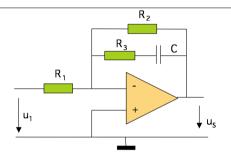

Exercice 1

On propose le montage ci-contre: avec $u_S(t=0)=0$ et τ =RC. On demande:

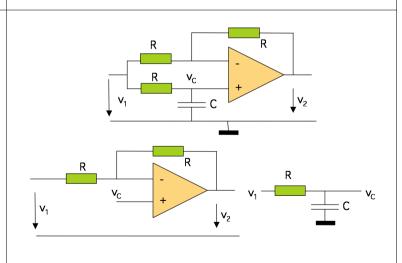
- a) De calculer l'impédance d'entrée de ce circuit.
- b) De représenter graphiquement la tension de sortie obtenue lorsqu'on applique le signal u₁(t) suivant à l'entrée.



Exercice 2

On donne le schéma ci-contre:

On demande de tracer la fonction de transfert du circuit (Amplitude et phase) pour R_1 =2k Ω , R_2 =4k Ω , R_3 =16k Ω et C=20pF.



Exercice 3

- 3.1 Exprimer analytiquement la fonction de transfert $H(j\omega) = \frac{v_2}{v_1}$ du circuit ci-contre :
- 3.2 Représenter cette fonction dans un diagramme de Bode (amplitude et phase)
- 3.3 Calculer le déphasage obtenu pour $\omega = \frac{1}{RC}$

Remarque:

La résolution du point 3.1 est facilitée en calculant v_2 en fonction de v_1 et v_C (voir figure ci-contre), puis en exprimant v_C en fonction de v_1 .

