Recommandations : rendre tous vos développements (formulation, schémas, transformations,... y compris ratures) et reporter uniquement les résultats dans les cadres associés à chaque question (formule finale dans le cadre gauche et valeur dans le cadre droit)

Exercice 1: On propose d'analyser le circuit capacitif ci- contre avec $I_0 = 5$ mA, $C_1 = 300$ nF, $C_2 = 200$ nF, $C_3 = 400$ nF, $C_4 = 100$ nF, $C_5 = 100$ nF et $C_6 = 200$ nF	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & I_3 \\ \hline & C_5 \end{array} $ $ \begin{array}{c c} & U_s(t) \end{array} $
1. Calculer la capacité équivalente vue par la source l ₁ . Reporter l'expression et la valeur		
2. Calculer les différents courants I ₁ , I ₂ , et I ₃ . Reporter les expressions et les valeurs		
3. à l'instant $t = 0$, C_6 est supposée déchargée : $U_s(0) = 0$. Calculer le temps t nécessaire pour que $U_s(t) = 10V$. Reporter l'expression et la valeur		
Exercice 2: On propose le montage suivant : Attention au sens des flèches X I R R R R R R B 2. En déduire I I, I Exercice 2: On propose le montage suivant : A R R R R R R R R R R B B	On donne : $V_1 = 10 \text{ V}, V_2 = 20 \text{ V}, V_3 = 50 \text{V}$ $R_1 = 2 \text{ k}\Omega, R_2 = 3 \text{ k}\Omega,$ $R_3 = 6 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega$ 1. Par transformation/réductions successives, calculez le modèle Thévenin (V_{TH} , R_{TH})	
3. Calculer les puissances dissipées dans les résistances R ₁ , R ₂ et R ₃ . Reporter les expressions et les valeurs		
4. Calculer V _{AB} (V ₁) . Reporter l'expression et la valeur		
5. Calculer $V_{AB}(V_2)$. Reporter l'expression et la valeur		
6. Calculer $V_{AB}(V_3)$. Reporter l'expression et la valeur		
7. Appliquer le théorème de Milmann pour calculer la tension en X . Reporter l'expression et la valeur		

Recommandations : rendre tous vos développements (formulation, schémas, transformations,... y compris ratures) et reporter uniquement les résultats dans les cadres associés à chaque question (formule finale dans le cadre gauche et valeur dans le cadre droit)

Exercice 3 : On propose le montage suivant :	On donne :	
R ₁	• $R_1 = 2 k\Omega, R_2 = 2 k\Omega,$	
V _{IN} V _{out}	 R₃ = 3 kΩ, C = 100 nF Remarque : Z₁ regroupe R₁, R₂ et C, et Z₂ représente R₃ 	
 Évaluer le comportement du circuit quand C -> 0. Schéma équivalent et la valeur v_{out}/v_{IN} 		
 Évaluer le comportement du circuit quand C -> ∞. Schéma équivalent et la valeur v_{out}/v_{IN} 		
3. Expressions de Z_1 et de Z_2		
4. Expression de la fonction de transfert		
5. Expression du module de H(jω)		
6. Valeur du module lorsque ω -> 0. Expression et valeur		
7. Valeurs du module lorsque ω -> ∞ . Expression et valeur		
8. Expression de l'argument de H(jω)		
9. Valeur de l'argument lorsque ω -> 0. Expression et valeur		
10. Valeur de l'argument lorsque ω -> ∞ . Expression et valeur		