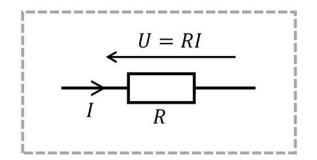
EPFL

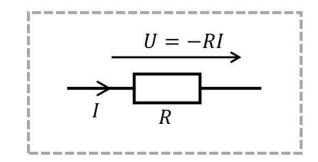
■ Ecole Polytechnique Fédérale de Lausanne

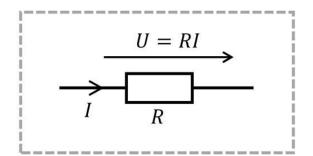
Dr. Christian Lafforgue - christian.lafforgue@epfl.ch

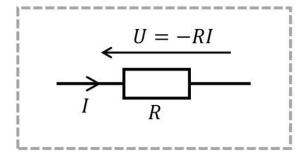
- Rappels -

Quelles sont les bonnes réponses?









Session ID: ee106poll

URL: ttpoll.eu

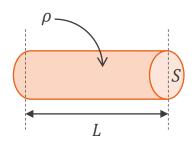
- Rappels – Quelle est l'unite de la résistivité ρ ?

- A. $\Omega \cdot m^{-1}$
- B. $\Omega \cdot m^{-2}$
- C. $\Omega \cdot m$
- D. $\Omega \cdot m^3$

EE-106

Session ID: ee106poll URL: ttpoll.eu

- Rappels – Quelles expressions sont correctes?



A.
$$R = \frac{\rho L}{S}$$

B.
$$R = \frac{\rho S}{L}$$

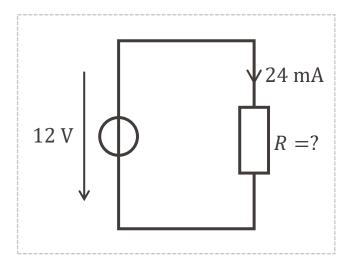
C.
$$G = \frac{\rho S}{I}$$

D.
$$G = \frac{S}{\Omega I}$$

Session ID: ee106poll

URL: ttpoll.eu

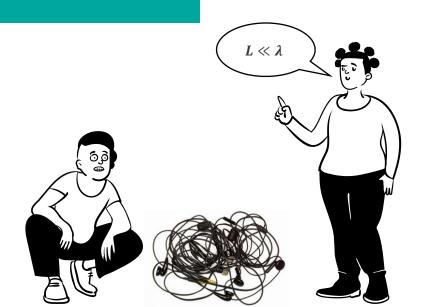
- Rappels – Que vaut la resistance R (en Ω)?



Session ID: ee106poll

URL: ttpoll.eu

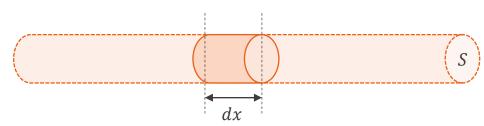
Approximation des régimes quasistationnaires



Approximation du régime quasi-stationnaire

. Lafforgue

• Courant électrique: $I = \frac{dq}{dt}$



- Quantité de charges dans le volume: $dq = neS \cdot dx$
- Donc: $I = neS \cdot \frac{dx}{dt} = neS \cdot v_d$

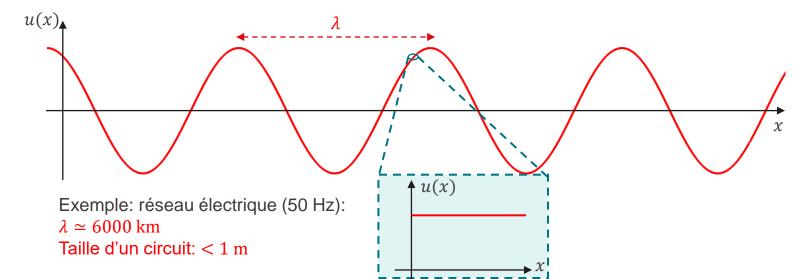
• Vitesse de dérive: $v_d = \frac{I}{neS}$

Concentration d'électrons libres (m⁻³)

Exemple: câble en cuivre:

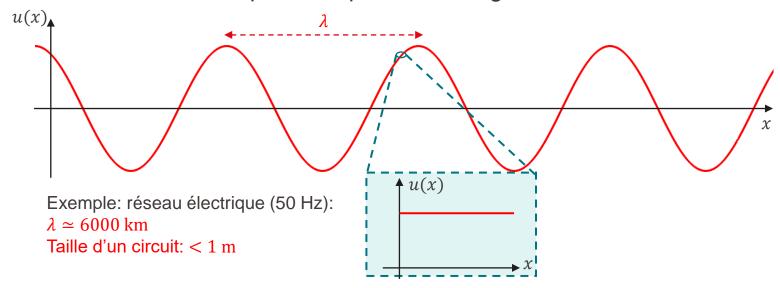
$$\begin{cases} n = 8.47 \cdot 10^{28} \text{ m}^{-3} \\ S = 10 \text{ mm}^2 \Rightarrow v_d = 7.3 \text{ } \mu\text{m} \cdot \text{s}^{-1} \\ I = 1 \text{ A} \end{cases}$$

Les ondes ont une période spatiale: la longueur d'onde



Approximation du régime quasi-stationnaire

Les ondes ont une période spatiale: la longueur d'onde



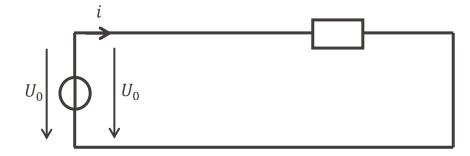
Dans ce cours, on considère les grandeurs électriques constantes dans l'espace le long des circuits (variation instantanée entre deux points distants).

Il s'agit de l'approximation des régimes quasi-stationnaires (ARQS).

Approximation du régime quasi-stationnaire

Lafforgue

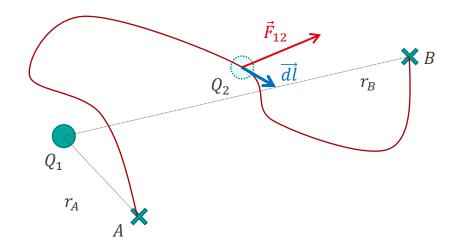
Le courant et la tension restent les mêmes tout le long du fil:



Lafforg

Puissance électrique

Rappel: travail mécanique



$$W_{AB} = \int_{A}^{B} \vec{F}_{12} \cdot \overrightarrow{dl} = qU$$

Le travail fourni correspond à la variation d'énergie électrique $\Delta \mathcal{E}$. En régime statique:

$$\Delta \mathcal{E} = \Delta q \cdot U = I \Delta t \cdot U$$

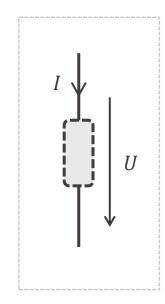
$$P = \frac{\Delta \mathcal{E}}{\Delta t}$$

Unité: watt (W)

$$\Rightarrow P = UI$$

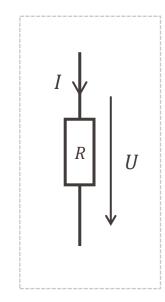
La puissance électrique est le produit de la tension et du courant:

$$P = UI$$



En suivant la convention des sens précédemment définie:

- \square Si P = UI > 0, la puissance est <u>absorbée</u> par l'élément
- \square Si P = UI < 0, la puissance est **fournie** par l'élément

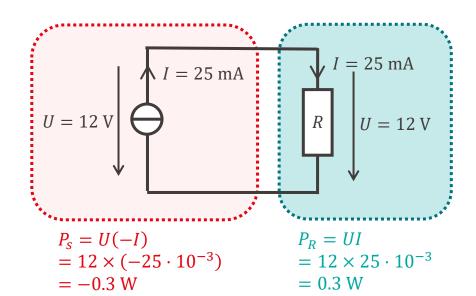


Cas de la résistance:

- $\Box U = RI \Rightarrow P = RI^2$
- ☐ La puissance est positive: la résistance consomme l'énergie électrique
- ☐ Une résistance convertie l'énergie électrique en énergie thermique: c'est <u>l'effet Joule</u>

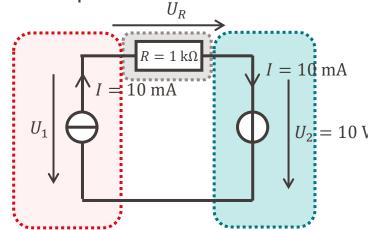
$$P = RI^2 = \frac{U^2}{R}$$

• Exemple 1:



La résistance consomme ($P_R > 0$) l'énergie fournie ($P_S < 0$) par le générateur de courant

Exemple 2:



La source de courant fournit ($P_1 < 0$) l'énergie, la résistance consomme ($P_R > 0$), la source de tension consomme ($P_2 > 0$).

Remarque: $P_1 + P_2 + P_R = 0$ Il y a autant de puissance consommée que de puissance fournie

Loi d'Ohm:

$$U_R = RI$$

 $\Rightarrow U_R = 10 \text{ V}$

Loi des mailles:

$$U_1 = U_R + U_2$$

$$\Rightarrow U_1 = 20 \text{ V}$$

Calcul de puissances:

$$P_1 = -U_1 I$$

$$\Rightarrow P_1 = -200 \text{ mW}$$

$$P_2 = U_2 I$$

$$\Rightarrow P_2 = 100 \text{ mW}$$

$$P_R = U_R I$$

$$\Rightarrow P_R = 100 \text{ mW}$$

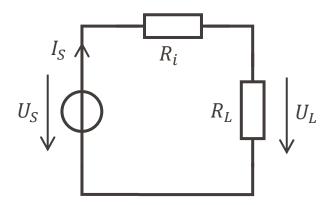
 $P_b = 2.2 \text{ kW}$ $U_b = 230 \text{ V}$ $\Delta t = 3 \text{ min}$

- Estimons la résistance d'une bouilloire commerciale et le courant qui la traverse
- Estimons la consommation énergétique pour faire bouillir 1 L d'eau

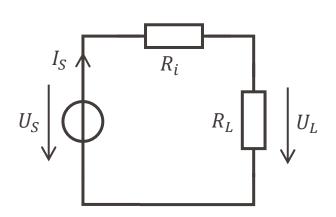
18

. Laffordue

Rendement:



$$\eta = \left| \frac{P_L}{P_S} \right|$$



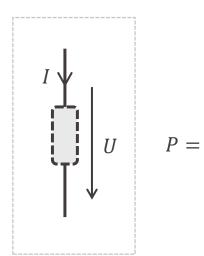
Rendement:

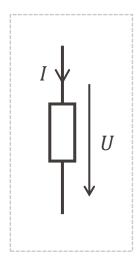
$$\eta = \left| \frac{P_L}{P_S} \right| = \frac{U_L}{U_S} = \frac{1}{1 + \frac{R_i}{R_L}}$$

- Maximisation du rendement: $R_L \gg R_i$
- Maximisation de puissance: $R_L = R_i$

Points clés

- La puissance traduit l'évolution de l'énergie dans le temps
- Toute la puissance fournie est consommée
- Le signe de la puissance indique si l'élément reçoit ou donne de l'énergie
- Une résistance convertit l'énergie reçue en chaleur par effet Joule





$$P = RI^2 = \frac{U^2}{R}$$

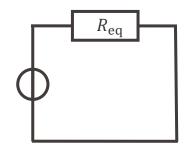
Lafforg

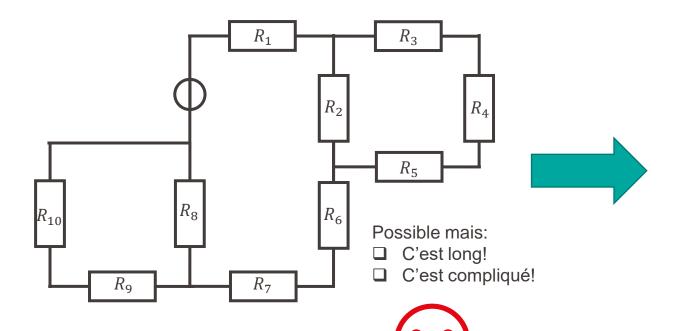
Agencements de résistances

Agencements de résistances



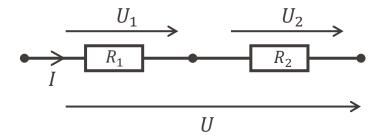
■ Beaucoup plus facile!





C. Lafforgue

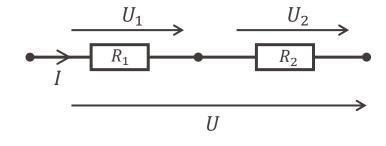
• Eléments en série: branchement l'un à la suite de l'autre



Objectif: exprimer U en fonction de I

Que vaut U?

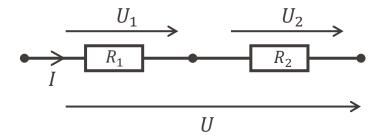
- A. $U = U_2 U_1$
- B. $U = U_1 + U_2$
- C. $U = U_1 U_2$



■ EE-106

Session ID: **ee106poll** URL: **ttpoll.eu**

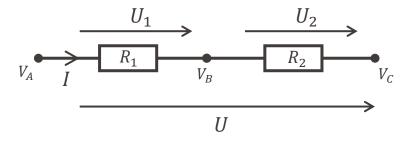
Eléments en série: branchement l'un à la suite de l'autre



- Objectif: exprimer U en fonction de I
- Rappels:
 - Les éléments en série sont parcourus par le même courant
 - · Les tensions en série s'additionnent

C. Lafforgue

• Eléments en série: branchement l'un à la suite de l'autre



Tension totale:

$$U = V_A - V_C = (V_A - V_B) + (V_B - V_C)$$

$$\Rightarrow U = U_1 + U_2$$

Loi d'Ohm:

$$U_1 = R_1 I$$

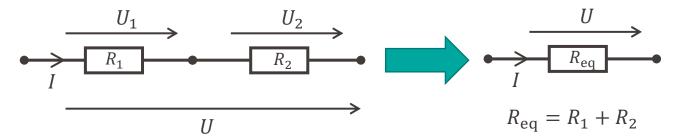
$$U_2 = R_2 I$$

$$U = R_1 I + R_2 I = (R_1 + R_2)I$$

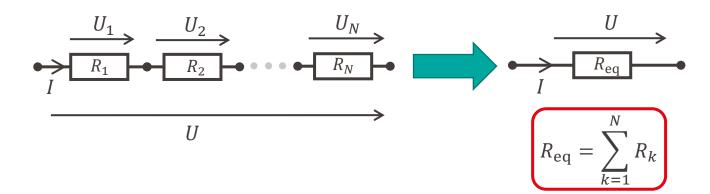
$$\Rightarrow U = R_{eq} I$$

Avec:
$$R_{eq} = R_1 + R_2$$

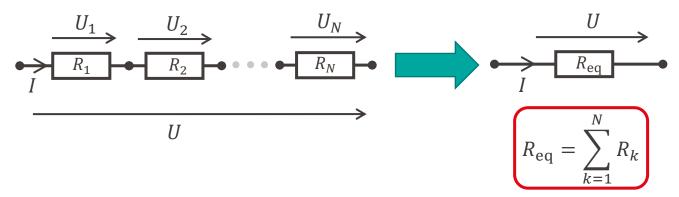
Deux résistances en série s'additionnent:



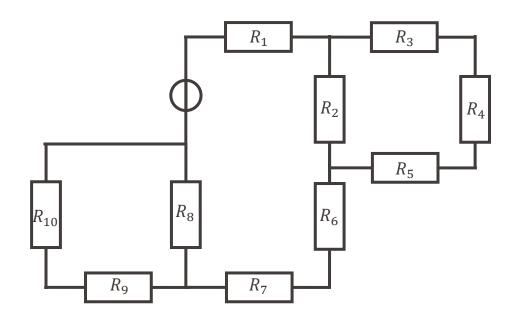
Plus généralement:



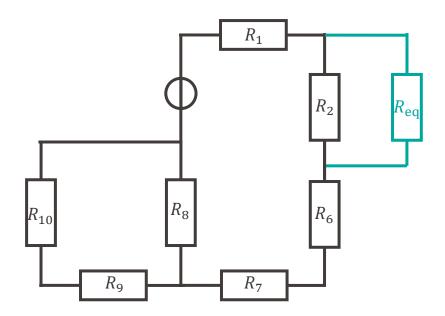
Plus généralement:



 Remarque: la résistance équivalente est plus grande que la plus grande des résistances individuelles en série

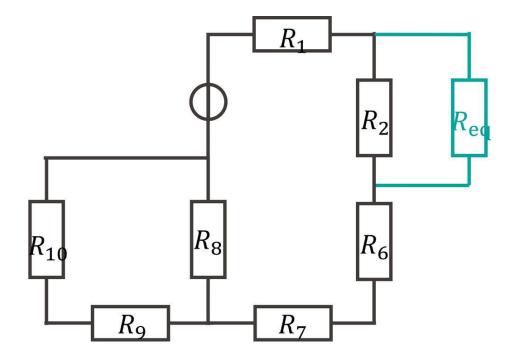


 Exemple: R₃, R₄, R₅ sont en série (l'une après l'autre)



- Exemple: R₃, R₄, R₅ sont en série (l'une après l'autre)
- La branche les contenant peut être remplacée par une branche avec une résistance équivalente unique R_{eq} = R₃ + R₄ + R₅
- Si on a: $R_3=450~\Omega$, $R_4=2.5~\mathrm{k}\Omega$, $R_5=950~\Omega$, alors la branche se comporte comme une résistance de $3.9~\mathrm{k}\Omega$

Cliquez sur un autre agencement en série



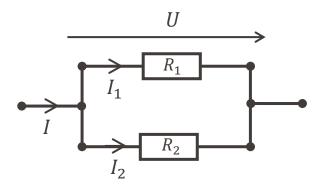
Session ID: ee106poll

URL: ttpoll.eu

Agencement en parallèle

C. Lafforgue

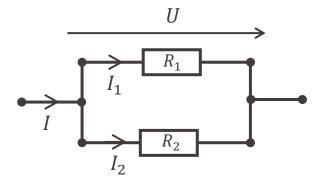
• Eléments en parallèle: branchement aux mêmes bornes



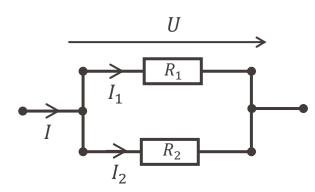
Objectif: exprimer U en fonction de I

Agencement en parallèle

• Eléments en parallèle: branchement aux mêmes bornes



• Eléments en parallèle: branchement aux mêmes bornes



Loi des nœuds:

$$I = I_1 + I_2$$

Loi d'Ohm:

$$U = R_1 I_1$$
$$U = R_2 I_2$$

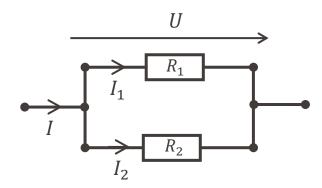
$$I = \frac{U}{R_1} + \frac{U}{R_2} = U\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

$$\Rightarrow I = \frac{1}{R_{eq}}U$$

Avec:

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Deux résistances en parallèle: les conductances s'ajoutent



$$U = R_{eq}I I = G_{eq}U$$

$$I = G_{eq}U$$

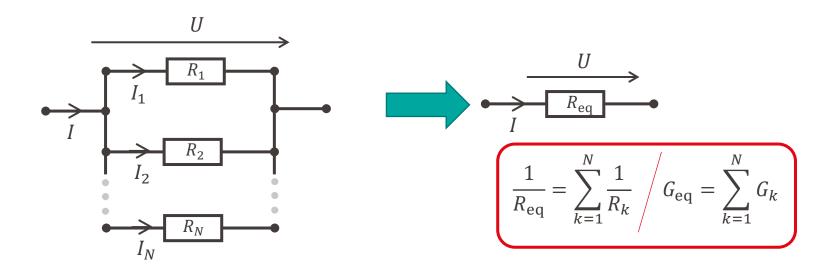
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} \qquad G_{\text{eq}} = \frac{1}{R_1} + \frac{1}{R_2} = G_1 + G_2 \qquad R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2}$$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Agencement en parallèle

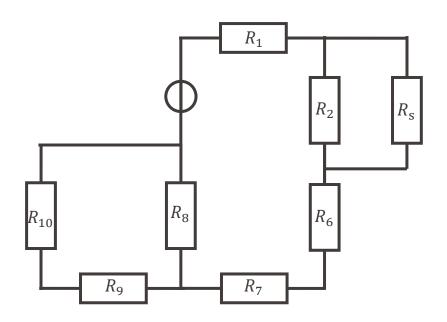
Plus généralement:



 Remarque: la résistance équivalente est plus petite que la plus petite des résistances individuelles en parallèle

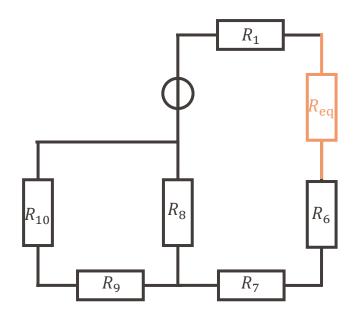
Agencement en parallèle

C. Lanorgue



 Exemple: R₂, R_s sont en parallèle (mêmes bornes)

Agencement en parallèle



- Exemple: R₂, R_s sont en parallèle (mêmes bornes)
- La branche les contenant peut être remplacée par une branche avec une résistance équivalente unique telle que 1/R_{eq} = 1/R₂ + 1/R_s
- Si on a: $R_2 = 200 \,\Omega$, $R_s = 3.9 \,\mathrm{k}\Omega$, alors la branche se comporte comme une résistance de $190 \,\Omega$

```
R_1 = 100 \Omega

R_2 = 200 \Omega

R_3 = 450 \Omega

R_4 = 2.5 k\Omega

R_5 = 950 \Omega

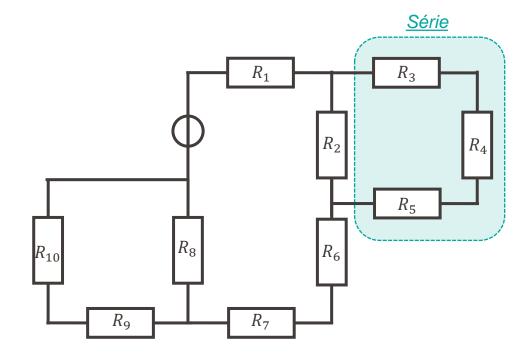
R_6 = 200 \Omega

R_7 = 450 \Omega

R_8 = 1 k\Omega

R_9 = 350 \Omega

R_{10} = 650 \Omega
```



```
R_1 = 100 \Omega

R_2 = 200 \Omega

R_3 = 450 \Omega

R_4 = 2.5 k\Omega

R_5 = 950 \Omega

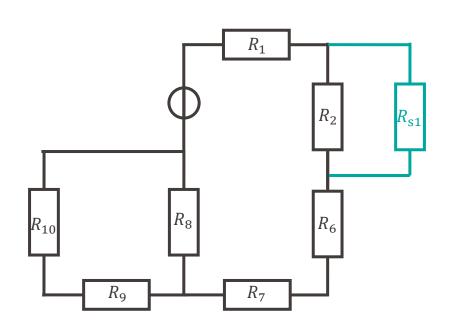
R_6 = 200 \Omega

R_7 = 450 \Omega

R_8 = 1 k\Omega

R_9 = 350 \Omega

R_{10} = 650 \Omega
```



$$R_{\rm s1} = 450 + 2500 + 950 = 3.9 \,\mathrm{k}\Omega$$

```
R_1 = 100 \Omega

R_2 = 200 \Omega

R_{s1} = 3.9 \text{ k}\Omega

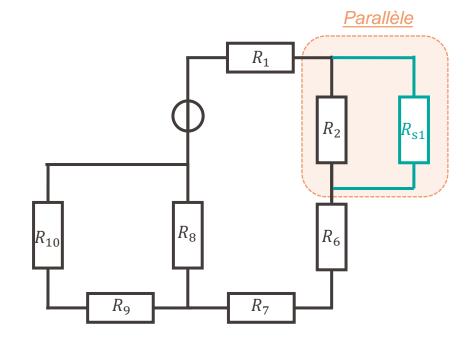
R_6 = 200 \Omega

R_7 = 450 \Omega

R_8 = 1 \text{ k}\Omega

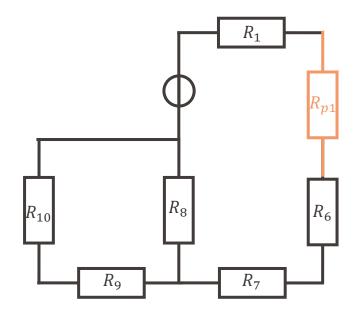
R_9 = 350 \Omega

R_{10} = 650 \Omega
```



$$R_1 = 100 \Omega$$

 $R_2 = 200 \Omega$
 $R_{S1} = 3.9 \text{ k}\Omega$
 $R_6 = 200 \Omega$
 $R_7 = 450 \Omega$
 $R_8 = 1 \text{ k}\Omega$
 $R_9 = 350 \Omega$
 $R_{10} = 650 \Omega$



$$R_{p1} = \frac{3900 \times 200}{3900 + 200} = 190 \,\Omega$$

```
R_1 = 100 \Omega

R_{p1} = 190 \Omega

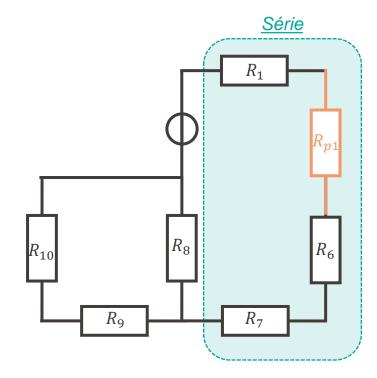
R_6 = 200 \Omega

R_7 = 450 \Omega

R_8 = 1 k\Omega

R_9 = 350 \Omega

R_{10} = 650 \Omega
```



```
R_{4} = 100 \Omega

R_{p1} = 190 \Omega

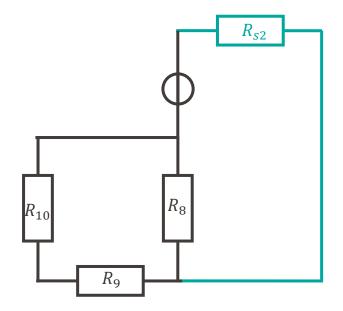
R_{6} = 200 \Omega

R_{7} = 450 \Omega

R_{8} = 1 k\Omega

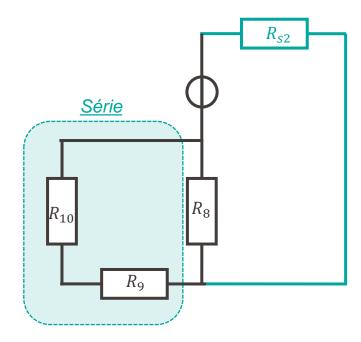
R_{9} = 350 \Omega

R_{10} = 650 \Omega
```



$$R_{s2} = 100 + 190 + 200 + 450 = 940 \Omega$$

 $R_{s2} = 940 \Omega$ $R_8 = 1 k\Omega$ $R_9 = 350 \Omega$ $R_{10} = 650 \Omega$

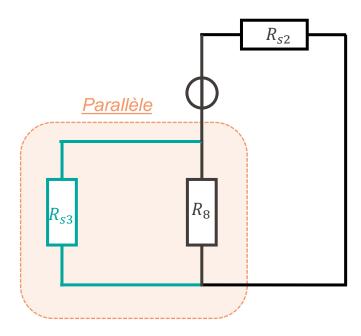


$$R_{s2} = 940 \,\Omega$$
 $R_8 = 1 \,\mathrm{k}\Omega$
 $R_9 = 350 \,\Omega$
 $R_{10} = 650 \,\Omega$
 $R_{s3} = 350 + 650 = 1 \,\mathrm{k}\Omega$
 $R_{s3} = 350 + 650 = 1 \,\mathrm{k}\Omega$

$$R_{s2} = 940 \Omega$$

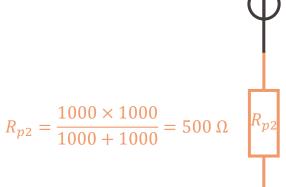
$$R_8 = 1 k\Omega$$

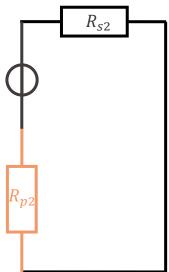
$$R_{s3} = 1 k\Omega$$



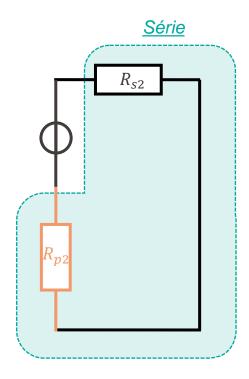
$$R_{s2} = 940 \Omega$$

$$R_{g} = 1 k\Omega$$

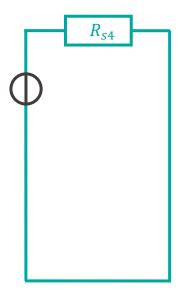




$$R_{s2} = 940 \Omega$$
$$R_{p2} = 500 \Omega$$

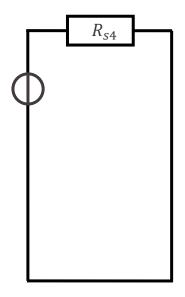


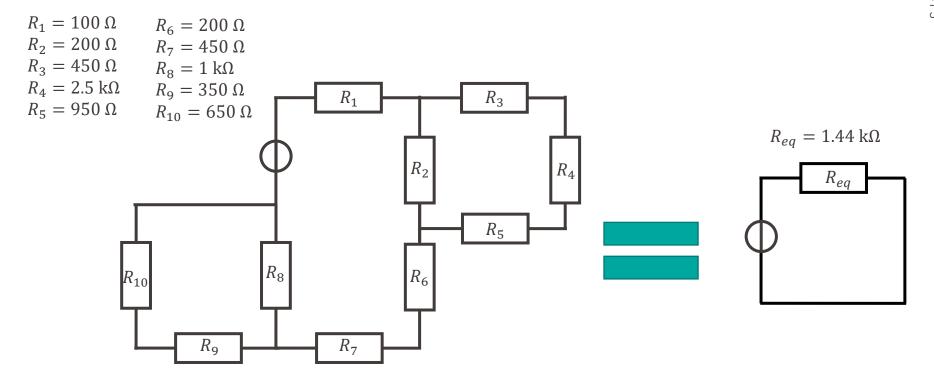
$$R_{s2} = 940 \Omega$$
$$R_{n2} = 500 \Omega$$



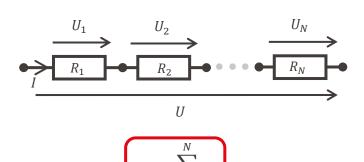
$$R_{s4} = 940 + 500 = 1.44 \text{ k}\Omega$$

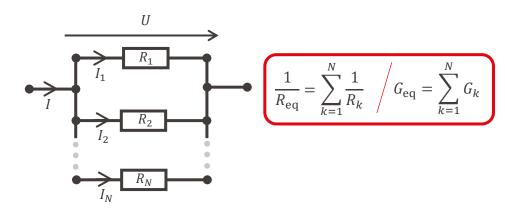
 $R_{\rm S4} = 1.44 \text{ k}\Omega$



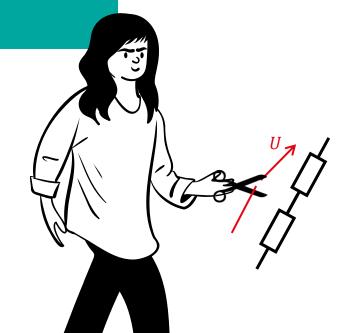


- L'identification des agencements série/parallèles des résistances permet de grandement simplifier les schémas électriques et les calculs
- Des résistances en série s'ajoutent
 - Des résistances en série ont une résistance équivalente plus grande
- Pour des résistances en parallèles, les conductances s'ajoutent
 - Des résistances en parallèle ont une résistance équivalente plus petite





Diviseurs de tension et de courant



Diviseurs de tension et de courant

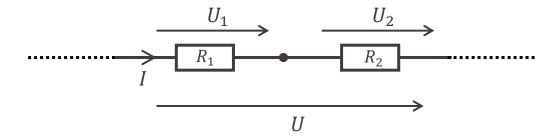
C. Lafforgue

 Objectif: établir des méthodes simplifiant et accélérant l'analyse des circuits

Diviseurs de tension

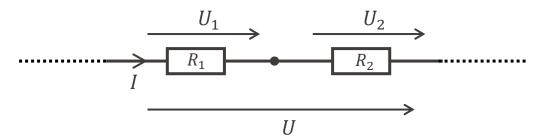
Lafforgue

 Un diviseur de tension est un agencement en série permettant d'extraire une tension plus faible que la tension totale



• On fixe U. Que valent U_1 et U_2 ?

57



Loi des mailles:

$$U = U_1 + U_2$$

Loi d'Ohm:

$$U_1 = R_1 I$$

$$U_2 = R_2 I$$

Résistance équivalente:

$$\overrightarrow{U} = (R_1 + R_2)I$$

$$\Rightarrow I = \frac{U}{R_1 + R_2}$$

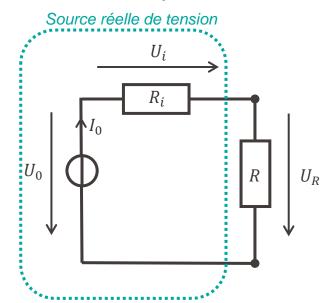
En substituant:

$$U_1 = \frac{R_1}{R_1 + R_2} U$$

$$U_2 = \frac{R_2}{R_1 + R_2} U$$

Diviseurs de tension

• Exemple: source réelle de tension



Méthode 1:

On applique les lois de Kirchhoff et la loi d'Ohm:

$$U_0 = U_i + U_R$$

$$U_i = R_i I_0$$

$$U_R = R I_0$$

On en déduit:

$$U_0 = (R + R_i)I_0$$

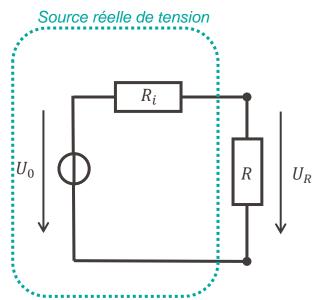
Et finalement:

$$U_R = \frac{R}{R_i + R} U_0$$

Cette méthode marchera toujours! Mais elle peut être longue et fastidieuse

Diviseurs de tension

• Exemple: source réelle de tension

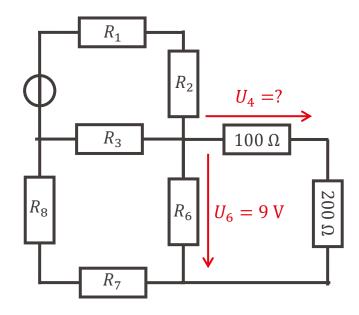


Méthode 2:

On applique le diviseur de tension:

$$U_R = \frac{R}{R_i + R} U_0$$

Que vaut U_4 ?



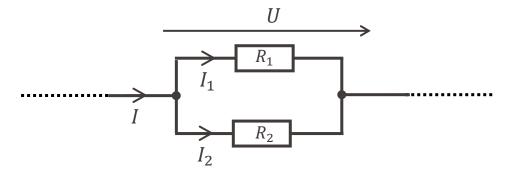
Session ID: ee106poll

URL: ttpoll.eu

Diviseurs de courant

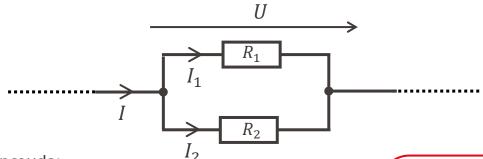
C. Lafforgue

 Un diviseur de courant est un agencement en parallèle permettant d'extraire un courant plus faible que le courant total



• On fixe I. Que valent I_1 et I_2 ?

• On fixe I. Que valent I_1 et I_2 ?



Loi des nœuds:

$$I = I_1 + I_2$$

Loi d'Ohm:

$$U = R_1 I_1$$
$$U = R_2 I_2$$

Résistance équivalente:

$$U = \frac{R_1 R_2}{R_1 + R_2} I$$

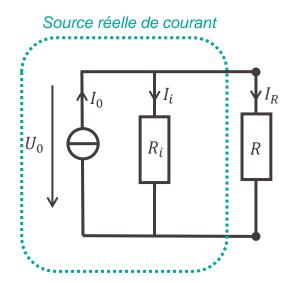
En substituant:

$$I_1 = \frac{R_2}{R_1 + R_2} I$$

$$I_2 = \frac{R_1}{R_1 + R_2} I$$

Diviseurs de courant

Exemple: source réelle de courant



Méthode 1:

On applique les lois de Kirchhoff et la loi d'Ohm:

$$I_0 = I_i + I_R$$

$$U_0 = R_i I_i$$

$$U_0 = R I_R$$

On en déduit:

$$I_i = \frac{R}{R_i} I_R$$

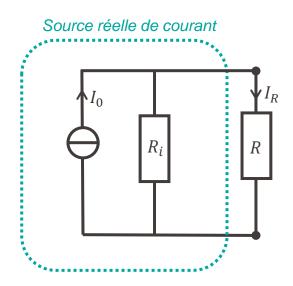
Et finalement:

$$I_R = \frac{R_i}{R_i + R} I_0$$

Cette méthode marchera toujours! Mais elle peut être longue et fastidieuse

Diviseurs de courant

• Exemple: source réelle de courant

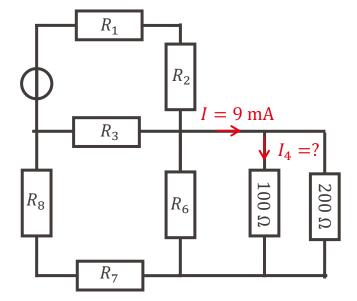


Méthode 2:

On applique le diviseur de courant:

$$I_R = \frac{R_i}{R_i + R} I_0$$

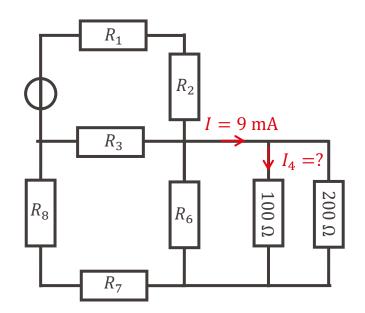
Que vaut I_4 ?



Session ID: ee106poll

URL: ttpoll.eu

Que vaut I_4 ?



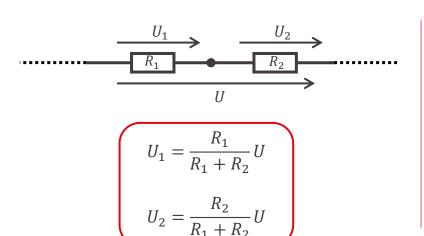
Les résistances de 100Ω et 200Ω sont en parallèle: on peut appliquer le diviseur de courant

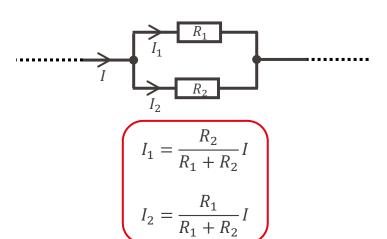
$$I_4 = \frac{200}{200 + 100} \times 9 = \frac{2}{3} \times 9$$

 $\Rightarrow I_4 = 6 \text{ mA}$

Points clés

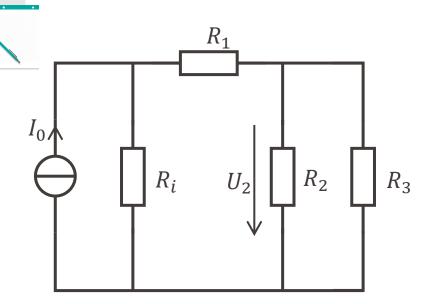
- Savoir repérer des diviseurs de courant ou tension peut simplifier l'analyse
- Cette méthode n'est pas nécessaire, c'est un outil pour aller plus vite
 - En cas de doute: appliquer les lois de Kirchhoff sur le circuit complet
- Le <u>diviseur de tension</u> s'applique sur des <u>résistances en série</u>
- Le <u>diviseur de courant</u> s'applique sur des <u>résistances en parallèle</u>





C. Lafforgue

Exemple



 $I_0 = 110 \, \mu A$

 $R_i = 100 \text{ k}\Omega$

 $R_1 = 1.25 \text{ k}\Omega$

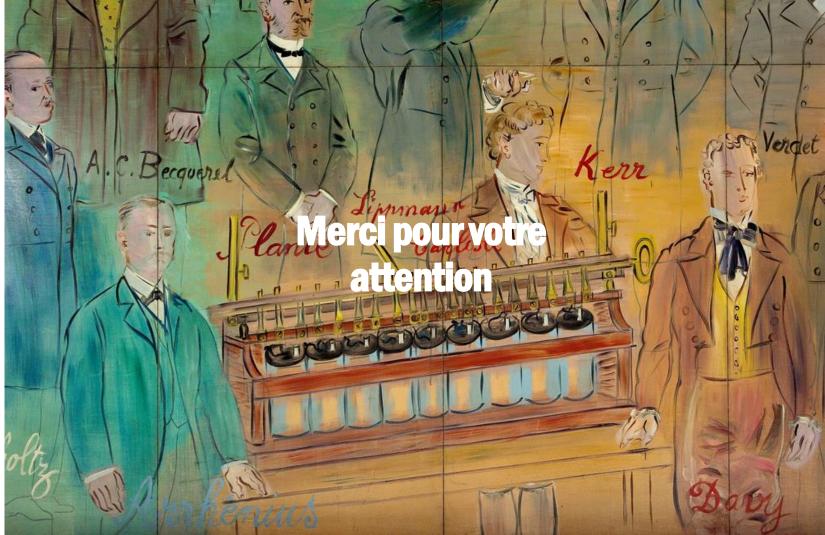
 $R_2 = 10 \text{ k}\Omega$

 $R_3 = 10 \text{ k}\Omega$

Pour aller plus loin

 Pour des signaux à haute fréquence (typiquement autour des GHz), l'ARQS n'est plus valable

- La modélisation se base sur la propagation d'ondes
 - Les lois vues en régime statique ne sont valables que localement
- On parle d'électronique hyper-fréquence (RF) ou d'électronique rapide
- Exemple: systèmes de transmission



R. Dufy, « La fée électricité » Musée d'art moderne, Paris