Electronique II: séance du 12.09.2024

Objectifs du semestre

- Rappels Elec I le 12.09.2024, sous formes d'exercices
- Quadripôles (le cours le plus abstrait ... après cela va mieux!!!)
- Amplificateurs à transistors bipolaires
- Technologie MOS
- Circuits logiques, très orienté MOS
- Amplificateurs opérationnels en réaction négative et positive (le gros morceau)
- Cellules analogiques (prévu en électronique III, mais déjà introduit en 2022)
- Convertisseurs CAN CNA (prévu en électronique III, mais déjà introduit en 2022)

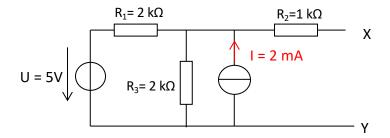
Contrôle des connaissances :

- Projet en fin de semestre (analyse, dépannage, conception)
- Avant COVID, deux travaux écrits (mode abandonné durant période COVID)

Electronique II: organisation

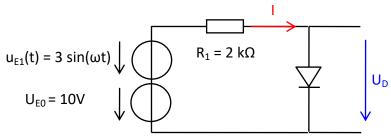
- Cours du jeudi: Systématiques sauf ... accident
 - Séances de cours et Forum cours prévu chaque semaine sur le modèle d'électronique I.
 - Enregistrement vidéo du cours (lien déjà envoyé par mail) et si exercices complexes, vidéos de préparation
- **Exercices du lundi**: Traditionnellement peu d'étudiants en exercices et impossible de faire des allers-retours de Pescara ou Grenoble. Normalement un assistant disponible :
 - Etudiants doivent faire exercices Elec II en autonome et, si nécessaire, poser des questions à l'assistant qui me les communiquera (même s'il peut répondre)
 - Regarder le corrigé très complet, disponible lundi soir et si encore des problèmes :
 - Forum exercices prévu chaque semaine sur le modèle d'électronique I
 - Enregistrements vidéo pour répondre aux questions, postés sur GoogleDrive.

Prérequis et exercices associés


- Théorèmes de base (emploi systématique) : Kirchhoff , Thévenin Norton, Superposition
- Analyse fréquentielle avec diagramme de Bode (très important)
- Analyse temporelle (moyennement important) étudiée avec le saut indiciel
- Diodes (moyennement important)
- Équations fondamentales du bipolaire (assez important)
- Bases de l'amplification à transistor bipolaire (assez important)

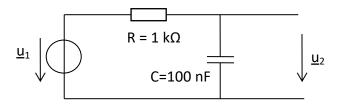
Exercices théoriques et simulations (quelques rappels)

Prérequis décrits oralement et calculs – à faire pour la prochaine fois

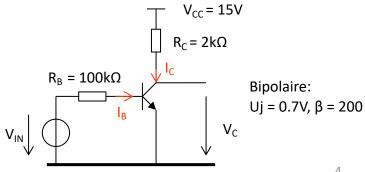

A - Thévenin – Norton, Superposition, Kirchhoff:

Calculer V_{xv} à vide Donner l'expression de U_{XY} lorsque $U = 5 \sin(\omega t)$.

C - Circuit à diodes (vérifier quelles notions vues en électronique 1)


Calculer I et U_D avec $u_{E1}(t) = 0$, puis dessiner I et U_D avec $U_{E0} = 0$

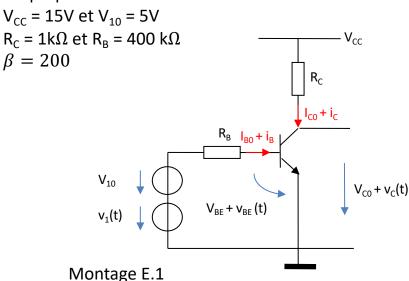
Diode: n = 1.5, Uj = 0.7V, U_T = 26mV


B - Analyse temporelle et fréquentielle:

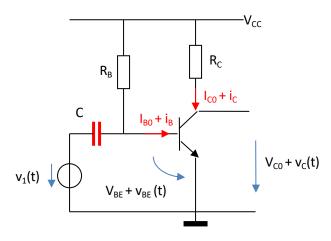
Dessiner le diagramme de Bode asymptotique en module (et argument si vous avez du temps)

D - Montage bipolaire

Calculer quelques valeurs et dessiner $V_C = f(V_{IN})$ V_{IN} varie de 0 à 15V

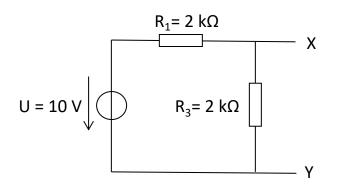


Prérequis décrits oralement et calculs – à faire pour la prochaine fois


E - Appliquer la recette de cuisine vue en cours pour calculer le gain de chaque montage

- 1. Calcul de la polarisation
- 2. Calcul des paramètres gm et 1/gbe
- 3. Calcul du gain

On propose les valeurs suivantes

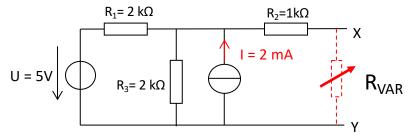

Analyse directement en relation avec le prochain cours

Montage E.2

Petit rappel LT-Spice

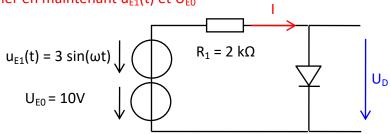
- Librairie de composants, fils, labels
- Éditer le schéma : sélectionner, drag and drop, connecter
- Paramétrer les composants et les sources (tensions et courants)
- Différents types de simulation : Point de repos (OP), temporelle, fréquentielle, balayage de valeurs (sur source ou composant variable)
- Exemple : Le diviseur résistif

Modes de simulation


- OF
 - Visualiser sur courbes (peu parlant)
 - Ajouter des labels pour OP
 - Sélectionner View -> Spice error log
- Paramétrée : Utiliser une résistance variable
- Transient (temporel) -> deux curseurs
- DC Sweep
- AC analysis (pas très parlant ici)

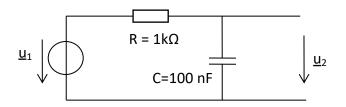
Prérequis sur un exemple : Simulations – à faire pour la prochaine fois

Surtout utile pour le projet => pas dramatique pour ceux qui vont suivre électronique I

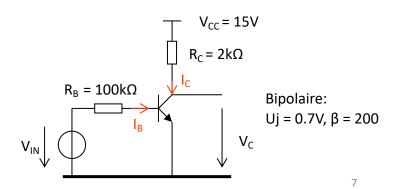

A - Thévenin – Norton, Superposition, Kirchhoff:

Pour calculer le modèle Th-No, simuler sans R_{VAR} pour calculer V_{TH} , puis en faisant varier R_{VAR} selon la méthode vue en cours pour déterminer R_{IN} . Simuler U_{XY} lorsque $U = 5 \sin(\omega t)$ et comparer avec valeurs théoriques

C - Circuit à diodes (vérifier si notions vues en électronique 1)


Simuler en maintenant u_{E1}(t) et U_{E0}

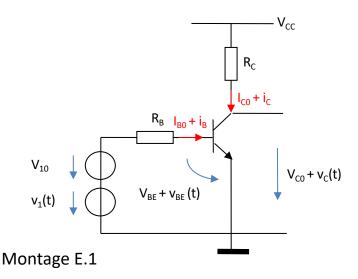
Diode: n = 1.5, Uj = 0.7V, $U_T = 26mV$

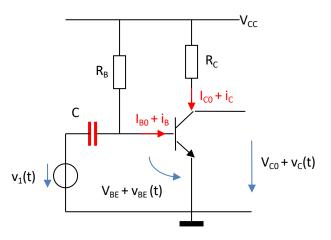

B - Analyse temporelle et fréquentielle:

Simuler le Bode en module et argument

D - Montage bipolaire

Simuler en mode DC sweep avec V_{IN} varie de 0 à 15V




Prérequis sur un exemple : Simulations – à faire pour la prochaine fois

Surtout utile pour le projet => pas dramatique pour ceux qui vont suivre électronique I

E - Appliquer la recette de cuisine vue en cours pour calculer le gain de chaque montage

- 1. Simulez le montage E.1 en mode transient. Prendre $V_{10} = 5V$, et $v_1(t) = A.\sin(2\pi ft)$ avec A = 10mV d'amplitude et f = 1 kHz. Effectuer la simulation sur 10ms, soit 10 cycles. L'allure des courbes est surprenante ... à ce stade.
- 2. Simuler les deux montages en mode AC analysis (équivalent au diagramme de Bode en module et argument) Pour E.2, prendre C = 500 μ F (u correspond à μ dans LTSpice). Les autres composants sont identiques. Limiter les fréquences entre 10 Hz et 1 MHz (10⁶ Hertz)

Montage E.2

La prochaine fois (19.09.2024)

Les quadripôles

- Séance très théorique (la plus « terrible » du semestre)
- Application aux amplificateurs
- Démarche sera comparable pour le transistor MOS étudié plus tard