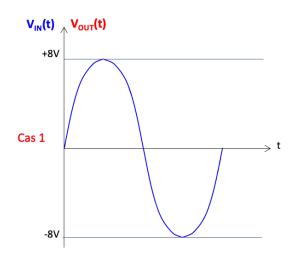
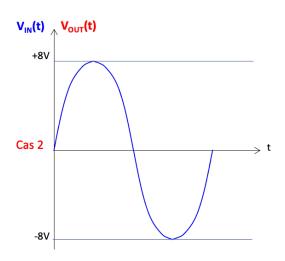
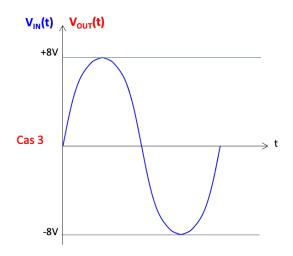
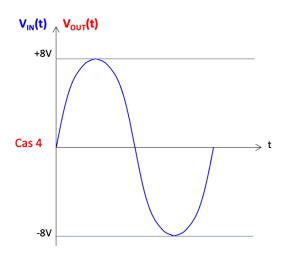

Exercice 1 : Analyse circuit à diodes

On propose le montage suivant : La carré représente une diode (normale ou Zener) qui peut être positionnée selon les 4 configurations proposées à droite du circuit (cas 1 à 4)

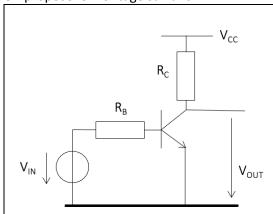



On donne V_Z = 6 V (lorsqu'il s'agit de la Zener) et Uj = 0.7 V, R_1 = 1k Ω


1. On fixe $V_{IN} = 8 V$. Pour les quatre cas, calculer les valeurs de V_D , V_{OUT} et I_D .


2. On fixe V_{IN} = -4 V. Pour les quatre cas, calculer les valeurs de V_D , V_{OUT} et I_D .

3. On fixe V_{IN} = 8.sin(ωt). Pour les quatre cas, dessiner $V_{OUT}(t)$. Délimiter les zones où la diode est bloquée et passante. Attention, l'exercice n'est pas si simple !!!!



Exercice 2 : Analyse montage de base de l'inverseur.

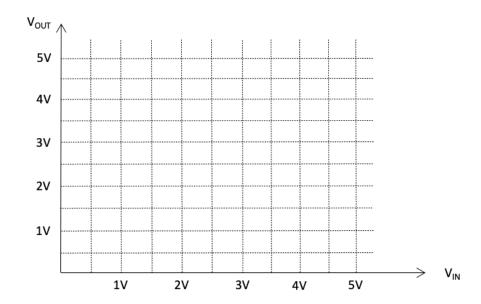
On propose le montage suivant :

On donne:

- V_{CC} = 5 V,
- V_{IN} varie de 0V à 5V
- R_B = 50 kΩ,
- $R_C = 2 k\Omega$,
- Uj = 0.7 V, β = 200,
- On remarque que V_C = V_{OUT}

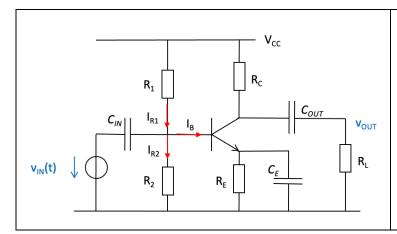
On impose pour V_{IN} :

- 0V est associé au 0 logique
- 5V est associé au 1 logique
- 1. A partir de quelle valeur de V_{IN}, le transistor commence à conduire (préciser dans quel mode)


2. Trouvez les expressions de I_B , I_C , V_B , $V_C = V_{OUT}$ (selon l'ordre que vous souhaitez) en fonction de V_{IN} et des composants du circuit (R_B , R_C , β du transistor).

3. Depuis le point précédent, donnez la valeur de la pente de la droite V_{OUT} = f(V_{IN})

4. Calculer I_B , I_C , V_B , $V_C = V_{OUT}$ lorsque $V_{IN} = 1 \text{ V}$


5. Quand le transistor est en saturation franche, on admet que V_C = 0V. Calculer la valeur approximative de V_{IN} permettant d'atteindre cette situation

6. Dessiner la courbe $V_{OUT} = f(V_{IN})$. Ajouter sur le graphe les limites de chaque mode de fonctionnement du transistor

Exercice 3: Analyse montage amplificateur.

On propose le montage suivant :

On donne:

- V_{CC} = 15 V
- $v_{IN}(t) = 10^{-2} \sin(2\pi f t)$
- $R_1 = 11.7 \text{ k}\Omega$
- $R_2 = 3.3 \text{ k}\Omega$
- $R_C = 1 k\Omega$
- $R_E = 500 \Omega$
- $\beta = 200$
- Les trois condensateurs C_{IN}, C_{OUT} et C_E sont considérés de valeurs infinies
- 1. Expliquez la présence de R_E et C_E d'une part, et C_{IN} et C_{OUT} d'autre part.

- 2. ϕ_1 : Calcul de la polarisation :
 - En admettant que I_B soit négligeable par rapport à I_{R1} et I_{R2} , calculez selon l'ordre qui vous semble logique : I_B , I_C , I_E , V_B , V_C , V_E .

Électronique 1: Midterm 2 du 22.12.2022

Nom: Prénom: N° Sciper:

- 3. ϕ_2 : calcul des paramètres petits signaux :
 - A partir des résultats précédents, calculez gm et 1/gbe

- 4. ϕ_3 : calcul du gain de l'amplificateur: Prendre $R_L = \infty$
 - Dessinez le schéma pour accroissement et calculez le gain $A_V = \frac{v_{OUT}}{v_{IN}}$

- 5. Que se passe-t-il si on prend une résistance $R_L = 50 \Omega$.

 Calculez le nouveau gain $A_V = \frac{v_{OUT}}{v_{IN}}$ et expliquez s'il y a une solution pour améliorer le gain