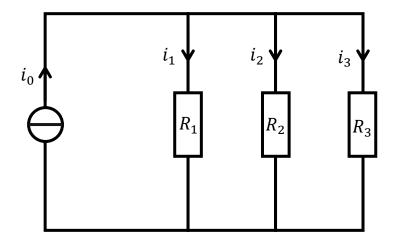

Dr. Christian Lafforgue / Photonic Systems Laboratory

Sciences et technologies de l'électricité - Série 2

Exercice 1:

On considère le circuit suivant :

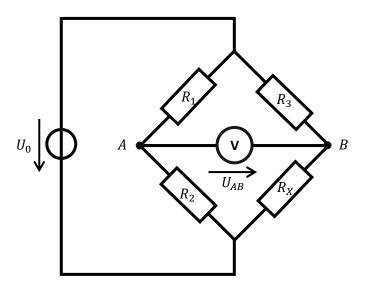


$$R_1 = 100 \Omega$$

 $R_2 = 600 \Omega$
 $R_3 = 300 \Omega$
 $R_4 = 2 k\Omega$
 $R_5 = 500 \Omega$
 $R_6 = 1 k\Omega$

- 1) Calculer la résistance équivalente R_{AB} vue des bornes A et B.
- 2) Calculer la résistance équivalente R_{AC} vue des bornes A et C.
- 3) Calculer la résistance équivalente R_{AD} vue des bornes A et D.

Exercice 2:

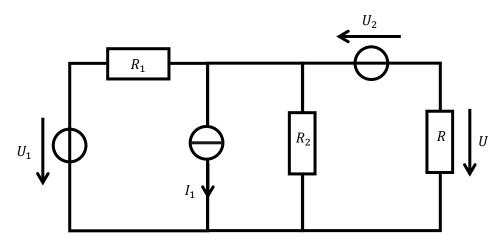

A l'aide de la méthode du diviseur de courant, calculer les courants i_1 , i_2 et i_3 du circuit ci-dessous. Vérifier que la somme des courants est égale à i_0 .

$$i_0 = 42 \text{ mA}$$

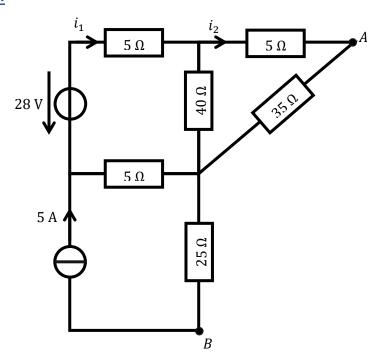
 $R_1 = 6 \Omega$
 $R_2 = 24 \Omega$
 $R_3 = 24 \Omega$

Exercice 3:

On considère le schéma électrique suivant (appelé « pont de Wheatstone ») :



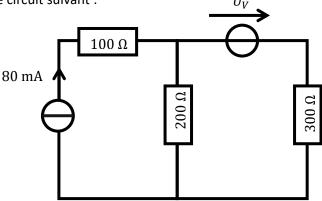
Dans ce montage, nous disposons des résistances R_1 et R_3 qui sont fixes, d'une résistance variable (dont on doit choisir la valeur) R_2 et d'une résistance inconnue R_X . Le but de ce circuit est de déterminer la résistance inconnue. Pour cela nous utilisons un voltmètre entre les nœuds A et B (un voltmètre a une résistance infinie et se comporte alors comme un circuit ouvert).


- 1) En appliquant la loi des mailles, exprimer la tension U_{AB} en fonction des tensions aux bornes de R_2 et de R_X .
- 2) En utilisant la méthode du diviseur de tension, exprimer U_{AB} en fonction de U_0 et des résistances.
- 3) Déterminer l'expression de R_2 pour annuler la tension U_{AB} .
- 4) Proposer alors une procédure afin de mesurer R_X .

Exercice 4:

En utilisant le principe de superposition, exprimer la tension ${\it U}$ dans le circuit suivant :

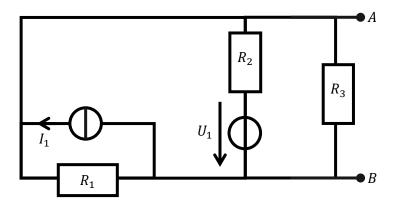
Exercice 5:



Le circuit ci-dessus peut alimenter une charge \mathcal{R}_L se connectant aux bornes A et B.

- 1) Calculer la résistance équivalente de Thévenin vue des bornes A et B (aidez-vous en faisant des schémas de simplifications successifs)
- 2) Exprimer la tension à vide entre A et B en fonction de i_2
- 3) En utilisant le principe de superposition, calculer le courant i_1 . En déduire i_2 et la tension à vide U_{AB}
- 4) Dessiner le circuit équivalent de Thévenin

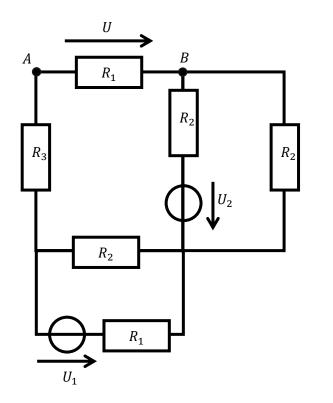
Exercice 6:


On considère le circuit suivant :

- 1) Pour une tension $U_V=1\,\mathrm{V}$, calculer la tension aux bornes de la source de courant.
- 2) Calculer la puissance des deux sources et déterminer si elles fournissent ou absorbent de la puissance.
- 3) Quelle devrait-être la valeur de U_V pour que la source de courant fournisse exactement 4 W de puissance ?

Exercice 7:

Nous souhaitons déterminer l'équivalent de Norton du circuit suivant :


- 1) Exprimer la résistance équivalente vue des bornes A et B.
- 2) Déterminer le courant de court-circuit I_{cc} entre A et B. Aide : transformer la source de tension en source de courant équivalente.

Exercice 8:

On considère le circuit ci-dessous.

Calculer la tension ${\it U}$ avec les méthodes suivantes :

- Théorème de Thévenin
- Théorème de Norton

$$U_1 = 10 \text{ V}$$

 $U_2 = 20 \text{ V}$

$$R_1 = 3 \Omega$$

$$R_2 = 4 \Omega$$

$$R_3 = 20 \Omega$$