snsLABORATORY

g

Topic 2:
Microprocessors and Memory Hierarchy
In Microprogrammed Embedded Systems

Systemes Embarqués Microprogrammes

Prof. David Atienza Alonso, SEL-STI 1

=Pr-L Content of Session

Introduction to microprocessors design and functionality
Block diagram and types of instruction sets
Link between memory, registers and CPU
Microprocessor metrics: performance and power, why ARM?
ARM microprocessor architectures for the NDS
NDS history and boot-up for processor configuration
Memory access sizes and addressing modes
Register file design and microprocessor modes
ARM Iinstruction set
Memory access (read/writing) instructions
Arithmetic-logic instructions
Jump instructions
Assembly programming for ARM processor
Conditional and loop construction
How to include assembly in C programs
Passing parameters between C and assembly: Registers and stack

©ESL/EPFL

cpey Microprocessor architectures in
computing systems

= Central Processing Unit (CPU): the primary element performing the
computing function, it is the unit that carries out each instruction of a program
stored in memory in sequence, to perform the basic arithmetical, logical, and
input/output operations of the system

= Microprocessor: programmable machine that incorporates on a single
integrated circuit (IC, or microchip) all the functions of a CPU

“Stored program architecture® or Von Neumann Architecture [1945]

C | Accessto
P Prog. Count. (PC) < > /O devices
U

or accumulator

Arithmetic Logic Unit

)
AL 2 MEMORY
aa Instruction O
L Instruction 1
Control Unit (CU)
“ Data O
Instr. Reg. (IR) Data 1
3

©ESL/EPFL

cpey Microprocessor architectures in
computing systems

= Central Processing Unit (CPU): the primary element performing the
computing function, it is the unit that carries out each instruction of a program
stored in memory in sequence, to perform the basic arithmetical, logical, and
input/output operations of the system

= Microprocessor: programmable machine that incorporates on a single
Integrated circuit , =

C SS to
P evices
U
ORY
ction O
ction 1

Manchester Small-Scale Experimental Machine
(SSEM), nicknamed “Baby” [June 21st, 1948] 4

©ESL/EPFL

=P~L Main features of Von Neumann architecture

m [tis based on the concept of a memory stored program
= The memory content is organized in words, all of the same size (e.g., 32 bits)
= Words in memory follow a linear order (i.e., addresses), with endianness

= Two main memory contents, but no explicit distinction between them
= Instructions: program that controls what the microprocessor has to do
= Data: pieces of information that the program processes and generates

m The instructions execution order
Is sequential (0, 1, ...)
= Determined by their

addresses order
in the memory

m The Program Counter (PC) register
keeps next instruction address
to execute

Memory order (Little-Endian)
Word Addr. Half word #2 Half word #0

00000000| Byte 3 Byte 2 Byte 1 Byte O
00000004 | Byte 7 Byte 6 Byte 5 Byte 4
\r./

~~
Half word #6 : Half word #4

FFFFFFFC

©ESL/EPFL

=P~L Main features of Von Neumann architecture

m Five phases in program instruction execution
Search instruction in memory (Fetch) and

1.

calculation next instruct. address

2. Decoding instruction by the CPU Confro' omt) 1 -~ jscess)
3. Search of instruction operands Registers Program P
(in memory or registers) Counter U
: : - (PC) MEMORY
4, Executhn of th_e mstr_uctlon __| (pataand
(in ALU if an arithmetic one) instruct.)
5. Write results of operation Reg. Instr. (IR)
(in memory or registers) ALU v
Fetch Decode Search ~ Execute Write
instruction instruction operands Instruction results

©ESL/EPFL

=PrFL

Variations of baseline Von Neumann
architecture

Two alternatives in the definition of the instruction set of the CPU

Complex instruction set computer (CISC): design strategy to bridge the
semantic gap through single instructions that execute several low-level
operations (e.g., load from memory, arithmetic operat., and memory store).
Examples: Intel x86, Motorola 68x, VAX, System/360, or PDP-11
Reduced instruction set computer (RISC): design strategy based on
simple instructions to provide higher performance through much faster
execution of each instruction, i.e., load-store architectures
Examples: ARM, MIPS, Atmel AVR, Power, SPARC or AMD 29k.

Harvard architecture

Architectures with physically
separated storage and signal
buses for instruct., data and 1/O

Examples: ARM , MIPS,
Blackfin, PowerPC

©

Trying to fix two problems:
(1) memory wall and
(2) interconnects saturation

Control Unit (UC) C

Registers P
SR 3 CPC U
RO

Rx
R
[CIMAR
[JVMDR

ALU

1€

a

<

»

Access to

1—>

'|I/O devices

-

Instruct.
MEMORY

A

Data
MEMORY

5

Microprocessor architectures: Evolution to
=PrL .
microprogrammed embedded systems

= Microprocessor have evolved since Nov. 15t 1971 towards more

complex functionality and performance, but at a cost of power...
95-130 Watts!

0.3 Watts
- - I

= Intel 4004 [1971] Intel Xeon [2006-]
. | (2250 p-MOS trans., 108 KHz, 4- (820M trans., 3.73GHz,
; 64-bit, mem.:4MB/L2)

| MEMOTY WOp queus | | InkegerFloating Point pop quens | %' E =

¥ ' ¥ | S B

L2cache M Scheduler SlowGeneral FP Sched | | Simple FP| | &[S
(4 MEB) 1] ¥ L] B2l
e

=

=3

E

Integer Reg. File £ FP Reg, Files

BT ‘ﬂ [f‘”ﬁ””ﬁ

FPunit
MK

2100 PUOISS

AGU AGU ATU

(store) {load) 2%

LT
I2BS 328
cycle cycle
B BLEYS T
us
LlDaa

sy

(E?IIISB) Data TLB WiZ
e | =]

|

Intel Many Integrated Core (MIC) [20811]

Busicon Calculator 141-PF

©ESL/EPFL

-~ MiIcroprocessor architectures: Evolution to
=PrL .
microprogrammed embedded systems

= Microprocessor have evolved since Nov. 15t 1971 towards more

complex functionality and performance, but at a cost of power...
95-130 Watts!

0.3 Watts
- - S +

= Intel 4004 [1971] Intel Xeon [2006-]
; (2250 p-MOS trans., 108 KHz, 4- (820M trans., 3.73GHz,
64-bit, mem.:4MB/L2)

| MEMCTY LOp quens | | InkegerFloating Point pop quens | %' E I

¥ ' ¥ | 5 BB

L2cache M Scheduler SlowGeneral FP Sched | | Simple FP| | &[S
14 18) 1] ¥ L] B2l
e TS

= [

e

Integer Reg. File £ FP Reg, Files

BT ‘ﬂ [f‘”ﬁ””ﬁ

2100 PUOISS

acu || acy ALU FPuit || o e
MMK | | o

(store) {load) 2%

LT
I2BS 328
cycle cycle
B BLEYS T
us
LlDaa

(E?IIISB) iz Data TLB e

Intel Many Integrated Core (MIC) [20911]

Busicon Calculator 141-PF

©ESL/EPFL

-~ MiIcroprocessor architectures: Evolution to
=PrL .
microprogrammed embedded systems

= Microprocessor have evolved since Nov. 15t 1971 towards more

complex functionality and performance, but at a cost of power...
95-130 Watts!

- ..
‘—_— —

’ R
3@ ARM
‘,N~__________—
Intel 4004 [1971] Intel Xeon [2006-]
| (2250 p-MOS trans., 108 KHz, 4- (820M trans., 3.73GHz,
. bit,mem.:640B) 64-bit, mem.:4MB/L2)

| MEMCTY LOp quens | | InkegerFloating Point pop quens | %' = E
5B

¥ ' ¥ | 5 EE

L2cache M Scheduler SlowGeneral FP Sched | | Simple FP| | &[S
14 18) 1) ¥]]
s

Integer Reg. File £ FP Reg, Files

BT ‘ﬂ [f‘”ﬁ””ﬁ

2100 PUOISS

acu || acy ALU Foual
MMK | | o

SSE(2)

(store) {load) 2%

2 5
& Level No. 1 z 5 7
3 i
= Level Mo, 2 B
5] o 8 9
Level Mo. 3 &
°
£ 10 11 LT
3B/ 32BS
Stack 12 13 cycle cycle

'y | |

...... 1

- Principles remain, but in microprogrammed embedded systems it
IS key a new metric: MIPS/Watt :
New opportunities for business! 2011]

©ESL/EPFL

cpeL Advanced RISC Machines (ARM) for all flavours
=Ll of microprogrammed embedded systems

= Advanced RISC Machines Ltd (ARM) was officially founded in 1990
= Reduced Instruction Set Computers (RISC) for energy-efficient

microprogrammed computing
= Instructions with minimum semantic (move data, add/sub/mult. 2 numbers, ...)

= ARMZ2 [1986], probably simplest 32-bit core ever: 30K transistors, no cache
Large range of ARM designs: always basic RISC architecture + extensions

. . ARM Processors - Cortex Processors | (SOTTEXIProCessors
= Business model: -
SOTTEX=AIS
= Licensing ARM designs to COTEERAD
(SOTLEXAE:

semiconductor partners
who fabricate and sell to
customers “a la carte”

GOTexX-AS!

©ESL/EPFL

=PrFL

Advanced RISC Machines (ARM) for all flavours
of microprogrammed embedded systems

= Advanced RISC Machines Ltd (ARM) was officially founded in 1990

= Reduced Instruction Set Computers (RISC) for energy-efficient
microprogrammed computing

Instructions with minimum semantic (move data, add/sub/mult. 2 numbers, ...)

ARMZ2 [1986], probably simplest 32-bit core ever: 30K transistors, no cache

Large range of ARM designs:

= Business model:

©ESL/EPFL

Licensing ARM designs to
semiconductor partners
who fabricate and sell to
customers “a la carte”

ARM does not fabricate
silicon itself, but 90% of all
microprogrammed
embedded systems use one
or more ARM processors!

always basic RISC architecture + extensions

By Jun. 2015, 16 9 B|II|on ARM cores shipped,
By Feb. 2021, 180 Billion ARM cores shipped
Best sellers: ARM9 and ARM7TDMI

Families of the ARM processor

= All of them are compatible with their core RISC architecture:

32-bit instruction set architecture, 16 x 32-bit req. file, load/store architecture

Family Microprocessor Version | Examples of microprog. embedded systems
ARM1 ARM1 vl Evaluation system BBC
ARM2 ARM2, ARM250 v2 Acorn Archimedes, Chessmachine
ARM3 ARM2a v2a Idem
ARMG6 ARM60, ARM600, ARM610 v3 Acorn Risc PC 600, Apple Newton 100 series
ARM7 ARM700, ARM710 v3 Apple eMate 300, Psion Series 5
ARM7TDMI ARM7TDMI, ARM710T, ARM720T, vaAT Game Boy Advance, Nintendo DS, Apple iPod
ARM740T
StrongARM SA-110, SA-1110 v4 Apple Newton 2x00 series, Ipag H36x0,
Zaurus SL-5x00
ARMOTDMI ARMOTDMI, ARM920T, ARM940T vAT Hewlet Packard HP-49/50 Calculators, Sun SPOT
ARMOYE ARM946E-S, ARM926EJ-S V5TE Nintendo DS, Nokia N-Gage, Nokia 32xx,
Sony Ericsson (series K/W)
XScale PXA210/PXA250, PXA255, PXA27X, V5TE iPAQ H3900, HTC Universal, Dell Axim, Motorola Q,
PXA900 Blackberry Pearl
ARM11 ARM1136J(F)-S, ARM1176JZ(F)-S V6 Zune, Nokia N93, Apple iPhone, Motorola Z8

©ESL/EPFL

e
w

The history of the Nintendo DS (NDS)
Processors

=PrFL

= Precursor: Game Boy Advance (GBA), Mar. 2001
* Screen: 2.9 inches, TFT LCD (240x160 pixels)
* Processors

- ARM 7TDMI, 16.78 MHz: user sw processing
- 280, 8MHz: microcontroller for 1/O support

= Nintendo DS, Nov. 2004; and DS Lite, Mar. 2006
« Screen: 3vs 3.1 inches, TFT LCD (256 x 192 pixels)

* Processors

ARM 946E-S, 67.028 MHz: user software processing
and main 1/O peripherals

ARM 7TDMI-S,16.78 MHz: dedicated I/O support (sound, wifi
and specific keys)

= Nintendo DSI, Nov. 2008, and DSi XL, Oct. 2009
* Screen: 3.2 vs. 4.2 inches, TFT LCD (256 x 192 pixels)

* Processors

- ARM 946E-S, 133 MHz: user software processing
and main 1/O peripherals

- ARM 7TDMI-S, 16.78 MHz: dedicated 1/O support (sound,
wifi and specific keys)

©ESL/EPFL

=PrL NDS processing and I/O management

= Two asymmetric 32-bit Advanced RISC Microprocessors (ARM) cores
* ARM 946E-S: user software processing and main I/O peripherals
 ARM 7TDMI-S: dedicated I/O support (sound, wifi and specific keys)

Touchscreen

Select, Start
(33 MH2) keys
Screen

©ESL/EPFL

15

=PrFL

Nintendo DS memory range and

start-up to initialize ARM processors

: Word Addr. M der (Little-Endi
Cartridge ROM: 0x08000000 - OXO9ffffff (32MB) " oaoooono [Byies Bore o Byt Butees
Main RAM: 0x02000000 - 0x023fffff (4MB) 00000004} Byte 7. Byte 6| Byte 5| Byte 4

.) Reset vector If word
BIOS (Basic Input/Output System) in ROM. 000 aitwer
ARMO9: OxffffO000 - Oxffff7fff (32KB); Reset vector
ARM?7: 0x00000000 - O0x00003fff (16KB) @xOOOOOOOO
Solving mem. (1GB) FFFFFFFC |
wall problem:- —
Boot-up process Fast data (&= (%) c:::f’
configures the data access is key, L
Instruction memories with Cac.he 'E"L]T'E'i"h%: | e))

Firmware in FLASH MEMOTIES| . : §

memory: menu, pictochat, E Frmware (256 K5) g

and user preferences 3 g

Decoding carried el 2 emen imere A

out from the BIOS g ond VRAM

©ESL/EPFL

into RAM

Firmware copies the
cartridge ROM
to the RAM

ARM cores start running

Memory Architecture

Nintendo DS

Memory Bus (16-Bit)

I/O peripherals

(memory mapped)

VRAM A (128 KB)
VRAM B (128 KB)
VRAM C (128 KB)
VRAM D (128 KB)
VRAM E (64 KB)
VRAM F (16 KB)
VRAM G (16 KB)
VRAM H (32 KB)
VRAM | (16 KB)

T

16

=PiL Memory hierarchy optimization: Caches

= Small and fast memory located between processor and main memory
= Stores copy of memory portion currently in use

= QObjetive: reduction of memory access time

= New memory structure: cache and main memory frame Word transfers
= MM (Main memory): }Cache
Composed of 2" addressable words memory
“divided” in nB blocks of fixed size (2K words per block) block 4 ¥ Block ransfers
Physical address \
= CM (Cache memory) — Hardware controlled:

— Main
nM block frames of 2X words each (nM<<nB) memory
= SPM (Scratch-Pad memory) — Software controlled

= Directory (in cache memory):
Indicates which subset of nB blocks are located

nB: number of blocks

in NM block frames Add. Block Word nF: number of block frames
(n-k bits) (K bits) B: block address
—_— A

F: address of block frame
P: word inside the block

Physical Address B P

©ESL/EPFL 17

=PrL Interaction cache-main memory

= Technological limitations require a complex interaction

Memory address

.. e « Maximize the percentage
z Search in directory Cache of hits
E memer « Minimize access time
= NO C
é-g Is the block in (miss) . M|n|m|ze the tOtaI
== the cache? l penalty (misses)
YES Gettheblock| |, Reduce hardware cost
(hit) o from MM
o = !
= 2| |Assign block frame
T g to the block T T (1 H)T
o v = ..+ (1L—
Store the block total hit penalty
L in the block frame
Access to the | | (% hits ratio)
@ block frame
3o 1 Well-designed programs have good locality:
@ = Select word access the same data items over and over again:
4-8 KB caches in ARM = 80-90% hit ratio

©ESL/EPFL 18

=Pr~L Main design aspects of cache memories

= Cache configuration:
= Size
= Block size
= Cache levels
= Unified or separated

= Behavior policies
1. Placement policy:
Needed as there are less block frames in CM than blocks in MM
Selects in which block frame each block can be loaded
2. Replacement policy:
Needed as any new block in CM must replace one of the existing ones
Select which block to replace
3. Write policy:
Needed to keep coherence between CM and MM
Selects when to update a block from MM after being modified in CM
4. Search policy:
Determines which blocks (and when) should be loaded in CM

©ESL/EPFL 19

32-bit RISC processor (32-bit instruction = word)
37 registers of 32-bits (16 available)

With ALU, Multiplier, Shiffer and (often) caches
Von Neuman-type (ARM7) and Harvard (ARM9)

ARM processor architectures

8-/ 16- / 32-hit data accesses

| 3

ALE

A[31:0]
ABE

Address Register

=
b
u
5

ﬂ

‘PL

Address
Incrementer

(a1 x

Register Bank

32-bit registers)

(6 status registers)

im:u’ SOOI @I®T 03

wCo Cr >

I

4

g

v oo m

AN 32x8

A H Multiplier

b

U

&
-,
Barrel
Shifter

; 32-bit ALU /

-,

L

{

Scan
Control

Instruction
Decoder

&
Control
Logic

4= DBGRQI
[4= BREAKPTI
He DBGACK
- ECLK
e NEXEC
= ISYNC
l&~ BL[3:0]
l4— APE

[~ MCLK
le— NWAIT
e nRW

e MAS[1:0]
[nNIRQ

lg- nFIQ

4 NRESET
lg= ABORT
[H» NTRANS
H» nNMREQ
H» NOPC
- SEQ

e LOCK
4w nCPI
- CPA

le- CPB

- nM[4:0]
l4— TBE

M TBIT

H» HIGHZ

ﬁ

Write Dal

ta Register

Instruction Pipeline
& Read Data Register

& Thumb Instruction Decoder

T

nENOUTInENIN
DBE

k=]
)
et
=

ARMY7

Imz Addr

- Accessto
Control Unit (UC) cC T Iluo devices
Registers P
SRD :PC U - -
RO »
: I | Instruct.
8 IR [—1-] MEMORY
Emgg Data
* MEMORY
ALU | I A
E}ﬂ:& rotate RCIATA

LEs . Fl
ISIgn estension i

| men

ARM9

Byte/Half MM
Replicate

INSTRUCTION
BEQRE AND
DATAPATH

CONTROL LOGIC

=Pr-L Allowed data sizes and instruction sets

= Possible data sizes in ARM:

Memory order (Little-Endian)

Halfword #2
/')\

Half fvmd #0

Byte 3 Byte 2

Byte 1 Byte O

Byte 7 Byte 6
\r./

Byte 5 Byte 4

Half word #6

Half word #4

= Word means 32 bits Word Addr.
(four bytes) 00000000

= Halfword means 16 bits 00000004
(two bytes)

= Byte means 8 bits
(one byte)

= By default: little-endian
(big-endian is configurable) FFFFFFFC

= Most ARM processors implement two instruction sets
= Regular instructions of 1 word each: 32-bit ARM Instruction Set
= Compact instructions of halfword: 16-bit Thumb Instruction Set

= Well-known extensions of the ARM instruction set
= Jazelle: direct execution of Java bytecode
= NEON: acceleration for multimedia and signal processing

©ESL/EPFL

21

=PrL Registers and addressing mode

= ARM includes always 37 registers of 32-bit width each
= 1 program counter (PC)

= 1 state register (SR)
= indicates if last operation result was zero (Z), negative (N), overflow (O), etc.

= 5 registers to store the program state when we switch operation mode in
the processor

= 30 registers of general purpose

= Base register + offset/displacement (e.g., LDR r0,[r1,#8])
Offset Loaded data to RO

0Ox5
8 ox208] oxs |— L=

R1

Base [ox200
Register

22

©ESL/EPFL

cprp ARM processor modes and registers
access

= The ARM architecture has seven basic operating modes, for different levels of
priority and use of system resources
User : unprivileged mode under which most of the tasks should run
FIQ : when a high priority (fast) interrupt is raised
IRQ : when a low priority (normal) interrupt is raised
Supervisor : on reset and when a software interrupt instruction is executed
Abort : used to handle memory access violations
Undef : used to handle undefined instructions
System : privileged mode using the same registers as user mode

Key protection mechanism for the microprogrammed embedded system
to avoid geting blocked with malfunctioning program or 1/O device!

= Each processor mode selects a register file with 16 registers:
a particular set of rO-r12 registers
a particular r13 (the stack pointer, sp) and r14 (the link register, Ir)
the program counter, r15 (pc)
the current program status register, cpsr

= The privileged modes (except System) can also access:

a particular saved program status register, spsr 23
©ESL/EPFL

=PrL Register organization summary

= The System mode uses the User mode register set

Only cemm——al
mode ¢, User/System) FIQ IRQ SVvC Undef Abort

avallable
in NDS

Thumb
Low
registers

ro
rio
ril
ri2
ri3 (sp)
ri4 (Ir)

Thumb
High
registers

r13 (sp)
ri4 (Ir)

O©ESL/EPFL 24

rpr- Program status registers (cpsr):
=PrL . .
Information about microprocessor status

31 25
INZC‘U’Q JI Undeflined IIFT mode I
| I I | [| [|

Flags Cprrd?tlon code flags (or blts‘)\

l’\r/; ivx'lll/- N = Negative result from ALU \\ = Architecture 5TE/J only (ARM9)
the (= Z = Zero result from ALU] = Indicates if saturation has
NDS \ = C = ALU operation Carried out /' occurred

-*V ALU operation oVerrowed

= |nterrupt Disable bits. * Architecture XT only

= | =1: Disables the IRQ. = T =0: Processor in ARM state

= F = 1: Disables the FIQ. = T =1: Processor in Thumb state
= Mode bits -

m Specrfy the processor mode = Architecture 5TEJ Only (ARMg)

= J=1: Processor in Jazelle state

©ESL/EPFL 25

=Pr-L ARM instruction set

= 5 types of assembly instructions
= 3 fundamental RISC instructions types

Memory access instructions
Arithmetic-logic instructions

Control (jJump) instructions

= Two extended RISC instructions types for microprocessor control
Special instructions to manipulate the state register (cpsr)

Change of execution mode and type of instruction set (ARM/Thumb)

26

©ESL/EPFL

=PrL Memory access instructions

= Two basic operations

= LDR: Load register content with value from memory address
= STR: Store register content in memory address
= Syntax:
= LDR{<cond>}{<size>} Rd, <address>
= STR{<cond>}{<size>} Rd, <address>
Examples: LDR r0,[r1,#8]
STR rO,[r1,#8]

= Memories in the system must support all sizes (default: Word size)
= <size> = Signed (S) and then Byte (B), Halfword (H)
Examples:
LDR STR Word
LDRB STRB Byte
LDRH STRH Halfword
LDRSB Load byte with sign
LDRSH Load halfword with sign

©ESL/EPFL 27

=PiL Loading 32 bit constants into registers

= To allow larger constants to be loaded, the assembler offers a
“pseudo-instruction”:

= LDR rd, =const

= For example
= LDR r0,=0xFF
= LDR r0,=0x55555555

28

©ESL/EPFL

=PrL Arithmetic-Logic instructions

= They only work between registers, types:

= Arithmetic: ADD ADC SUB MUL SBC RSB RSC
= Logic operations: AND ORR EOR BIC

= Comparisons: CMP CMN TST TEQ

= Data movements: MOV MVN

= Syntax: <Operation>{<cond>}{S} Rd, Rn, Operand2
= Example: ADD r0, rl, r2

= Remarks
= Comparisons only fix the flags (or bits) of cpsr (notthe Rd value)
Example: CMP r3, #0
= Data movements do not specify Rn
Example: MOV rO, #0xFF

©ESL/EPFL 29

cpEL Jumps mstructlons_.
branches and subroutines

= B <label>
= Jump that is PC relative, up to =£32MB range
= BL <subroutine>

= Stores return address in LR (r14)
= Returning implemented by restoring the PC from LR

funcl
STMFD sp! {regs,lr}

LDMFD sp! {regs,pc}

O©ESL/EPFL

30

cpel Conditional execution and flags
IN ARM Instructions

= ARM instructions can be made to execute conditionally by
post-fixing them using the condition code field: {<cond>}

= This improves code density and performance by reducing the
number of forward branch instructions

= Example: ADD{<cond>} Rd, Rn, Operand2
CMP r3,#0
BEQ skip
ADD r0,rl,r2 <«
skip:

CMP r3,#0
ADDNE rO,rl,r2

©ESL/EPFL 31

=Pi-L Accepted conditions in ARM instructions

= AL is defined by default and it is not needed to indicate it

Suffix Description Flags tested
EQ Equal /=1

NE Not equal Z=0

CS/HS Unsigned higher or same C=1

CC/LO Unsigned lower C=0

M Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsigned higher C=1& Z=0
LS Unsigned lower or same C=0or Z=1
GE Greater or equal N=V

LT Less than NI=V

GT Greater than Z=0 & N=V
LE Less than or equal Z=1 or N=IV
AL Always

©ESL/EPFL

- Equivalence between C and ARM assembly:
=PrL . .
If constructions - general form

= Definition

if (cond) {instTrue;} else {instFalse;}

=Uses comparison (CMP) and conditional branch (Bcond) inst.

CMP ifCondition

B<NOT cond> caseFalse
: execution instruct. case true

= Example
if (a==7) {count+=1l;}
else {count-=1;}
B regroup
caseFalse:
; execution instructs. case false

= ais stored in rO ; count is stored in rl1

= Solution
CMP rO,#7

regroup:. BNE caseFalse

; insts. with regrouped flow ADDS rl,rl,#1

B regroup
caseFalse:

SUBS rl,rl,#1
regroup:

©ESL/EPFL 33

- Equivalence between C and ARM assembly:
=PrL g .
compact ARM conditional constructions

= ARM assembly for an if-else construction
if (a==7) {count+=1l;}
else {count-=1};
= alisstoredinrO; countisstoredinrl

31 28 17 4 23 16 15 8 7 6 5 4 0

NZCV I U - n ¢ & fI i n = 4a I I F mode I
| | | | |
| £ | s | - | - |
= Condition code flags (or bits)
N = Negative result from ALU ; Z = Zero result from ALU

C = ALU operation Carried out ; V = ALU operation oVerflowed

= Solution
CMP r0, #7 , compare a with 7
ADDEQ rl, rl, #1 : do count=count++, if a ==

SUBNE rl, rl, #1 : do count=count--,ifal=7

©ESL/EPFL 34

Equivalence between C and ARM assembly:
while loops — general form

=PrFL

= Definition
while (cond) {instructsTrue;} after loop instructs

= Uses comparison (CMP) and conditional branch (Bcond) inst.

loop:
CMP cond
BNE <cond> caseFalse
; execute instruc. true condition
B loop
caseFalse:)
. = Solution
; inst. after loop
loop:
n Examp|e CMP rO,#3
while (a<3) { BGE caseFalse
count+=1; ADD rl,rl, #l
a++; ADD r0,xr0,#1
} B loop

caseFalse:

= ais storedinr0: countis storedinrl

©ESL/EPFL 35

- Equivalence between C and ARM assembly:
=PrL -
for loops can use general form of while loops

= Example:

count=0;
for (i=10,;i>0;i--) count+=1l;

= |is stored in rO; countis storedinr2

= Solution:
MOV r2, #0
MOV r0O, #10
loop:
CMP r0, #0
BLE caseFalse

ADD r2, r2, #1
SUBS r0, r0, #1
B loop
caseFalse:
; Instructions after loop

©ESL/EPFL 36

n

T
11

1.

Declaration of variables
and memory address
alilases

Variables can be initialized

Define name (“main”) of
functions as .global label

Start of the code section
using: .text {label}

Define the end of the
program: .end {label}

©ESL/EPFL

L Developing an assembly program

.equ x, 45
.equy, 64
.equ stack_top, 0x1000

.global _start

text
_start:

MOV sp, #stack_top

MOV r0, #x
STR r0, [sp]
MOV r0, #y
LDR r1, [sp]
ADD r0, r0O, r1
STR r0, [sp]
stop:
B stop
.end

37

pP=l Including assembly in C programs:
: Two methods

n

= Directly in the C program

int main() {

Using for each assembly line:

asm(“assembly Instruct."); asm(*mov R1,R2%);

= Use in C source files external EXTERN functi(int);
assembly files int main() {
Int result, a=5;

Declare in C the use of external result=functl(a);
functions: EXTERN Prototype_funct; }
Declare assembly functions as global
symbols: .GLOBAL Name_funct GLOBAL functl

. . ext
Implement the function in the .text functL:

region of the program: Name_funct:

©ESL/EPFL

How parameters are passed in ARM
Example: C program with a function

extern int delayl1(int); int delayl (inti)

main() {

{ intj=2;
int times=3; intk =7;
int i=0; int | =1;
int counter=0; if (i>))
int iteration=5; {

I--;
while (i<iteration) | = delay1(i);
{ }
return k*l;

times=delayl(times); }

counter+=4;

|++;
}

}

39

©ESL/EPFL

C Program flow:
Passing arguments between functions

main()
{
int times=3; _ 3 ‘
int i=0; int delay1 (int i) L= i=2
int counter=0; { int delayl (int i)
int iteration¥5; intj=2; {
intk =7, Int) =2,
(< while (i<iteratio intl=1: intk = 7;
{ v if (i>]) intl=1;
if (i>))
times=delayl(times); {
I--;
| | = delayl(i);
} }
} return k*I:
40

©ESL/EPFL

=PrL Memory regions in an ARM program

= Arunning program has 3 regions
(both in C or in assembly)

Code
Code or instructions (text)

Data
Global data
BSS: data initialized to O

Stack frame
Stack: automatic variables

Heap: explicitly managed dynamic
variable

©ESL/EPFL

Environment

variables
Stack
v Stack frame
o
Heap
BSS
Data

Code (text)

Main memory

MAX

Increasing addresses

41

e — Memory regions in an ARM program:
PrL
The memory stack

= Specific region of the memory managed as a stack of data

int fibonacci(int n)

= Three main uses { —
int a = 1|
= Placing local variables / Bt ey 1 it
E.g., Variables a, b, temp and i I°”1 =05 1<n-Z; 1++)
This will not be covered in the course gezpbj a+b;
We have up to 8 general-purpose b = temp;

: _ }
registers to store local variables return temp;

: : }
= Passing arguments (Function call)
Shared data between functions

= Store and retrieve register values

Several general-purpose registers may be used during the
execution of a function

The programmer must save the values of the registers before
using them at the beginning of the function

The values must be restored at the end of the function

©ESL/EPFL 42

e ARM function call procedure:
P-L |
Passing arguments

= |n a function call, arguments are passed through registers
= Up to 4 parameters: rO-r3

= The return value is stored in rO by the function

int main(void)

{ 156 ¢ = fibonacci(5);
int c; 92000440 mov ro, #5 s Ox5
c = fibonacci(5);] > 92000444: E N0Ox20003bC <f1bonacc1>
while(1){ 92000448 mvy r3, ro
swiWaitForVBlank();

}
}

The argument (#5) is store in rO

= Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

= Fp=0;F, =1

. |:n = |:n-l t |:n-2 43

©ESL/EPFL

e ARM function call procedure:
P-L |
Passing arguments

= |n a function call, arguments are passed through registers
= Up to 4 parameters: rO-r3

= The return value is stored in rO by the function.

int main(void) |

{ 156 ¢ = fibonacci(5);
int c; 92000440 mov r0, #5 : 0x5
¢ = fibonacci(5);| > 92000444 bl 0x20003bc <fibonacci>

while(1){ 92000448: N 3, 10
swiWaitForVBlank(); [J

}
}

Branch and link to the function.
It leaves the address 9x32000448 Inlr

©ESL/EPFL 44

e ARM function call procedure:
P-L |
Passing arguments

= |n a function call, arguments are passed through registers
= Up to 4 parameters: rO-r3

= The return value is stored in rO by the function.

int main(void) |

{ 156 ¢ = fibonacci(5);
int c; 92000440 mov ro, #5 s Ox5
¢ = fibonacci(5);| > 92000444 bl 0x20003bc <fibonacci>

while(1){ 92000448 mov r3, ro

swiWaitForVBlank();
}
}

The result (returned in r0) can be used.

©ESL/EPFL 45

=PrFL

= |f there are more than 4 arguments, the rest are passed

ARM function call procedure:

through the stack

int main(void)
{

int c;

¢ = megaFUnction(1,2,3,4,5,6);

while(1){

swiWaitForVBlank();

}

Passing arguments

—

XHXXXXXXXXXXXX

©ESL/EFT

02000494 sub sp, sp, #20 ; 0x14

1606 C = megarunction(l,Z,3,4,5,6),
0200049§ mov r3, #5 ; XS5
0200049¢ str r3, [sp]

020004a(mov r3, #6 ; Ox6
02000434 str r3, [sp, #4]

020004a§ mov ro, #1 3 el
020004aq mov rl, #2 s Ox2
020004b(mov r2, #3 ; 0x3
020004b4 mov r3, #4 ; Ox4
020004b¢ bl 0x2000438 <megaFUnction>
020004b(mov r3, ro

Some space is ‘reserved’ in the
stack by moving the stack pointer

46

e ARM function call procedure:
P-L |
Passing arguments

= |f there are more than 4 arguments, the rest are passed
through the stack

02000494 sub sp, sp, #20 ; 0x14

. _ _ 66 N\ ¢ = megarunction(I,Z,3,4,5,6)
int main(void) 02000499 mov r3, #5 ; 0X5
{ 0200049¢ str r3, [sp]
ALK : 020004a | mov r3, #6 ; X6
c = megaFUnction(1,2,3,4,5,6); [:::::{:> 02000434 str r3, [sp, #4]
; 020004a¢ mov ro, #1 3 Bl
"hﬂe(?v)l{. eromniimiin 020004ad | mov rl, #2 . Ox2
) T 020004b(mov r2, #3 ; 0x3
} 020004b4 mov r3, #4 ; Ox4
020004b4 bl 0x2000438 <megaFUnction>
020004b¢ mov r3, ro
{— Sp Some space is ‘reserved’ in the

stack by moving the stack pointer

XXXXXXXKXXXXX 47

©ESL/EFT

cpe| ARM func_tlon call procedure:
Passing arguments

= |f there are more than 4 arguments, the rest are passed
through the stack

02000494: sub sp, sp, #20 ; 0x14

. .) 166 ¢ = megaFUnction(1,2,3,4,5,6).
int main(void) 02000498: mov r3, #5 : 0X5
{ 0200049c: __ str r3, [sp]

int c; . 02000430~ _mov 13, #6 T OX6
€ = megaFUnct10n(1,2,3,4,5,6); 020004 str r3’ [Sp, #4]
hile(1 020004a8 mov ro, #1 ; ‘Oxl
while(1){ 020004a{ | mov r1, #2 ;X2
SWINRItForEL ANk Ll 020004b(| mov r2, #3 ; 0X3
\ } 020004b4 mov r3, #4 ; Ox4
020004b¢ bl 0x2000438 <megaFUnction>
020004b mov r3, ro
2 — Sp The 5" argument is stored in the
stack

XHXXXXXXXXXXXX 48

©ESL/EFT

=PrFL

ARM function call procedure:
Passing arguments

= |f there are more than 4 arguments, the rest are passed

through the stack

int main(void)
{ -
int c;
¢ = megaFUnction(1,2,3,4,5,6);

—

while(1){
swiWaitForVBlank();
}
}
5 I sp
6

XHXXXXXXXXXXXX

©ESL/EFT

02000494: sub sp, sp, #20 ; 0x14
166 ¢ = megaFUnction(1,2,3,4,5,6),
02000498: mov r3, #5 : 8x5

0200049c: str r3, [sp]

020004a0: mov r3, #6 ; Ox6

020004a4: str r3, [sp, #4]

02000423‘_&\x mov ro, #l1 ; 1

02000431 mov rl, #2 ; 0x2
020004b(mov r2, #3 ; 0x3

020004b4 mov r3, #4 ; Ox4

020004b¢ bl 0x2000438 <megaFUnction>
020004b mov r3, ro |

The 6™ argument is stored in the

stack

49

e ARM function call procedure:
P-L |
Passing arguments

= |f there are more than 4 arguments, the rest are passed
through the stack

02000494 sub sp, sp, #20 ; 0x14

. .) 166 ¢ = megaFUnction(1,2,3,4,5,6),
int main(void) 02000498: mov r3, #5 : 0X5
{ 0200049c: str r3, [sp]

int c; . 020004a0: mov r3, #6 ; Ox6
¢ = megaFUnction(1,2,3,4,5,6); 02000434 - str r3, [sp., #4]

hile(1 020004a8: mov ro, #1 ;o Ox1
— e(.){_ 020004ac: mov rl, #2 s Ox2
swikaitForVBlank(); 020004b0: mov r2, #3 . X3
} } 020004b4: mov r3, #4_ - 9x4
020004b bl 0x2000438 <megaFUnction>
020004b mov r3, ro
2 I sp First 4 arguments are passed
6

through registers r0, r1, r2 and r3

XXXKXXXXXXXXX 50

©ESL/EFT

cpe| ARM func_tlon call procedure:
Passing arguments

= |f there are more than 4 arguments, the rest are passed
through the stack

02000494: sub sp, sp, #20 ; 0x14

)) _ 166 ¢ = megaFUnction(1,2,3,4,5,6),
int main(void) 02000498: mov r3, #5 . OX5
{ 0200049c: str r3, [sp]
int c; . 020004a0: mov r3, #6 . X6
¢ = megaFUnction(1,2,3,4,5,6); 02000424 : str r3, [sp, #4]
hile(1 020004a8: mov ro, #1 s Ox1
while(1){ 020004ac: mov rl, #2 . OX2
swiWa1tForVBlank(); 020004b0: mov r2, #3 . X3
} } 020004b4: mov r3, #4 ; Ox4
|020004b8 bl 0x2000438 <megaFUnction>
920004b7\. mov r3, ro
5 — Sp Branch and link to the function. It
6

leaves the address 0x020004bc in Ir

XHXXXXXXXXXXXX 51

©ESL/EFT

=PrFL

= |f there are more than 4 arguments, the rest are passed
through the stack

int

{

main(void)

int c;

. 020004a0: mov r3, #6 ; Ox6
¢ = megaFUnction(1,2,3,4,5,6); 02000424 : str r3, [sp, #4]

ARM function call procedure:
Passing arguments

02000494: sub sp, sp, #20 ; 0x14
166 ¢ = megaFUnction(1,2,3,4,5,6),
02000498: mov r3, #5 ; Ox5

0200049c: str r3, [sp]

hile(1 020004a8: mov ro, #1 s Ox1
while(1){ 020004ac: mov rl, #2 . OX2
swiWa1tForVBlank(); 020004b0: mov r2, #3 . X3
} } 020004b4: mov r3, #4 ; Ox4
020004b8: bl 0x2000438 <megaFUnction>
020004bc: mov r3, ro
> — sp The result (returned in r0) can be used
6

©ESL/E

XHXXXXXXXXXXXX

| gl

52

e ARM function call procedure:
P-L . 7 _
Saving and retrieving reqisters

= The functionality of the function is unknown but register r4
IS used inside. _
megaFUnction:

= r4 must be saved in the stack 37000410: push {ra}

= The value is pushed)2000414:
-)2000418:
= Sp is updated. 120004 1c
)2000420:
)2000424 :
)2000428:
)200042c: pop {ra;
)2000430: bx 1r

XHXXXXXXXXXXXX 53

©ESL/EFT

e ARM function call procedure:
P-L . 7 _
Saving and retrieving reqisters

= The functionality of the function is unknown but register r4
IS used inside. ,
megaFUnction:

= r4 must be saved in the stack [92000410: bush {ra}

= The value is pushed 02" 14
020| p418:

= Sp is updated. 020 baic:
020| p420:
020| p424:
020| p428:
020 p42c: pop {r4;
020 p430: bx 1r

r4 value <:| Sp L

5

6 r4 is pushed and the sp updated

XHXXXXXXXXXXXX 54

©ESL/EFT

e ARM function call procedure:
P-L . 7 _
Saving and retrieving reqisters

= The functionality of the function is unknown but register r4
IS used inside. ,
megaFUnction:

= r4 must be saved in the stack ©2000410: push {ra}

= The value is pushed 02000414
02000418:

= Sp is updated. 020004 1c -
02000420
02000424
02000428

02@(§42c: pop {ra}
0

020| p430: bx 1r

r4 value <:| Sp L

2 What happens if the previously stored
values (arguments 5 and 6) need to be
accessed?

XHXXXXXXXXXXXX 55

©ESL/EFT

e ARM function call procedure:
P-L . 7 _
Saving and retrieving reqisters

= The functionality of the function is unknown but register r4
IS used inside. ,
megaFUnction:

= r4 must be saved in the stack ©2000410: push {ra}

= The value is pushed 02000414:
02000418:

= spis updated. 020004 1c:
02000420:
02000424
02000428
0200042c: pop {r4;

02@{?430: bx Lr

r4 value

5 <:|S|g

6 r4 1s restored at the end of the execution
and and the sp updated again

XHXXXXXXXXXXXX 56

©ESL/EFT

Practical Work 4: Introduction to ARM

=PrlL Assembly on the NDS

= Debugging assembly code

= Multiple views needed, at least 3

Registers

Assembly

2 © ® Debug - Template_arm3/source/main.c - Eclipse
File Edit Source Refactor Naw ; N
i BWYOTQY | ™D v ny 74 [Debug oo+
£ mainc 2 =B |m-variables 12 “ L Registers BT *= H |z Disassembly = =0 .
T e o e e R BB s B Eoter location here gol = | %
u =
3 Basic template code for starting a DS app Name Value Name Value »0200863c8: | bl 8x2088b16 <conso -
a4 B ' wa | 184549376 it Main 24 int a = func(1,1,
L o |0 020003c4: movs r3, #1 ®
G#include <nds.h= 0 B28683c6: str r3, [sp, #8) &
7 #include =stdio.h> | 33614084 020003c8: movs r@, #1 3
8 | 33555388 020003ca: movs rl, #1 o
oint func(int a, int b, int ¢, int d, int e) | 184549375 020083cc: movs r2, #1 0
18 { o B20683ce: movs r3, #2
1 if(a > 0) lo 828003d8: bl Bx20088388 <funcs
12 return b; lo 020003d4: adds r3, ro, #0
13 else lo 020003d6: str r3, [sp, #12]
ific < @) w0 25 a = func(a,a,l,2,
return d + e AL AR 620083d8: ldr r2, [sp, #12]
(: else L 020003da: 1dr rl, [sp, #12]
returm a + b - c; | 020083dc: movs r3, #1
|o 028003de: str r3, [sp, #0)
| 00B003ced 0200030: adds r@, r2, #0
| a3ssam1s
main(void) | 020003e2: movs r2, #1
{ { 00200030 R 92009394: movs ra} #2
020003e6: bl Ox20008380 <func=
consoleDemoInit(); 8200803ea: adds r3, r@, #0
int a = func(1,1,1,2,1); 820083ec: str r3, [sp, #12]
a = func(a,a,l1,2,1); 26 a = func(®,-1,a,a
a = func(@,-1,a,a,l); B20603ee: movs r2, #1
27 628688370 : negs r2, r2
27 g ,
28 printf("\nHello World\n"); 02000372 ldr r4, [sp, #12]
29 while(1) { 02000374: ldr r3, [sp, #12]
; swiWaitForvBlank(); 020003f6: movs r3, #1
1 - 02000318: str r3, [sp, #0]
020003fa: movs r@, #0
020003fc: adds r1, r2, #0
020003fe: adds r2, rd, #0
- > =g 62006400 : adds r3, r5, #0
Debug 2 > 8 RS BT T 02000482: bl 0x2000380 <funcs
- [T Template_am.elf [CAC++ Application] 02000406: adds r3, ro, #0
B gdbserver (3/15/11 8:42 AM) (Suspended) 82008408 : str r3, [sp, #12]
= o# Thread [0] (Suspended) . 28 printf(*\nHello W
0200040a: dr r3, [pc, #12]
£ console £ - u &3 r=a 0200840c: adds r@, r3, #0
Template_arm.elf [C/C++ Application] Momends/filesiworks pace/Template_armoTemplate_arm@.elf (3/15/11 8:42 AM) a2006d8e : bl 8x2008456c <puts=
30 swikaitForVel
AsAARATS hl AvIAAIRAS ~ewibls T

Practical Work 4: Introduction to ARM
Assembly on the NDS

= Mixing C and ARM assembly

Stand alone .s file

Inline Assembly

.ARM
. LALIGN
int a=6; _GLOBL Sum
-1_-“1: b=4; .TYPE Sum, function
int c=0; .text
asm volatile("add %0, %1, %2" : Sum:
Il=rll {c) :
"r (a),"r" (b) stmdb sp!, {r4 - rll, lr}
): add ro, rl
ldmia sp!, {rd4 - ril1, 1r}
bx 1r
.end

To be implemented:
- Summation of array of elements

- Matrix multiplication

To be implemented:
-Abs (a + b * ()

©ESL/EPFL 58

Practical Work 4: Introduction to ARM
Assembly on the NDS

= Retrieving arguments from the stack
= |Implementing a function with 6 arguments

= Cvs. Assembly code:

= Performance comparison between manually written square root and
a compiler generated one

= |mproving performance using specific arithmetic instruction
provided by ARMV5TE architecture

= Optimizing a=a+ b*c (multiply and accumulate or MAC instruct)

©ESL/EPFL 59

cpe| Practical Work 4: Introduction to ARM
Assembly on the NDS

= EXxercises (and homework)
= Exercise 1 — Arithmetic operation with inline statement
= Exercise 2 — Summation of arrays in a stand-alone .s file
= Exercise 3 — Matrices multiplication in a stand-alone .s file
= EXercise 4 — Retrieving arguments from the stack
= Exercise 5 — Comparing performance
= Exercise 6 — MAC application
= *Exercise 7 — Matrix Multiplication Optimization
= *Exercise 8 — Rounded Square Root

*Additional Exercises

60

©ESL/EPFL

Questions?

ol

Let’s use ARM assembly and
combine it with C in the NDS

61

EEEEEEEEE

