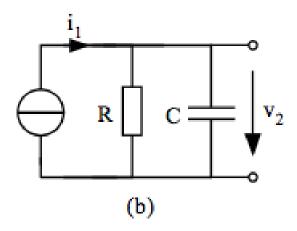
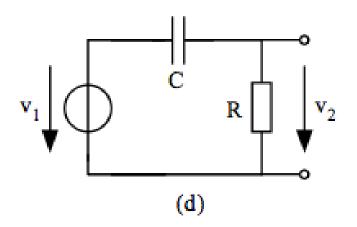
Exercice 1



Exercice 2



Analyse en fréquence

- Déterminer la fonction de transfer V₂ /I₁
- Déterminer la réponse v₂(t) avec l'entrée suivant:

 $i_1(t)$ = 2 cos(ωt) (mA) , f = 1kHz Et avec R= 10 Ω ; C= 10pF

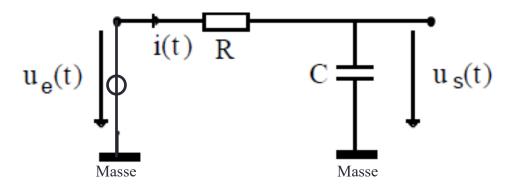
Analyse en fréquence

- Déterminer la fonction de Transfer V₂ /V₁
- Déterminer la réponse v₂(t) avec
 l'entrée suivant:

 $v_1(t) = 50 \cos(\omega t) \text{ (mV)}, f = 10\text{kHz}$ Et avec R = $10^3 \Omega$, C = $0.1 \mu\text{F}$

Exercice 3

On donne le circuit suivant:

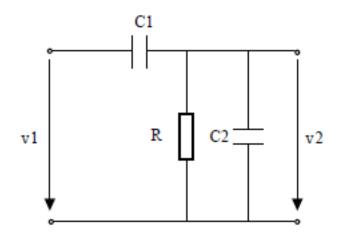


On demande:

- a) Etablir l'équation différentielle u_s =f(u_e) liant la tension u_s (t) à la tension u_e (t) et de l'utiliser pour calculer et représenter graphiquement la réponse indicielle de ce circuit avec condition initiale u_s (0)=0. On entend par réponse indicielle la réponse à un saut de tension de la forme u_e (t) =A · ϵ (t), avec A constante positive et ϵ (t) function saut unitaire.
- b) Etablir la fonction de transfert $H(j\omega) = U_s/U_e$.
- c) Calculer et représenter à l'aide des impédances complexes la réponse permanente de ce même circuit à un signal sinusoïdale de la forme $u_e(t) = A \cdot \sin(2\pi f_0 t)$. A=1V, R= 10 k Ω , C=1nF et f_0 =20kHz.

Exercice 4

On propose le circuit ci-dessous:



Avec

C1 = 100nF,

C2 = 900nF et

 $R = 1 K\Omega$

Calculer la fonction de transfert $H(j\omega) = V_2/V_1$