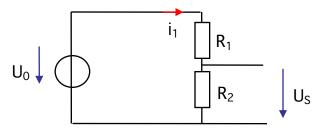
Exercice 1:

On propose d'analyser les signaux suivants:

- $u_1(t) = A_1 \sin(2\pi f_1 t)$ avec $A_1 = 5$ V, $f_1 = 1$ MHz
- $u_2(t) = A_2 \sin(2\pi f_2 t)$ avec $A_2 = 311$ V, $f_2 = 50$ Hz

Pour chaque signal déterminer:

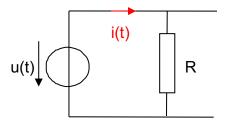
- ses valeurs crête, crête-crête, efficace, moyenne
- la puissance instantanée maximale si le signal est appliqué à une résistance de $100~\Omega$
- la puissance efficace pour la même résistance

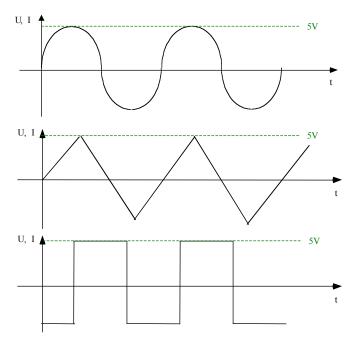

Exercice 2:

Nous étudions une lampe qui peut dissiper 100 W sous 220 V efficace.

- Calculer sa résistance
- Calculer la puissance maximale qu'elle peut dissiper

Exercice 3:


Analyser le circuit suivant:



Calculer la tension U_s , le courant i_1 et les puissances dissipées par R_1 et R_2 , sachant que $U_0 = 5$ V, $R_1 = 1$ K Ω , et $R_2 = 4$ K Ω

Exercice 4:

On propose d'analyser le montage ci-contre soumis à trois types de signaux u(t) (voir ci-dessous)

Calculer:

- l'amplitude de chaque signal
- la tension crête-crête de chaque signal
- la valeur moyenne de chaque signal
- la valeur moyenne de chaque signal redressé
- la valeur efficace de chaque signal