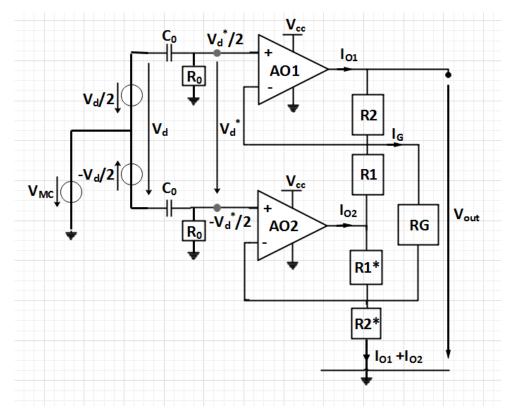
Section:


21 Janvier 2020

Durée 2h45 (16h15 à 19h00)

La concision est de rigueur et seul le résultat final compte.

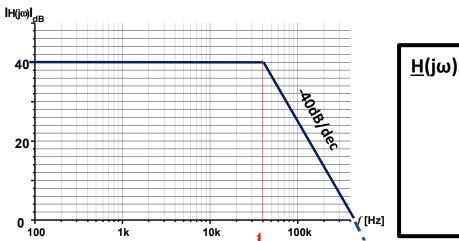
1. Amplificateur différentiel : (40 mn)

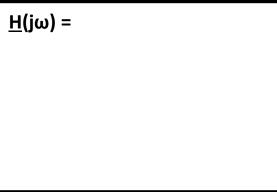
Soit le circuit:

Où V_d = Signal différentiel. V_{MC} = Signal mode commun. R_G = Résistance de contrôle du Gain

Cas 1: Résistances parfaitement appariées, $R_1^* = R_1$ et $R_2^* = R_2$.

a- Donner l'expression du gain différentiel $G^*_{diff} = V_{out}/V^*_{d}$ en fonction de R_1 , R_2 et R_G . et $\underline{G}_{diff}(j\omega) = V_{out}/V_{d} = V_{out}/V^*_{d}$. V^*_{d}/V_{d} . V_{MC} est supposée nulle.


$$G^*_{diff} =$$


$$G_{diff}(j\omega) =$$

$R_G =$		$R_0C_0 =$
c- Calculer	la valeur dc (V_{0DC}) à la sortie et	proposez une correction si nécessaire.
	Problème :	
$V_{o,dc} =$	Correction:	
Cas 2 : Résis	tances non appariées $(R_1^* \neq R_1)$	et $R_2 \stackrel{*}{\neq} R_2$).
d- Donner le	e gain en mode commun G _{MC} = '	Vout/V _{MC} en fonction des résistances. V _d est supposée
		par rapport à 10 Hz (c.à.d. C ₀ court-circuitée)
	a requence de vine tres grande	pai rapport a 10 112 (c.a.a. co court circuitec)
	a frequence de vinc tres grande j	par rapport a 10 Hz (c.a.u. C) court encuree)
	a frequence de vinc tres grande j	par rapport a 10 Hz (c.a.u. C) court encuree)
$G_{MC} =$	a frequence de vinc tres grande j	par rapport a 10 Hz (c.a.a. C) court efficience)
$G_{MC} =$	a frequence de vinc tres grande	par rapport a 10 Hz (c.a.a. C) court efficience)
G _{MC} =	a frequence de vinc tres grande	par rapport a 10 Hz (c.a.a. Cycourt encuree)
e- Compléte	er le schéma de cet amplificateur	r en implémentant la technique « Right-Leg Drive »
e- Compléte		
e- Compléte	er le schéma de cet amplificateur	
e- Compléte	er le schéma de cet amplificateur	
e- Compléte	er le schéma de cet amplificateur	
e- Compléte	er le schéma de cet amplificateur	
e- Compléte	er le schéma de cet amplificateur	
e- Compléte	er le schéma de cet amplificateur	
e- Compléto	er le schéma de cet amplificateur	
	er le schéma de cet amplificateur	
e- Compléto	er le schéma de cet amplificateur	

2. Filtrage de V_{out} (20 mn)

a- Donner deux architectures possibles de filtres à ajouter à la sortie de l'amplificateurs différentiel pour que la fonction de transfert globale ($H(j\omega) = V_{out,Filtre} / V_d$) se comporte en haute fréquences comme ci-dessous. Donner la formule $H(j\omega)$ et dimensionner les éléments du filtre (prendre au moins une des résistances = 1 k Ω).

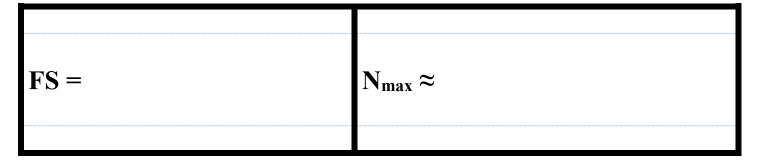
<u>Filtre 1 (avec dimensions des éléments)</u>			
Filtre 2: (avec dimensions des éléments)			

3. Calcul du bruit (20 mn)

a- Estimer la valeur efficace (σ) et la valeur crête à crête maximale ($v_{n,p-p,max}=6\sigma$) du bruit en [mV] à la sortie du filtre et donner la formule permettant ce calcul.

Négliger l'effet du filtrage basse fréquence due à R_0C_0 et considérer seulement la source de bruit dominante à savoir le bruit thermique blanc de 30 $[nV/\sqrt{Hz}]$ de chacun des deux Amplis OA1 et OA2 à l'entrée du système.

Rappel:
$$\int \frac{dx}{x^2+1} = Arctg(x) + C$$
 et $\int \frac{dx}{(x^2+1)^2} = \frac{1}{2}Arctg(x) + \frac{1}{2}\frac{x}{x^2+1} + C$


Formule:	Valeur: [mV]
	$\sigma =$
	$v_{n,p-p,max} =$

Pour la suite prenez par défaut une valeur crête à crête du bruit à la sortie du filtre de 5mV.

4. Convertisseur : Comparateur, Echantillonnage et Oscillateur (1h)

Un convertisseur Flash supposé idéal est utilisé pour convertir le signal à la sortie du filtre. Le signal V_d à l'entrée du système de mesure à une amplitude crête à crête maximal de 7mV.

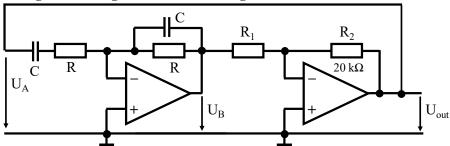

a- En tenant compte du gain total et du bruit, donner la plage de variation pleine échelle (FS) et le nombre de bits du convertisseur maximal (N_{max}) qu'on peut utiliser.

Schéma:		
<u>Valeur des résistances :</u>		
c- La fréquence maximale f_{max} du signal utile correspond à de f_c (fréquence de coupure du filtre) et donner sa va minimale $f_{ech,min}$ du convertisseur.		
de f_c (fréquence de coupure du filtre) et donner sa va minimale $f_{ech,min}$ du convertisseur.		
de f _c (fréquence de coupure du filtre) et donner sa va		
de f_c (fréquence de coupure du filtre) et donner sa va minimale $f_{ech,min}$ du convertisseur.		
de f_c (fréquence de coupure du filtre) et donner sa va minimale $f_{ech,min}$ du convertisseur.	aleur. Déduire la fréquence d'échantillonn	
de f _c (fréquence de coupure du filtre) et donner sa va minimale f _{ech,min} du convertisseur. Formule:		
de f_c (fréquence de coupure du filtre) et donner sa va minimale $f_{ech,min}$ du convertisseur.	aleur. Déduire la fréquence d'échantillonn	
de f _c (fréquence de coupure du filtre) et donner sa va minimale f _{ech,min} du convertisseur. Formule:	aleur. Déduire la fréquence d'échantillonn	
de f _c (fréquence de coupure du filtre) et donner sa va minimale f _{ech,min} du convertisseur. Formule:	aleur. Déduire la fréquence d'échantillonn	
$\begin{array}{c} \text{de } f_c \text{ (fréquence de coupure du filtre) et donner sa value minimale } f_{ech,min} \text{ du convertisseur.} \\ \\ \hline Formule: \\ \\ f_{max} = \\ \end{array}$	aleur. Déduire la fréquence d'échantillonn	
$\begin{array}{c} \text{de } f_c \text{ (fr\'equence de coupure du filtre) et donner sa va}\\\\ \text{minimale } f_{ech,min} \text{ du convertisseur.} \\\\ \hline\\ Formule:\\\\ \hline\\ f_{max} = \\\\ \hline\\ \underline{Valeur:}\\\\ \end{array}$	aleur. Déduire la fréquence d'échantillonn	
$\begin{array}{c} \text{de } f_c \text{ (fréquence de coupure du filtre) et donner sa value minimale } f_{ech,min} \text{ du convertisseur.} \\ \\ \hline Formule: \\ \\ f_{max} = \\ \end{array}$	aleur. Déduire la fréquence d'échantillonn	
$\begin{array}{c} \text{de } f_c \text{ (fr\'equence de coupure du filtre) et donner sa va}\\\\ \text{minimale } f_{ech,min} \text{ du convertisseur.} \\\\ \hline\\ Formule:\\\\ \hline\\ f_{max} = \\\\ \hline\\ \underline{Valeur:}\\\\ \end{array}$	aleur. Déduire la fréquence d'échantillonn	

b- Proposer pour ce convertisseur, un comparateur non-inverseur insensible au bruit et dimensionner ses éléments. Le signal de sortie du comparateur varie de V_L = 0 V à V_H = 2 V.

d- Pour générer le signal d'échantillonnage, utiliser l'oscillateur ci-dessous :

- i. Donner la valeur de RC pour que la fréquence d'oscillation soit égale à $f_{\text{ech,min}}$, en expliquant brièvement la démarche suivie.
- ii. Donner la condition sur la valeur de R₁ pour amorcer l'oscillation ainsi que sa valeur à l'équilibre.
- iii. Pour R_1 , doit-en choisir une R_{NTC} (résistance dont la valeur diminue avec la température) ou une R_{PTC} (résistance dont la valeur augmente avec la température). Expliquer brièvement votre choix.

a. Valeur de RC
<u>Démarche</u> :
$\underline{\mathbf{b}}_{\bullet}$ Condition sur $\underline{\mathbf{R}}_{1}$ pour amorcer l'oscillation :
Valeur de $\underline{\mathbf{R_1}}$ à l'équilibre :
c. R _{NTC} ou R _{PTC} ?
Explication: