Dr. Christian Lafforgue / Photonic Systems Laboratory

Sciences et technologies de l'électricité - Série 1

Exercice 1:

- 1) Réécrire les unités suivantes avec les 7 unités SI fondamentales :
 - a. C (coulomb)
 - b. N (newton)
 - c. J (joule)
 - d. V (volt)
- 2) Rappeler la loi d'Ohm et en déduire l'équivalent des Ω (ohm) en fonction de V et A.
- 3) Soit l'équation suivante :

$$U - \frac{I}{R} = E \cdot d$$

Où U désigne une tension, I un courant, R une résistance, E un champ électrique et d une distance. Par analyse dimensionnelle (en vérifiant les unités de chaque terme), déterminer si l'équation est valide.

- 4) Pour une résistance R, une résistivité ρ , une section S et une longueur L, indiquer les équations qui ne peuvent pas être correctes en utilisant l'analyse dimensionnelle :
 - a. $R = \rho S/L$
 - b. $R = \rho L/S$
 - c. $R = S/\rho L$

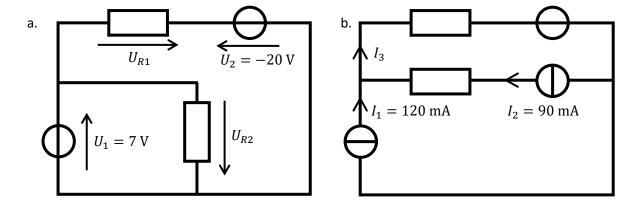
Exercice 2:

On considère trois particules chargées dans le vide disposées sur un même axe :

- 1) Calculer les forces (sens et valeur) subies par chaque particule.
- 2) En gardant les mêmes valeurs pour Q_1 et Q_2 , quelle devrait être la charge de Q_3 pour que la particule Q_2 soit à l'équilibre ?

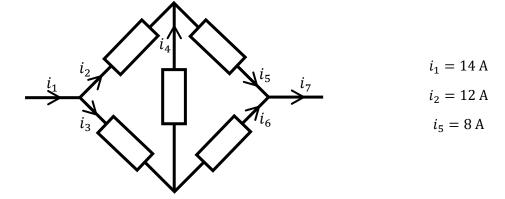
Exercice 3:

Un fil conducteur en cuivre ($n=8.74\cdot 10^{28}~{\rm m}^{-3}$) et de section 2 mm² est parcouru par un courant de 2 A.

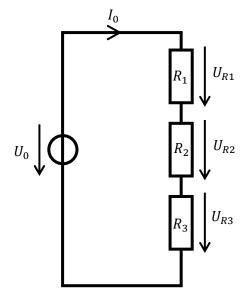

- 1) Calculer la vitesse de dérive des électrons.
- 2) Combien d'électrons traversent le fil en une seconde ?

Exercice 4:

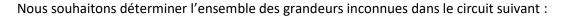
Une installation domestique est reliée à un point de distribution du réseau (230 V) situé à 500 m par des câbles en cuivre ($\rho_{Cu}=18~\text{n}\Omega\cdot\text{m}$) de section 2.5 mm².

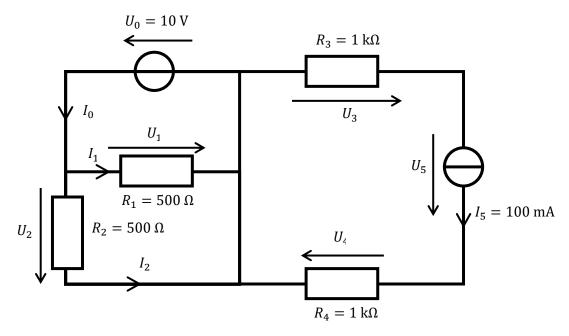

- 1) Quelle est la résistance d'un câble ?
- 2) Le fournisseur du câble indique un courant maximal de 16 A. Pour le courant maximal, quelle est la tension entre les deux extrémités du câble ?
- 3) On souhaite déterminer la tension délivrée à l'installation pour un courant de 16 A.
 - a. Faire un schéma du circuit comprenant l'alimentation du réseau, les câbles (avec leur résistance) et l'installation.
 - b. En appliquant la loi des mailles, déterminer la tension aux bornes de l'installation.
 - c. Quel problème rencontrons-nous? Comment y remédier?

Exercice 5:


- 1) Déterminer les tensions U_{R1} et U_{R2} dans le circuit 'a' en appliquant les lois de Kirchhoff.
- 2) Déterminer le courant I_3 dans le circuit 'b' en appliquant les lois de Kirchhoff.

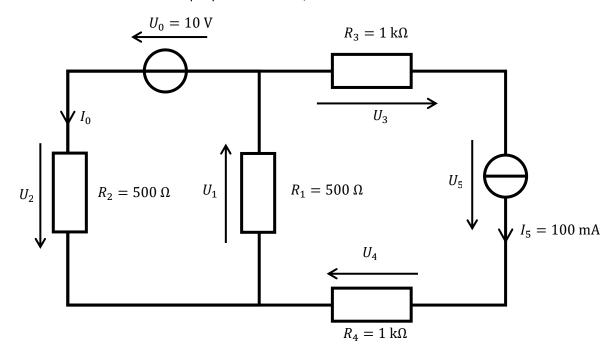
Exercice 6:


Calculer les courants i_3 , i_4 , i_6 , et i_7 .


Exercice 7:

- 1) Déterminer le courant I_0 en fonction de U , R_1 , R_2 , R_3 .
- 2) En déduire les tensions U_{R1} , U_{R2} et U_{R3} .

Exercice 8:



- 1) Calculer les tensions U_3 , U_4 et U_5 .
- 2) Calculer les tensions U_1 et U_2 .
- 3) Calculer les courants I_0 , I_1 , I_2 .

Exercice 9:

En suivant la même méthode que précédemment, déterminer les inconnues du circuit suivant :

Exercice 10:

En utilisant le code couleur, donner les valeurs de résistance dans les cas suivants :

