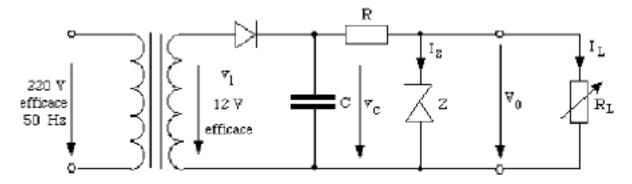

Exercice 1

En utilisant le modèle simplifié de la diode (Modèle d'ordre 0), étudier le comportement des circuits suivants en traçant un diagramme de la tension de sortie en fonction du temps (indiquer clairement la valeur numérique des amplitudes remarquables le long de l'axe vertical). ($Avec\ V_J = 0.7\ V$)


1.1.

Exercice 2

On donne le circuit suivant:

Avec I_{zmin} =5 mA, V_Z = 10 V et U_J = 0. On veut assurer en permanence V_0 =10 V et une tension $v_C(t) \ge 14$ V. $I_L \in [0; 50 \text{ mA}]$ suite a différents valeurs de R_I .

- a) Dessiner l'allure de $v_1(t)$, $v_C(t)$ et V_0 sur le même graphique.
- b) Calculer la valeur maximale admissible pour R.
- c) Calculer la capacité de filtrage pour répondre aux conditions sur $v_{\rm C}(t)$.
- d) Calculer I_{zmax} , en déduire la puissance instantanée maximum dissipée dans la diode zener et dans la résistance R, quand R vaut 73 Ω . [$P_{ZENER} = V_Z \times iz$]