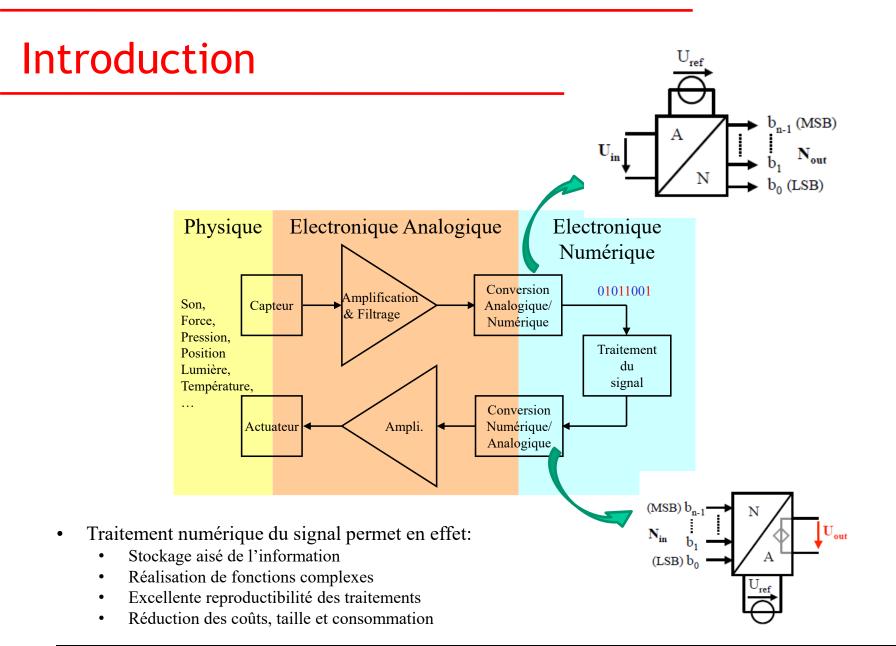
# Conversion Analogique-Numérique et Numérique-Analogique

Systèmes électriques et électroniques Adil KOUKAB






#### Sommaire

- Conversion Analogique-Numérique (CAN)
  - Echantillonnage
  - Quantification
- Architectures:
  - Convertisseur Flash
  - Convertisseur à approximations successives
- Conversion Numérique-Analogique-(CNA)
  - Génération de courants pondérés
  - Réseau R2R

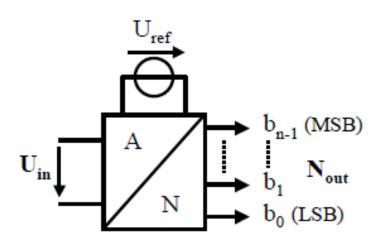


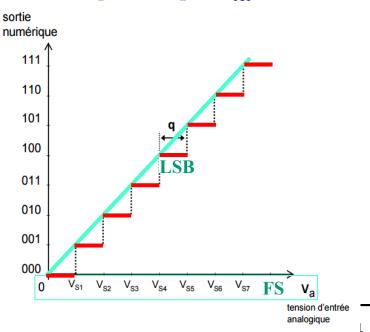




Sys Elec II

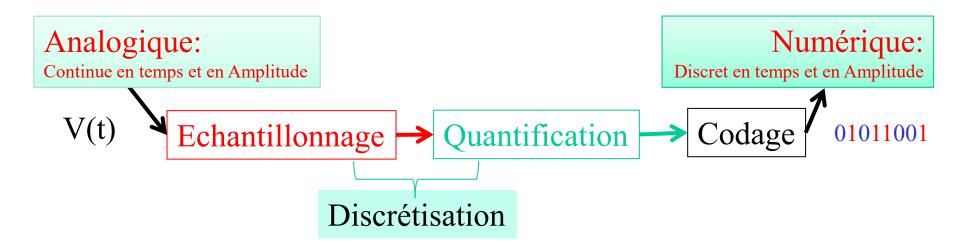
3


### Conversion Analogique/Numérique: CAN


• Un convertisseur analogique/numérique transforme une grandeur analogique (Ex la tension  $U_{in}$ ) en un nombre, généralement codé en binaire sur n bits (Ex.  $N_{out} = (b_{n-1}, ..., b_1, b_0)$ ) avec bi = 0 ou 1) suivant la relation:

$$N_{out} = b_{n-1} 2^{n-1} + ... + b_1 2^1 + b_0 2^0 = Arrondie (U_{in}/LSB)$$

LSB (pour Least Significant Bit) = pas de quantification "≡ l'unité de mesure".


FS (Full Scale) = Pleine Echelle " $\equiv$  gamme de mesure ici spécifiée par  $U_{ref}$ ".

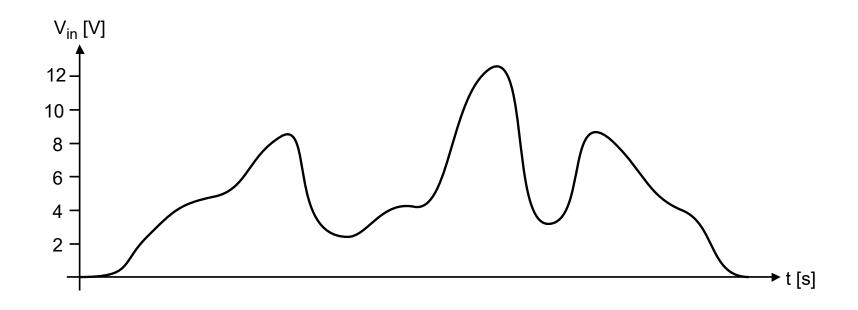






# Conversion Analogique/Numérique




- Discrétisation
  - Echantillonnage
  - Quantification (L niveaux L=2<sup>N</sup>):
    - N = nombre de bits du CAN

#### Codage

Ex: (L=8, N=3) 
$$\mathbf{x} = \mathbf{b}_2 \mathbf{b}_1 \mathbf{b}_0$$
 c.à.d  $\mathbf{x} = \mathbf{b}_2 2^2 + \mathbf{b}_1 2^1 + \mathbf{b}_0 2^0$ 




# Conversion A/N



- Discrétisation du signal:
  - En temps: Echantillonnage
  - En *amplitude*: **Quantification**



#### Conversion A/N: Echantillonnage



- Le signal d'entrée est mesuré périodiquement
  - Frequence ou période d'échantillonnage constantes:  $F_{ech}=1/T_{ech}$ .



# Théorème d'échantillonnage

• Théorème d'échantillonnage de Nyquist-Shannon:

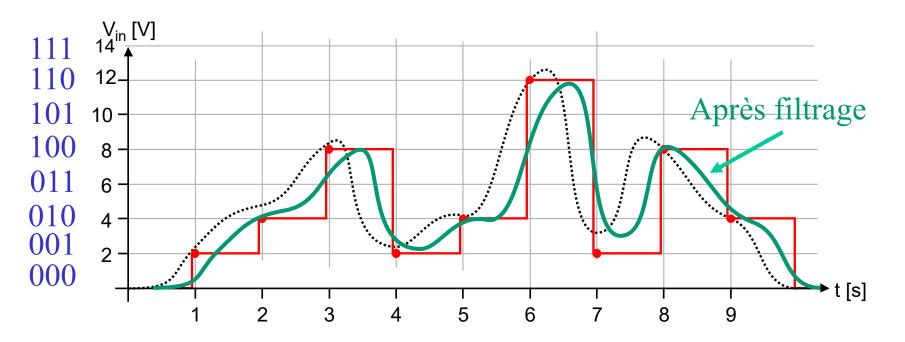
$$F_{\text{\'echantillonnage}} > 2F_{\text{in;max}}$$

- Un signal x(t) peut être représenté de manière univoque par une suite de valeurs échantillonnées si la fréquence d'échantillonnage, F<sub>ech</sub>, est au moins deux fois plus élevée que la plus grande des fréquences, F<sub>max</sub>, contenues dans le spectre.
  - Ex: fréquences audio que nous percevons s'étend de 20 Hz à 20 kHz: → le choix de la fréquence d'échantillonnage des CD est fixée à 44,1 kHz



# CAN: Quantification et codage 111 14 110 12 101 10 100 8 011 6 010 4 001 2 000 On définie d'abord:

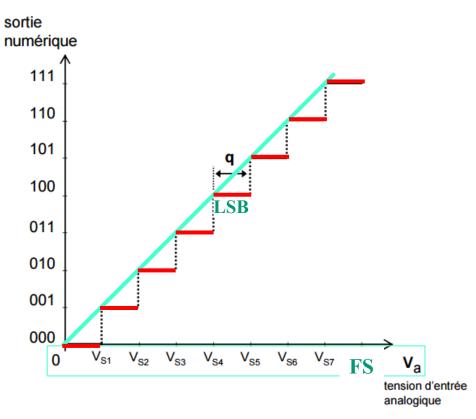
- la plage de variation acceptable de la tension analogique d'entrée, appelée Pleine Echelle (FS pour Full-Scale en anglais; ici 16V).
- Le pas de quantification (LSB pour Least Significant Bit; ici 2V): la précision du CAN.
- FS/LSB = 8 = 2<sup>N</sup>, avec N le nombre de bits du CAN aussi le nombre de codes binaires possible.
- Pour chaque mesure, la valeur d'entrée est ramenée sur la valeur discrétisée (ici entière)
   immédiatement inférieure puis codé en binaire.


Ex: pour FS=16V, LSB=2V, FS/LSB=8, N=3 et donc 
$$0V = (000)$$
;  $14V = (111)$   $11.4V = ?$  arrondi $(11.4V/2V) = 5 = 1.2^2 + 0.2^1 + 1.2^0 \rightarrow 11.4V = 101$ .



Sys Elec II

9


# Signal numérique



• Le signal analogique peut être reconstruit par un convertisseur numérique/analogique et un filtre passe-bas.



#### Résolution du convertisseur



$$2^N = \frac{FS}{LSB}$$

$$N_{bits} = log_2\left(\frac{FS}{LSB}\right)$$

$$LSB = q$$

$$= Err_{max} de Quantification$$

11

- La plage d'entrée (Full scale) est discrétisée avec une certaine résolution.
- Plus les intervalles (LSB) sont petits (resp. N est grand), plus la mesure est précise.

LSB est dite erreur maximale de quantification ou de codage



Sys Elec II

# Codage binaire

|                                 | Decimal |                       |                                  |  |
|---------------------------------|---------|-----------------------|----------------------------------|--|
| MSB (Most SB)<br>b <sub>2</sub> | $b_1$   | LSB<br>b <sub>0</sub> | $Dec = \sum_{i=0}^{N-1} b_i 2^i$ |  |
| 0                               | 0       | 1                     | 1                                |  |
| 0                               | 1       | 0                     | 2                                |  |
| 0                               | 1       | 1                     | 3                                |  |
| 1                               | 0       | 0                     | 4                                |  |
| 1                               | 0       | 1                     | 5                                |  |
| 1                               | 1       | 0                     | 6                                |  |
| 1                               | 1       | 1                     | 7                                |  |



# Codage thermométrique

| Bir         | Décimal                                           |                                   |
|-------------|---------------------------------------------------|-----------------------------------|
| Binaire N=3 | Thermométrique N <sub>th</sub> =2 <sup>3</sup> -1 | $Dec = \sum_{i=0}^{Nth} b_{th,i}$ |
| 000         | 0000000                                           | 0                                 |
| 001         | 0000001                                           | 1                                 |
| 010         | 0000011                                           | 2                                 |
| 011         | 0000111                                           | 3                                 |
| 100         | 0001111                                           | 4                                 |
| 101         | 0011111                                           | 5                                 |
| 110         | 0111111                                           | 6                                 |
| 111         | 1111111                                           | 7                                 |



Sys Elec II 13

#### Sommaire

- Conversion Analogique-Numérique (CAN)
  - Echantillonnage
  - Quantification
- Architectures:
  - Convertisseur Flash
  - Convertisseur à approximations successives
- Conversion Numérique-Analogique-(CNA)
  - Génération de courants pondérés
  - Réseau R2R

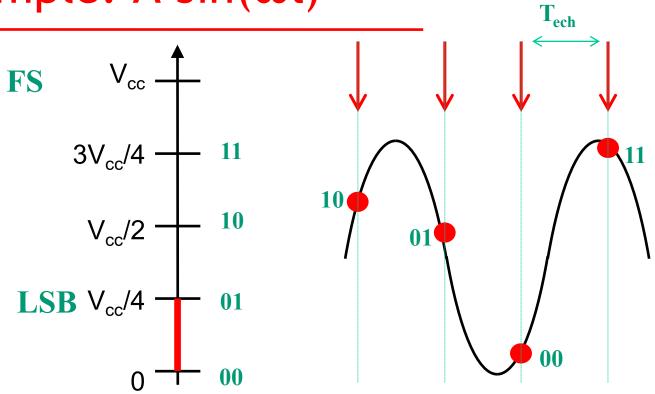


#### Convertisseurs Analogique-Numérique (CAN): Implémentations

- Différentes variantes possibles avec des compromis entre:
  - Vitesse de conversion
  - Précision
  - Consommation
  - Nombre de composants ⇔ Taille du circuit ⇔ Prix (\$)
- Exemples:
  - Flash (Très rapide, faible résolution 8 bits max, couteux, très utilisé dans la vidéo).
  - Approximations successives (relativement rapide, précis 12bits-18bits et peu gourment en énergie, utilisé un peu partout).
  - Delta-sigma (lent, très haute résolution 16-32 bits, très utilisé dans les capteurs).



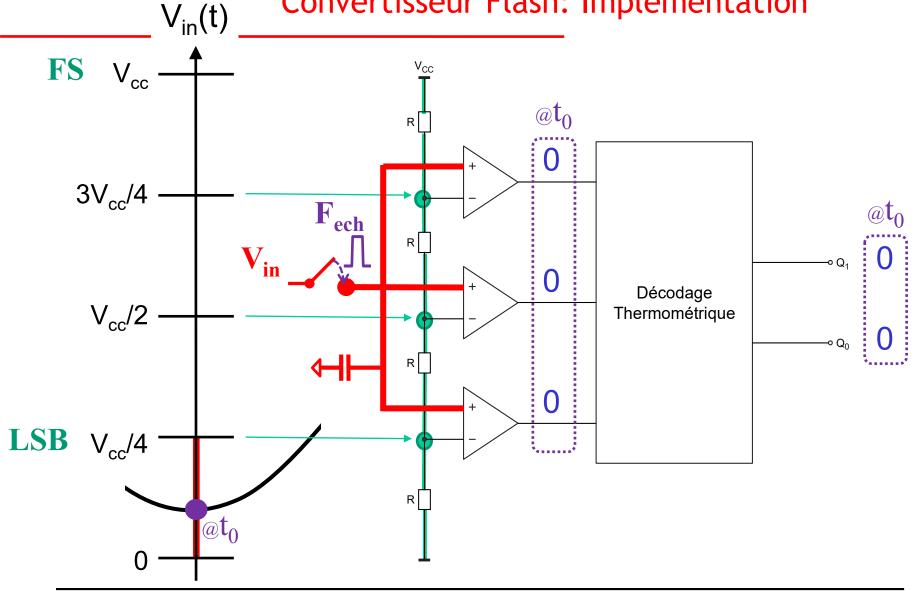
Sys Elec II


15

#### Ex1: Convertisseur Flash

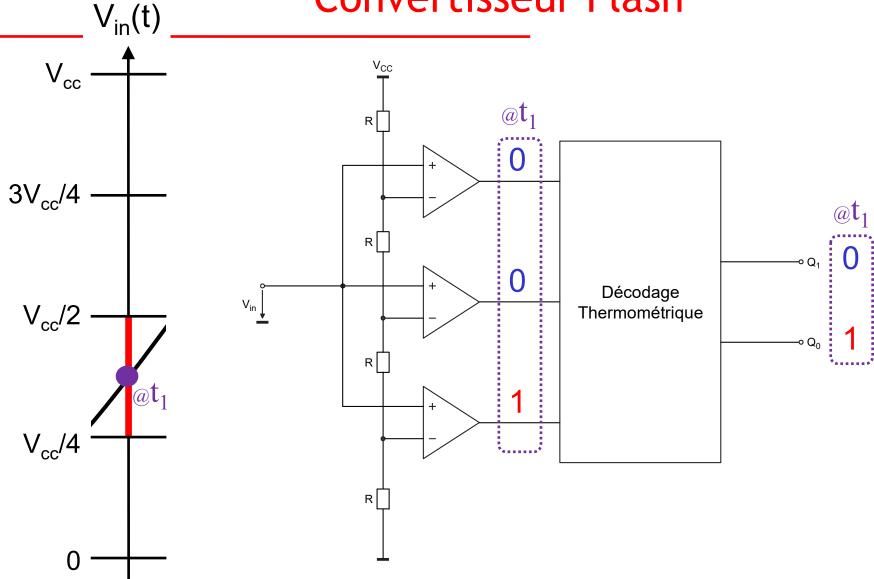
- Signal d'entrée comparé simultanément avec chaque seuil de quantification
- Nécessite 2<sup>N</sup>-1 comparateurs et 2<sup>N</sup> résistances
- Conversion rapide
- Résolution limitée en pratique à 8 bits (surface, consommation, pareillement, offset, bruit ...)




# Cas simple: A sin(ωt)

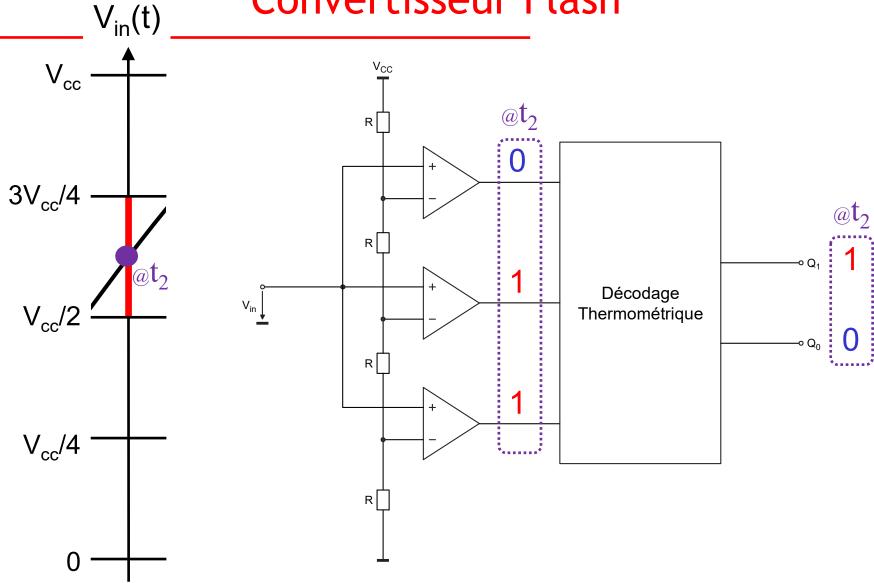


- On définie d'abord:
- la plage de variation de la tension analogique:  $FS = V_{cc}$
- Le pas de quantification: LSB =  $Vcc/4 \rightarrow 1$ 'erreur de quantification
- $FS/LSB = 2^N = 4 \rightarrow N$  le nombre de bits du CAN = 2; code binaire de 0 (00) à 3 (11)
  - On définie aussi Fréquence d'échantillonnage :  $1/T_{ech} > 2.F_{signal}$




#### Convertisseur Flash: Implémentation

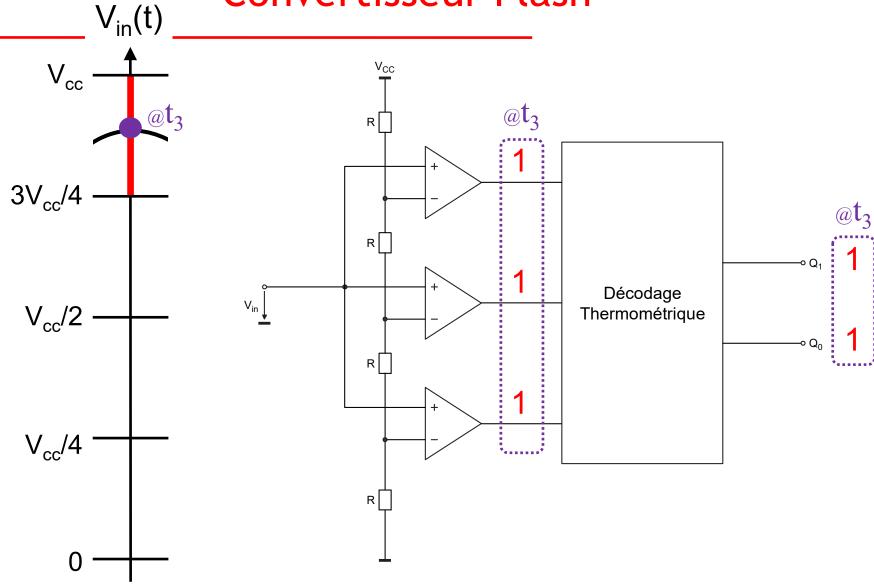





#### Convertisseur Flash






#### Convertisseur Flash





Sys Elec II 20

#### Convertisseur Flash





#### Performances du convertisseur Flash

- Avantages: Conversion rapide
  - (une comparaison  $\rightarrow$  conversion).
- Inconvénients:
  - Complexité: Nécessite 2<sup>N</sup>-1 comparateurs →
     surface, consommation élevées (pour 1 bit en plus on doit doubler le nombre de comparateurs.)
  - Résolution limitée en pratique à 8 bits
    (pareillement, offset, bruit ...)



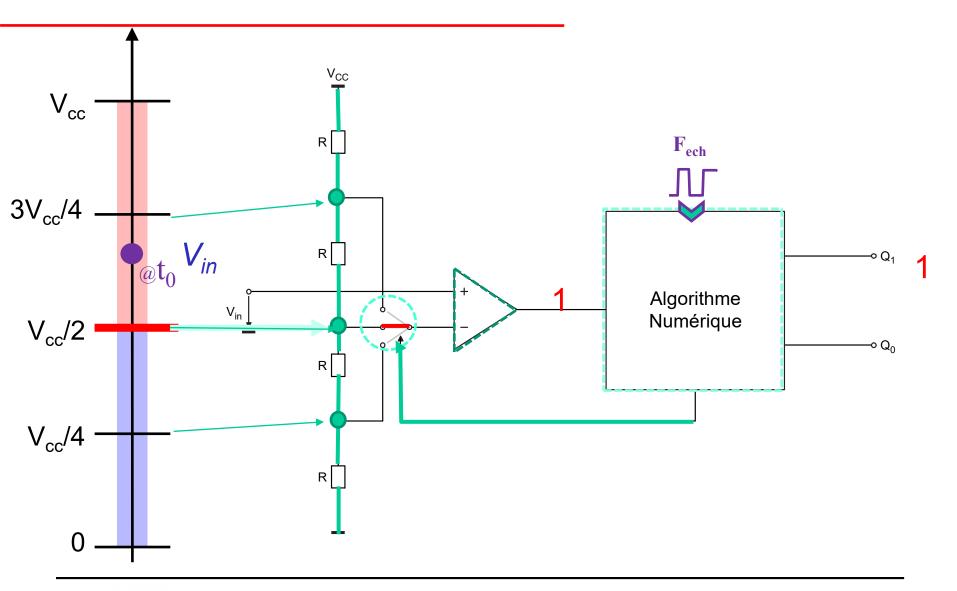
#### Ex: Convertisseur à approximations successives (SAR)

- Signal d'entrée comparé successivement avec différents seuils choisis dichotomiquement
- Nécessite 1 seul comparateur
- Moins de surface et de consommation que le convertisseur Flash
- Conversion plus lente
   (n comparaisons pour n bits de résolution)

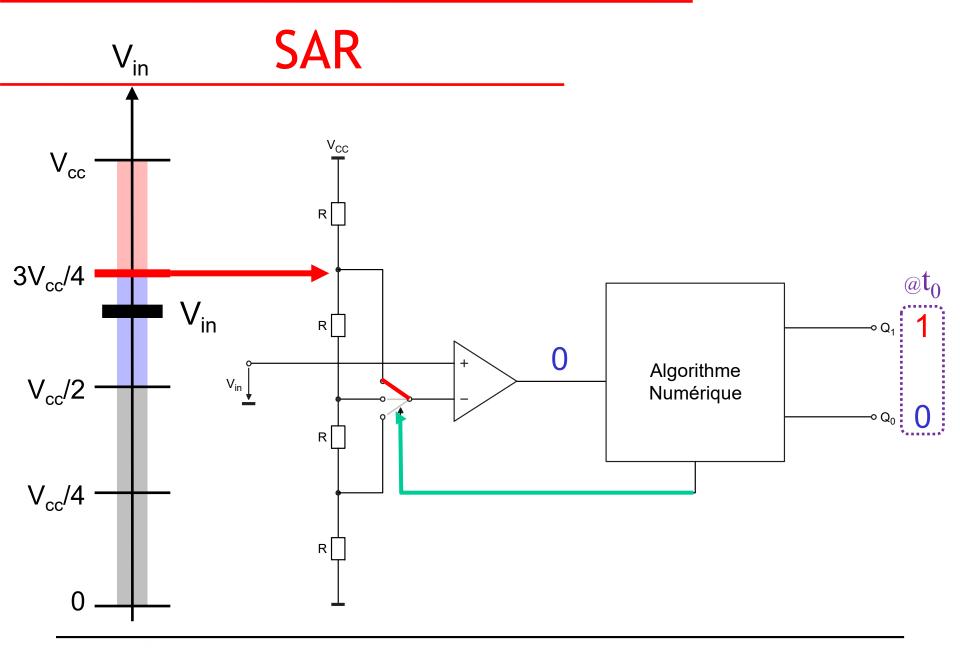


#### Algorithme: Approximations successives (dichotomique)

| Binaire       |             |                  | Décimal                                   |  |
|---------------|-------------|------------------|-------------------------------------------|--|
| $b_2$         | $b_1$       | $b_0$            | $Decimal \\ Dec = \sum_{i=0}^{n} d_i 2^i$ |  |
| 4             | 2           | 1                | i=0                                       |  |
| 0             | 0           | $0  p^0 = 0$     | <b>0</b>                                  |  |
| 0             | $0 b_1 = 0$ | $1 b_0 = 1$      | 1                                         |  |
| 0             | $1 b_1 = 1$ | $0 \ b_0 = 0$    | _ 2                                       |  |
| $0   b_2 = 0$ | 1           | $1 b_0 = 1$      | 3                                         |  |
| $1 b_2 = 1$   | 0           | $0 \mid b_0 = 0$ | <b>4</b>                                  |  |
| 1             | $0b_1 = 0$  | $1 b_0 = 1$      | 5                                         |  |
| 1             | $1 b_1 = 1$ | $0 b_0 = 0$      | <b>7</b> 6                                |  |
| 1             | 1           | $1   b_0 = 1$    | 7                                         |  |




#### Approximations successives (Ex)


|     |                     | Décimal             |                     |                                        |
|-----|---------------------|---------------------|---------------------|----------------------------------------|
|     | b <sub>2</sub><br>4 | b <sub>1</sub><br>2 | b <sub>0</sub> 1    | Decimal $Dec = \sum_{i=0}^{N} b_i 2^i$ |
| 3.7 | 0                   | 0                   | 0                   | 0                                      |
|     | 0                   | 0                   | 1                   | 1                                      |
|     | 0                   | $1 b_1 = 1$         | 0                   | 2                                      |
|     | $0  b_2 = 0$        | 1                   | $\frac{1}{b_0} = 1$ | 3 (011)                                |
|     | 1                   | 0                   | 0                   | 4                                      |
|     | 1                   | 0                   | 1                   | 5                                      |
|     | 1                   | 1                   | 0                   | 6                                      |
|     | 1                   | 1                   | 1                   | 7                                      |



#### Convertisseur à approximations successives (SAR)









#### Performances du SAR

#### Avantages:

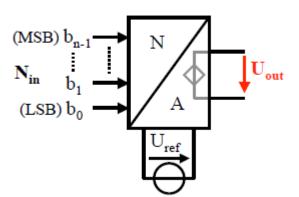
- Faible complexité (1 seul comparateur → surface, consommation faibles)
- Haute résolution possible (up to 16 bits).
- Incovénients:
  - Conversion relativement lente (n comparaisons pour n bits de résolution).



#### Sommaire

- Conversion Analogique-Numérique (CAN)
  - Echantillonnage
  - Quantification
- Architectures:
  - Convertisseur Flash
  - Convertisseur à approximations successives
- Conversion Numérique-Analogique-(CNA)
  - Génération de courants pondérés
  - Réseau R2R



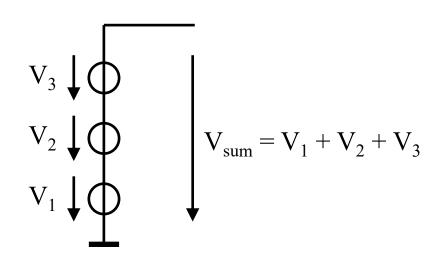

## Conversion Numérique/Analogique (CNA)

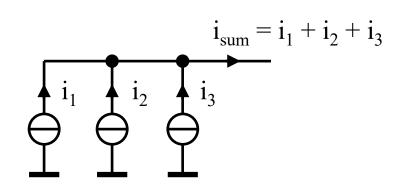
• Un convertisseur numérique/analogique transforme un nombre, généralement codé en binaire sur n bits, en une grandeur analogique, généralement une tension (parfois un courant), suivant la relation:

$$U_{\text{out}} = (\boldsymbol{b_{n-1}} 2^{n-1} + ... + \boldsymbol{b_1} 2^1 + \boldsymbol{b_0} 2^0) \text{ LSB}, \text{ avec } b_i = 0 \text{ ou } 1$$

LSB (pour Least Significant Bit) = pas de quantification "≡ l'unité de mesure".

FS (Full scale) = Pleine Echelle " $\equiv$  gamme de mesure ici spécifiée par  $U_{ref}$ ".





• Rq: C'est un additionneur

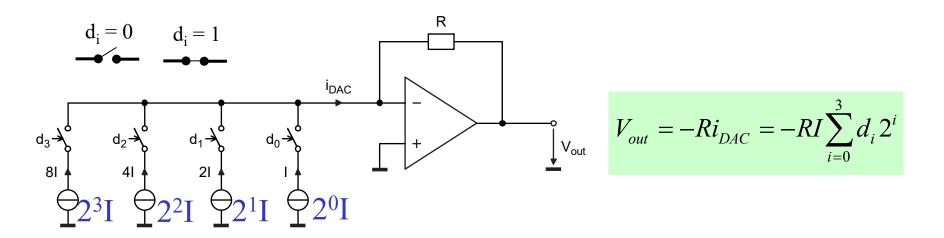


Sys Elec II 30

# Conversion Numérique/Analogique





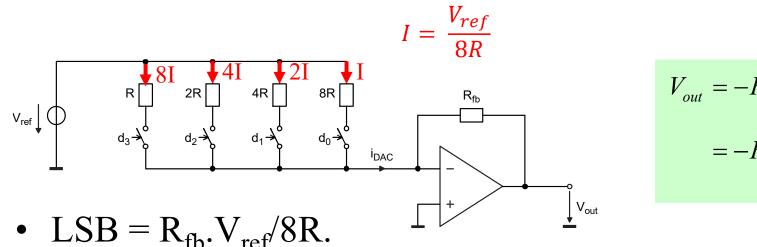

- Additionner des tensions ≡ Mise en série
- Trop compliqué
  voir impossible si n est trop grand
  et/ou Vcc est petite
- Additionner des courants

   ≡ Mise en parallèle

Beaucoup plus simple
Et donc souvent privilégiée



#### Conversion N/A basée sur l'addition de courants

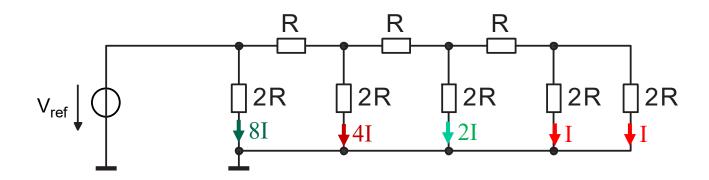



- $V_{out}$  est la grandeur analogique (inversée) correspondant nombre numérique  $(d_0, d_1, \dots d_n)$ .
- L'unité de mesure étant LSB = RI.

Comment générer les courants pondérés (c.à.d. les  $2^{i}I$  avec i = 0,1,...n)?



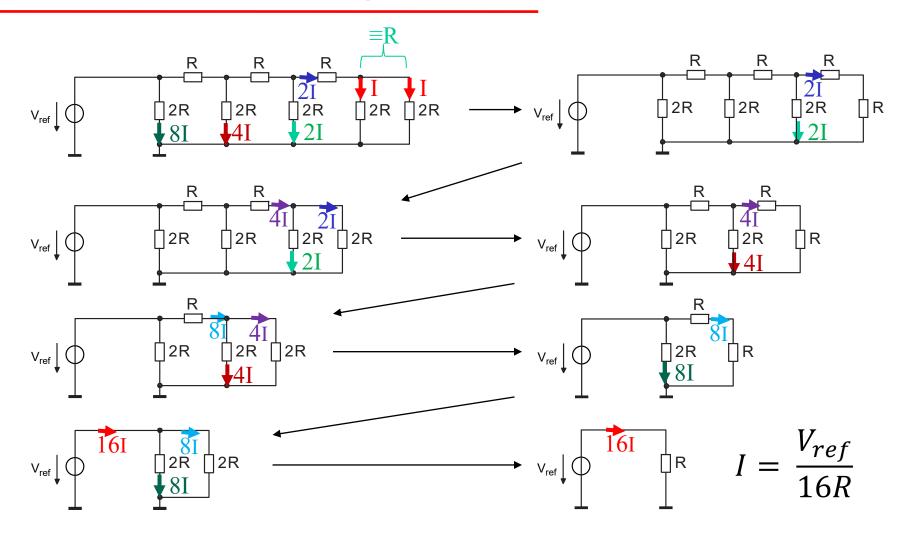
#### Génération de courants pondérés en puissances de 2




$$\begin{aligned} V_{out} &= -R_{fb} i_{DAC} \\ &= -R_{fb} \frac{V_{ref}}{8R} \sum_{i=0}^{3} d_i 2^i \end{aligned}$$

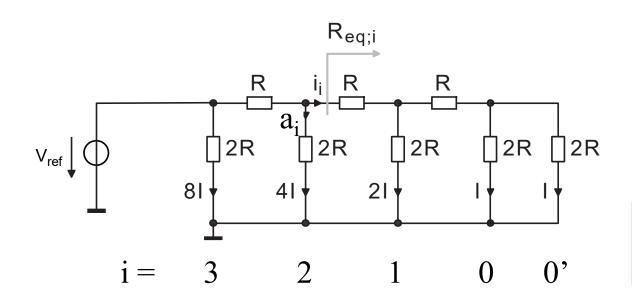
- LSB =  $R_{fb}$ .  $V_{ref}/8R$ .
- Problème: les valeurs des résistances sont très différentes les unes des autres et augmentent trop rapidement avec la résolution n.
- Une solution basée sur l'ajout de résistances identiques serait préférable.




#### Réseau R/2R



- La tension de référence est divisée par le réseau résistif.
- Démontrant que les courant dans chaque branche sont des courent pondérés (c.à.d. 2<sup>i</sup>I avec i = 0,1,...n)?




# Réseau R/2R: Simplification



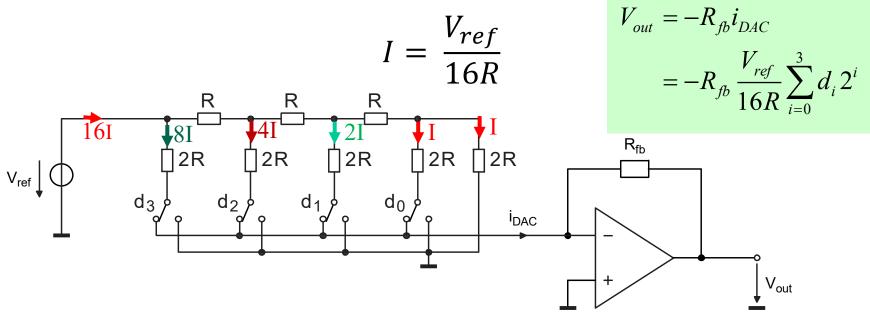


#### Réseau R/2R: Division du courant

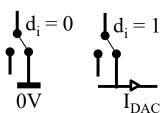


$$R_{eq;i} = 2R \ \forall i$$

$$\leftrightarrow$$


$$a_i = i_i$$

$$a_i = a_0 + \sum_{j=0}^{i-1} a_j = 2^i I$$


- La résistance équivalente vue depuis chaque embranchement vaut 2R.
- Chaque étage divise le courant en 2.
- Les courants sont pondérés en puissances de 2.



#### Conversion N/A à réseau R/2R



• Les switches aiguillent le courant de chaque branche dans la masse ou la masse virtuelle qui les somme.



$$LSB = R_{fb}.I = R_{fb}.V_{ref}/16R$$

