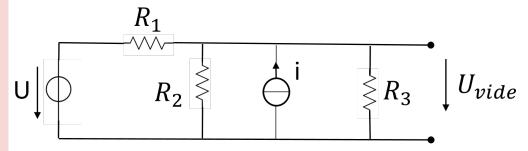
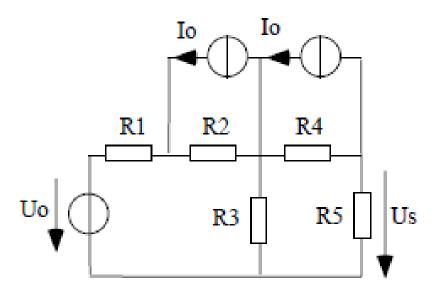

Exercice 1

Déterminer l'équivalent de Thévenin et l'équivalent de Norton du circuit à la porte indiquée.


Exercice 2

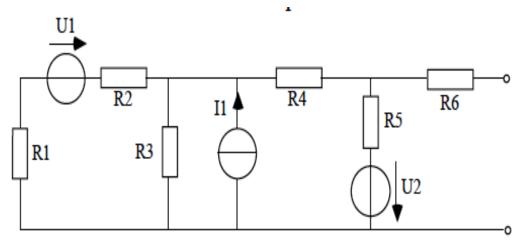
Déterminer l'équivalent de Thévenin en sachant que


$$R_1 = R_2 = 0.1 \text{ k}\Omega$$

I = 10mA

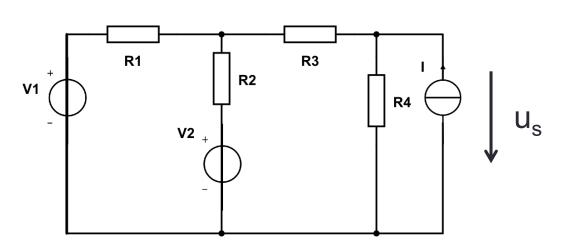
Exercice 3

Déterminer l'expression de la tension à vide du circuit (utiliser les équivalents de Thévenin et Norton pour simplifier le circuit).


Exercice 4

Déterminer l'expression de U_S (utiliser les équivalents de Thévenin et Norton pour simplifier le circuit).

References:


Exercice 5

Déterminer les sources équivalentes de Thévenin et de Norton du circuit en sachant que

$$R_1 = R_2 = R_4 = 1k\Omega$$
; $R_6 = 4 k\Omega$;
 $R_3 = R_5 = 2 k\Omega$;
 $U_1 = U_2 = 2 V$; $I_1 = 2mA$

Exercice 6

Déterminer la valeur de u_s en appliquant le théorème de superposition, en sachant que V_1 = 3V; V_2 = 2V; I= 2A R_1 = R_2 = R_3 = R_4 =1 Ω

Réponses

Ex. 1:
$$u_{vide} = U \cdot \frac{R_2}{R_1 + R_2}$$
 $R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$ + réponses des équivalents de Norton

Ex. 2:
$$u_{TH} = 1 \text{ V}$$
; $R_{eq} = 0.1 \text{ k}\Omega$

Ex. 3:
$$u_{vide} = (U/R_1 + i) R_1R_2R_3 / (R_1R_3 + R_2R_3 + R_1R_2)$$

Ex. 4:
$$U_S = U_5 R_5 / (R_5 + R_8)$$
; $R_8 = R_7 + R_4$; $U_4 = I_0 R_4$; $U_5 = U_3 - U_4 U_3 = I_1 R_7$; $I_1 = (U_0 - U_1)/(R_1 + R_2)$; $U_1 = I_0 R_2$; $R_7 = R_3 / /(R_1 + R_2)$

Ex. 5:
$$U_{th} = 1.5 \text{ V}$$
; $R_{eq} = 5k\Omega$; $I_{Norton} = 0.3 \text{ mA}$

Ex. 6:
$$3/5 + 2/5 + 6/5 = 2.2 \text{ V}$$