Diagramme de Bode

- Le module $|\underline{\mathbf{H}}(\mathbf{j}\omega)|$ est exprimé en décibels (dB) : $|\underline{\mathbf{H}}(\mathbf{j}\omega)|$ dB = 20 Log₁₀ $|\underline{\mathbf{H}}(\mathbf{j}\omega)|$
- ightharpoonup La phase $Arg(\underline{H}(j\omega))$ est exprimée en radians ou degrés
- La fréquence (ou pulsation) est représentée sur une échelle logarithmique.

Rq:
$$H(j\omega) = \underline{H1(j\omega)}$$
. $\underline{H2(j\omega)} \rightarrow |\underline{H(j\omega)}| dB = |\underline{H1(j\omega)}| dB + |\underline{H2(j\omega)}| dB$

$$\rightarrow Arg(\underline{H(j\omega)}) = Arg(\underline{H1(j\omega)}) + Arg(\underline{H2(j\omega)})$$

D'où, l'intérêt de la forme canonique :

$$\underline{H}(j\omega) = K \frac{j\frac{\omega}{\omega_{z0}} \left(1 + j\frac{\omega}{\omega_{z1}}\right) \left(1 + j\frac{\omega}{\omega_{z2}}\right) ... \left(1 + j\frac{\omega}{\omega_{zk}}\right)}{j\frac{\omega}{\omega_{p0}} \left(1 + j\frac{\omega}{\omega_{p1}}\right) \left(1 + j\frac{\omega}{\omega_{p2}}\right) ... \left(1 + j\frac{\omega}{\omega_{pl}}\right)}$$

 ω_{zi} (i=0,k) zéro de la fonction de transfert.

 ω_{pi} (i=0,1) pôle de la fonction de transfert.









