed as there are less block frames in CM than blocks in MM

− Selects in which block frame each block can be loaded

2. Replacement policy:

− Needed as any new block in CM must replace one of the existing ones

− Select which block to replace

3. Write policy:

− Needed to keep coherence between CM and MM

− Selects when to update a block from MM after being modified in CM

4. Search policy:

− Determines which blocks (and when) should be loaded in CM



©ESL/EPFL   
20

▪ 32-bit RISC processor (32-bit instruction = word)

▪ 37 registers of 32-bits (16 available)

▪ With ALU, Multiplier, Shiffer and (often) caches

▪ Von Neuman-type (ARM7) and Harvard (ARM9)

▪ 8- / 16- / 32-bit data accesses

Introducción al diseño de un procesador

ARM processor architectures

ARM7

ARM9



©ESL/EPFL   
21

Allowed data sizes and instruction sets

▪ Possible data sizes in ARM:

▪ Word means 32 bits            

(four bytes)

▪ Halfword means 16 bits               

(two bytes)

▪ Byte means 8 bits

(one byte)

▪ By default: little-endian        

(big-endian is configurable)

00000000

00000004

FFFFFFFC

.

.

.

.

.

Memory order (Little-Endian) 

Word Addr.

Byte 3 Byte 2

Byte 7

Byte 1 Byte 0

Byte 6 Byte 5 Byte 4

Halfword #2 Half word #0

Half word #6 Half word #4

▪ Most ARM processors implement two instruction sets

▪ Regular instructions of 1 word each: 32-bit ARM Instruction Set

▪ Compact instructions of halfword: 16-bit Thumb Instruction Set

▪ Well-known extensions of the ARM instruction set

▪ Jazelle: direct execution of Java bytecode

▪ NEON: acceleration for multimedia and signal processing



©ESL/EPFL   
22

▪ Base register + offset/displacement (e.g., LDR r0,[r1,#8])

Registers and addressing mode 

R1

0x200Base 
Register

0x200

Loaded data to R0

0x58
0x208

Offset

0x5

▪ ARM includes always 37 registers of 32-bit width each

▪ 1 program counter (PC)

▪ 1 state register (SR)

▪ indicates if last operation result was zero (Z), negative (N), overflow (O), etc. 

▪ 5 registers to store the program state when we switch operation mode in 

the processor

▪ 30 registers of general purpose



©ESL/EPFL   
23

ARM processor modes and registers 

access

▪ The ARM architecture has seven basic operating modes, for different levels of 

priority and use of system resources

▪ User : unprivileged mode under which most of the tasks should run

▪ FIQ : when a high priority (fast) interrupt is raised

▪ IRQ : when a low priority (normal) interrupt is raised

▪ Supervisor : on reset and when a software interrupt instruction is executed

▪ Abort : used to handle memory access violations

▪ Undef : used to handle undefined instructions

▪ System : privileged mode using the same registers as user mode

▪ Each processor mode selects a register file with 16 registers: 

▪ a particular set of r0-r12 registers

▪ a particular r13 (the stack pointer, sp) and r14 (the link register, lr)

▪ the program counter, r15 (pc)

▪ the current program status register, cpsr

▪ The privileged modes (except System) can also access:

▪ a particular saved program status register, spsr

Key protection mechanism for the microprogrammed embedded system
to avoid geting blocked with malfunctioning program or I/O device! 



©ESL/EPFL   
24

Register organization summary

User

mode

r0-r7,

r15,

and

cpsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User/System

r13 (sp)

r14 (lr)

spsr

IRQ

User

mode

r0-r12,

r15,

and

cpsr

r13 (sp)

r14 (lr)

spsr

Undef

User

mode

r0-r12,

r15,

and

cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User

mode

r0-r12,

r15,

and

cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User

mode

r0-r12,

r15,

and

cpsr

▪ The System mode uses the User mode register set 

Only 

mode 

available 

in NDS

Thumb

Low

registers

Thumb

High 

registers



©ESL/EPFL   
25

Program status registers (cpsr): 

Information about microprocessor status

▪ Condition code flags (or bits)

▪ N = Negative result from ALU 

▪ Z = Zero result from ALU

▪ C = ALU operation Carried out

▪ V = ALU operation oVerflowed

▪ Interrupt Disable bits.

▪ I  = 1: Disables the IRQ.

▪ F = 1: Disables the FIQ.

▪ Mode bits

▪ Specify the processor mode

▪ Sticky overflow flag - Q flag

▪ Architecture 5TE/J only (ARM9)

▪ Indicates if saturation has 

occurred

▪ T Bit

▪ Architecture xT only

▪ T = 0: Processor in ARM state

▪ T = 1: Processor in Thumb state

▪ J bit

▪ Architecture 5TEJ only (ARM9)

▪ J = 1: Processor in Jazelle state

Flags 

we will 

try in 

the 

NDS



©ESL/EPFL   
26

ARM instruction set

▪ 5 types of assembly instructions

▪ 3 fundamental RISC instructions types

− Memory access instructions

− Arithmetic-logic instructions 

− Control (jump) instructions

▪ Two extended RISC instructions types for microprocessor control

− Special instructions to manipulate the state register (cpsr)

− Change of execution mode and type of instruction set (ARM/Thumb)



©ESL/EPFL   
27

Memory access instructions

▪ Two basic operations

▪ LDR: Load register content with value from memory address

▪ STR: Store register content in memory address

▪ Syntax:

▪ LDR{<cond>}{<size>} Rd, <address>         

▪ STR{<cond>}{<size>} Rd, <address>

− Examples: LDR r0,[r1,#8]

STR r0,[r1,#8]

▪ Memories in the system must support all sizes (default: Word size)

▪ <size> = Signed (S) and then Byte (B), Halfword (H)

Examples:

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Load byte with sign

LDRSH Load halfword with sign



©ESL/EPFL   
28

▪ To allow larger constants to be loaded, the assembler offers a 
“pseudo-instruction”:
▪ LDR rd, =const

▪ For example

▪ LDR r0,=0xFF

▪ LDR r0,=0x55555555

Loading 32 bit constants into registers



©ESL/EPFL   
29

Arithmetic-Logic instructions

▪ They only work between registers, types:
▪ Arithmetic: ADD ADC SUB MUL    SBC   RSB  RSC 

▪ Logic operations: AND ORR EOR BIC

▪ Comparisons: CMP CMN TST TEQ

▪ Data movements: MOV MVN

▪ Syntax: <Operation>{<cond>}{S} Rd, Rn, Operand2

▪ Example:  ADD r0, r1, r2

▪ Remarks

▪ Comparisons only fix the flags (or bits) of cpsr (not the Rd value)

− Example:  CMP r3,#0

▪ Data movements do not specify Rn

− Example: MOV r0,#0xFF



©ESL/EPFL   
30

Jumps instructions: 

branches and subroutines

▪ B <label>

▪ Jump that is PC relative, up to ±32MB range

▪ BL <subroutine>

▪ Stores return address in LR (r14)

▪ Returning implemented by restoring the PC from LR

STMFD sp!,{regs,lr}

:

:

:

:

LDMFD sp!,{regs,pc}

func1

:

:

BL func1

:

:



©ESL/EPFL   
31

▪ ARM instructions can be made to execute conditionally by 

post-fixing them using the condition code field: {<cond>}

▪ This improves code density and performance by reducing the 

number of forward branch instructions

▪ Example:

CMP   r3,#0                           

BEQ   skip

ADD   r0,r1,r2

skip:

Conditional execution and flags                 

in ARM instructions

CMP   r3,#0

ADDNE r0,r1,r2

ADD{<cond>} Rd, Rn, Operand2



©ESL/EPFL   
32

Accepted conditions in ARM instructions 

▪ AL is defined by default and it is not needed to indicate it

Not equal

Unsigned higher or same

Unsigned lower

Minus

Equal

Overflow

No overflow

Unsigned higher

Unsigned lower or same

Positive or Zero

Less than

Greater than

Less than or equal

Always

Greater or equal

EQ

NE

CS/HS

CC/LO

PL

VS

HI

LS

GE

LT

GT

LE

AL

MI

VC

Suffix Description

Z=0

C=1

C=0

Z=1

Flags tested

N=1

N=0

V=1

V=0

C=1 & Z=0

C=0 or Z=1

N=V

N!=V

Z=0 & N=V

Z=1 or N=!V



©ESL/EPFL   
33

CMP ifCondition

B<NOT cond> caseFalse

; execution instruct. case true

....

B regroup

caseFalse:

; execution instructs. case false

....

regroup:

; insts. with regrouped flow

Equivalence between C and ARM assembly:  

if constructions - general form

▪ Definition
if(cond) {instTrue;} else {instFalse;} 

▪Uses comparison (CMP) and conditional branch (Bcond) inst. 

▪ Example
if (a==7) {count+=1;}             

else {count-=1;}

…

▪ a is stored in r0 ; count is stored in r1

▪ Solution
CMP r0,#7

BNE caseFalse

ADDS r1,r1,#1

B regroup

caseFalse:

SUBS r1,r1,#1

regroup:

…



©ESL/EPFL   
34

▪ ARM assembly for an if-else construction
if (a==7) {count+=1;} 

else {count-=1};

▪ a is stored in r0 ; count is stored in r1

▪ Solution
CMP      r0, #7 ; compare a with 7

ADDEQ    r1, r1, #1 ; do count=count++, if a == 7

SUBNE    r1, r1, #1 ; do count=count--, if a != 7

Equivalence between C and ARM assembly: 

compact ARM conditional constructions

▪ Condition code flags (or bits)

N = Negative result from ALU ; Z = Zero result from ALU

C = ALU operation Carried out ; V = ALU operation oVerflowed



©ESL/EPFL   
35

▪ Definition

while (cond) {instructsTrue;} after_loop_instructs

▪ Uses comparison (CMP) and conditional branch (Bcond) inst. 
loop:

CMP cond

BNE <cond> caseFalse

; execute instruc. true condition

B loop

caseFalse:

; inst. after loop

Equivalence between C and ARM assembly: 

while loops – general form

▪ Example
while(a<3) {

count+=1;

a++;

}             

…

▪ a is stored in r0 ; count is stored in r1

▪ Solution
loop:    

CMP r0,#3

BGE caseFalse

ADD r1,r1,#1

ADD r0,r0,#1

B loop

caseFalse:

…



©ESL/EPFL   
36

▪ Example: 

count=0;  

for (i=10;i>0;i--) count+=1; 

▪ i is stored in r0;  count is stored in r2

▪ Solution:
MOV r2, #0
MOV r0, #10

loop:
CMP r0, #0

BLE caseFalse

ADD r2, r2, #1

SUBS r0, r0, #1

B loop

caseFalse:

; instructions after loop

Equivalence between C and ARM assembly: 

for loops can use general form of while loops



©ESL/EPFL   
37

Developing an assembly program

1. Declaration of variables 

and memory address 

aliases

▪ Variables can be initialized

2. Define name (“main”) of 

functions as .global label

3. Start of the code section 

using: .text {label}

4. Define the end of the 

program: .end {label}

.equ x, 45

.equ y, 64

.equ stack_top, 0x1000

.global _start

.text
_start:

MOV sp, #stack_top
MOV r0, #x
STR r0, [sp]
MOV r0, #y
LDR r1, [sp]
ADD r0, r0, r1
STR r0, [sp]

stop:
B stop

.end



©ESL/EPFL   
38

Including assembly in C programs: 

Two methods

▪ Directly in the C program

▪ Using for each assembly line: 

asm(“assembly Instruct.");

▪ Use in C source files external 

assembly files

▪ Declare in C the use of external 

functions: EXTERN Prototype_funct;

▪ Declare assembly functions as global 

symbols: .GLOBAL Name_funct

▪ Implement the function in the .text

region of the program: Name_funct:

int main() {

...

asm("mov R1,R2“);

...

.GLOBAL funct1

.text
funct1:

...

...

EXTERN funct1(int);
int main() {

int result, a=5;
result=funct1(a);
...

}



©ESL/EPFL   
39

How parameters are passed in ARM 

Example: C program with a function

extern int delay1(int);

main()

{

int times=3;

int i=0;

int counter=0;

int iteration=5;

while (i<iteration)

{

times=delay1(times);

counter+=4;

i++;

}

}

int delay1 (int i)

{

int j = 2;

int k = 7;

int l = 1;

if (i>j)

{

i--;

i = delay1(i);

}

return k*l;

}



©ESL/EPFL   
40

main()

{

int times=3;

int i=0;

int counter=0;

int iteration=5;

while (i<iteration)

{

times=delay1(times);

counter+=4;

i++;

}

}

int delay1 (int i)

{

int j = 2;

int k = 7;

int l = 1;

if (i>j)

{

i--;

i = delay1(i);

}

return k*l;

}

i = 3

int delay1 (int i)

{

int j = 2;

int k = 7;

int l = 1;

if (i>j)

{

i--;

i = delay1(i);

}

return k*l;

}

i = 2

C Program flow: 

Passing arguments between functions



©ESL/EPFL   
41

Memory regions in an ARM program

▪ A running program has 3 regions 

(both in C or in assembly)

▪ Code

- Code or instructions (text)

▪ Data

- Global data

- BSS: data initialized to 0

▪ Stack frame

- Stack: automatic variables

- Heap: explicitly managed dynamic 

variable
Main memory

Environment 
variables

Stack

Stack frame

Heap

BSS

Data

Code (text)

0

MAX

In
c

re
a

s
in

g
 a

d
d

re
s

s
e

s



©ESL/EPFL   
42

Memory regions in an ARM program:

The memory stack

▪ Specific region of the memory managed as a stack of data

▪ Three main uses

▪ Store and retrieve register values

− Several general-purpose registers may be used during the 

execution of a function

− The programmer must save the values of the registers before 

using them at the beginning of the function

− The values must be restored at the end of the function

▪ Placing local variables

− E.g., Variables a, b, temp and i

− This will not be covered in the course

− We have up to 8 general-purpose

registers to store local variables

▪ Passing arguments (Function call)

− Shared data between functions



©ESL/EPFL   
43

ARM function call procedure: 

Passing arguments

▪ In a function call, arguments are passed through registers

▪ Up to 4 parameters: r0-r3

▪ The return value is stored in r0 by the function

▪ Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

▪ F0 = 0 ; F1 = 1

▪ Fn = Fn-1 + Fn-2

The argument (#5) is store in r0



©ESL/EPFL   
44

ARM function call procedure: 

Passing arguments

▪ In a function call, arguments are passed through registers

▪ Up to 4 parameters: r0-r3

▪ The return value is stored in r0 by the function.

Branch and link to the function. 

It leaves the address 0x32000448 in lr



©ESL/EPFL   
45

ARM function call procedure: 

Passing arguments

▪ In a function call, arguments are passed through registers 

▪ Up to 4 parameters: r0-r3

▪ The return value is stored in r0 by the function.

The result (returned in r0) can be used.



©ESL/EPFL   
46

ARM function call procedure: 

Passing arguments

▪ If there are more than 4 arguments, the rest are passed 

through the stack

Some space is ‘reserved’ in the 

stack by moving the stack pointer

xxxxxxxxxxxxx sp



©ESL/EPFL   
47

ARM function call procedure: 

Passing arguments

▪ If there are more than 4 arguments, the rest are passed 

through the stack

Some space is ‘reserved’ in the 

stack by moving the stack pointer

xxxxxxxxxxxxx

sp



©ESL/EPFL   
48

ARM function call procedure: 

Passing arguments

▪ If there are more than 4 arguments, the rest are passed 

through the stack

The 5th argument is stored in the 

stack

5

xxxxxxxxxxxxx

sp



©ESL/EPFL   
49

ARM function call procedure: 

Passing arguments

▪ If there are more than 4 arguments, the rest are passed 

through the stack

The 6th argument is stored in the 

stack

5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
50

ARM function call procedure: 

Passing arguments

▪ If there are more than 4 arguments, the rest are passed 

through the stack

First 4 arguments are passed 

through registers r0, r1, r2 and r3

5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
51

ARM function call procedure: 

Passing arguments

▪ If there are more than 4 arguments, the rest are passed 

through the stack

Branch and link to the function. It 

leaves the address 0x020004bc in lr

5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
52

ARM function call procedure: 

Passing arguments

▪ If there are more than 4 arguments, the rest are passed 

through the stack

The result (returned in r0) can be used5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
53

ARM function call procedure: 

Saving and retrieving registers

▪ The functionality of the function is unknown but register r4 

is used inside. 

▪ r4 must be saved in the stack

▪ The value is pushed

▪ sp is updated.

5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
54

ARM function call procedure: 

Saving and retrieving registers

▪ The functionality of the function is unknown but register r4 

is used inside. 

▪ r4 must be saved in the stack

▪ The value is pushed

▪ sp is updated.

r4 is pushed and the sp updated

r4 value

5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
55

ARM function call procedure: 

Saving and retrieving registers

▪ The functionality of the function is unknown but register r4 

is used inside. 

▪ r4 must be saved in the stack

▪ The value is pushed

▪ sp is updated.

What happens if the previously stored

values (arguments 5 and 6) need to be

accessed?

r4 value

5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
56

ARM function call procedure: 

Saving and retrieving registers

▪ The functionality of the function is unknown but register r4 

is used inside. 

▪ r4 must be saved in the stack

▪ The value is pushed

▪ sp is updated.

r4 is restored at the end of the execution 

and  and the sp updated again

r4 value

5

6

xxxxxxxxxxxxx

sp



©ESL/EPFL   
57

Practical Work 4: Introduction to ARM 

Assembly on the NDS

▪ Debugging assembly code

▪ Multiple views needed, at least 3 AssemblyRegisters

C



©ESL/EPFL   
58

Practical Work 4: Introduction to ARM 

Assembly on the NDS

▪ Mixing C and ARM assembly

Stand alone .s file
Inline Assembly

To be implemented:

- Summation of array of  elements

- Matrix multiplication

To be implemented:

- Abs (a + b * c)



©ESL/EPFL   
59

Practical Work 4: Introduction to ARM 

Assembly on the NDS

▪ Retrieving arguments from the stack

▪ Implementing a function with 6 arguments

▪ C vs. Assembly code:

▪ Performance comparison between manually written square root and 

a compiler generated one

▪ Improving performance using specific arithmetic instruction 

provided by ARMv5TE  architecture

▪ Optimizing  a = a + b * c  (multiply and accumulate or MAC instruct)



©ESL/EPFL   
60

Practical Work 4: Introduction to ARM 

Assembly on the NDS

▪ Exercises (and homework)

▪ Exercise 1 – Arithmetic operation with inline statement

▪ Exercise 2 – Summation of arrays in a stand-alone .s file 

▪ Exercise 3 – Matrices multiplication in a stand-alone .s file 

▪ Exercise 4 – Retrieving arguments from the stack 

▪ Exercise 5 – Comparing performance 

▪ Exercise 6 – MAC application  

▪ *Exercise 7 – Matrix Multiplication Optimization 

▪ *Exercise 8 – Rounded Square Root 

*Additional Exercises



©ESL/EPFL   
61

Questions?

Let’s use ARM assembly and 

combine it with C in the NDS


