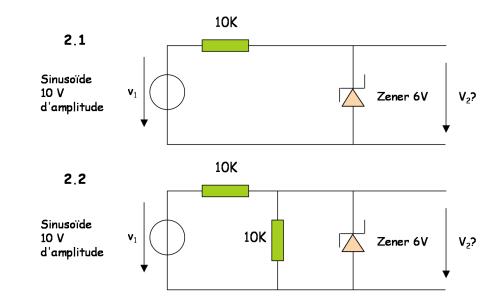

Exercices d'électronique associés à la série: Introduction sur les diodes

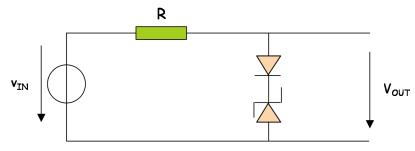
Exercice 1: Caractéristiques des diodes

On propose le montage suivant:



On donne $R = 1.3 \text{ K}\Omega$ et $U_0 = 1\text{ V}$

- 1. Calculer I_{01} avec le modèle simplifié de la diode $(U_j = 0.7 \text{ V})$
- 2. Déterminer, à partir du courant I_{01} calculé précédemment, la chute de tension V_{D1} aux bornes de la diode, en utilisant la loi exponentielle entre le courant et la tension.
- 3. Calculer de nouveau I_{02} en utilisant la tension V_{D1} calculée précédemment. Déterminer l'erreur sur I_0 selon que l'on utilise le modèle simplifié ou la loi exponentielle.
- 4. Refaire la même opération qu'au point 2. mais en prenant I_{02} .
- 5. Même exercice avec $U_0 = 5V$. Conclusions!


Exercice 2: Applications diodes

En utilisant le modèle simplifié de la diode (chute de tension constante de 0,7 V dans le sens direct), étudier le comportement des circuits suivants en traçant un diagramme de la tension de sortie en fonction du temps (indiquer clairement la valeur numérique des amplitudes remarquables le long de l'axe vertical).

Exercice 3. écréteur de tension

On propose le montage suivant:

$$V_{IN}$$
 = 7sin (ωt) $Uj = 0.7V$ et $V_Z = 4.3V$
Tracer sur un même graphe V_{IN} et V_{OUT} en fonction du temps