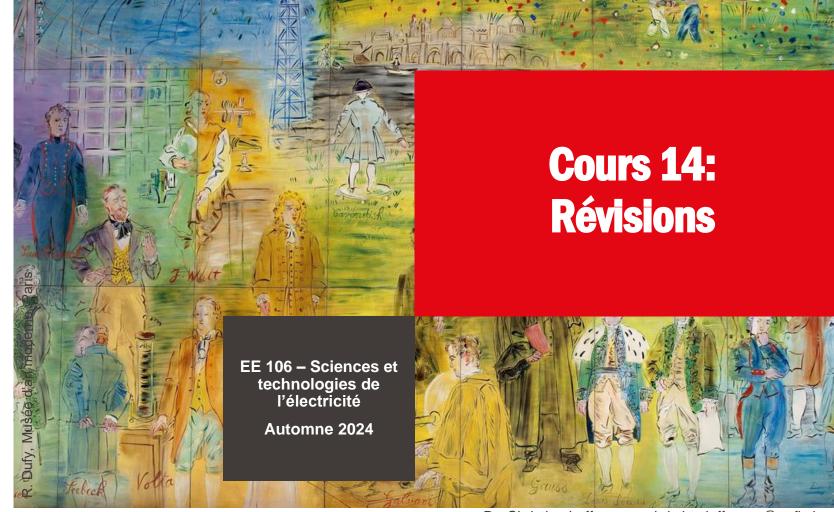
EPFL



■ Ecole Polytechnique Fédérale de Lausanne

Dr. Christian Lafforgue – christian.lafforgue@epfl.ch

A quoi sert l'électricité?

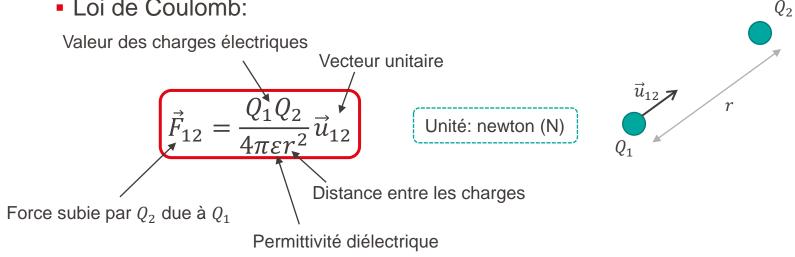
P cquisitio Ryoduction oistribution of Lansmiss. **Applications** de l'électricité Utilisar u oitation

Energi

Définitions de base

Force électrostatique

Loi de Coulomb:



- La permittivité est une propriété du matériau. Dans le vide, elle vaut: $\varepsilon_0 \simeq 8.85 \cdot 10^{-12} \text{ F/m}$
- Dans un matériau diélectrique, elle s'écrit: $\varepsilon = \varepsilon_0 \varepsilon_r$

Comment représenter l'influence d'un environnement sur une charge?

$$\vec{F}_{12} = Q_2 \cdot \frac{Q_1}{4\pi\varepsilon r^2} \vec{u}_{12}$$

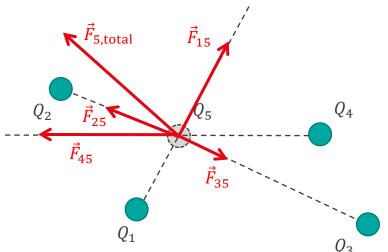
Dépend de la particule l'environnement étudiée

Le champ électrique d'une charge ponctuelle:

$$\vec{E}_1 = \frac{\vec{F}_{12}}{Q_2} = \frac{Q_1}{4\pi\varepsilon r^2}\vec{u}_1$$

Unité: volt par mètre (V/m)

- Que se passe-t-il lorsqu'il y a plusieurs charges?
 - Les forces de plusieurs sources s'additionnent (et donc les champs électriques aussi!)



$$\vec{F}_{j,\text{total}} = \sum_{k=1}^{N} \vec{F}_{kj} = Q_j \sum_{k=1}^{N} \frac{Q_k}{4\pi\varepsilon r_k^2} \vec{u}_{kj}$$

$$\vec{E}_j = \frac{\vec{F}_{j,\text{total}}}{Q_j} \Rightarrow \vec{E}_j = \sum_{k=1}^N \frac{Q_k}{4\pi\varepsilon r_k^2} \vec{u}_{kj}$$

- Le travail mécanique correspond à une variation d'énergie potentielle
- L'énergie potentielle dépend de la charge et du champ électrique environnant
- On définit la différence de potentiel électrique comme la circulation du champ électrique entre A et B

$$V_A - V_B = \int_{r_A}^{r_B} E(r) dr$$

Potentiel électrique d'une charge ponctuelle à une distance r:

$$V(r) = \frac{Q}{4\pi\varepsilon r} + V_{\rm ref}$$

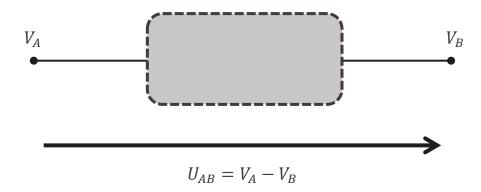
Unité: volt (V)

$$V(r) = \frac{Q}{4\pi\varepsilon r} + V_{\rm ref}$$

- Le potentiel est défini par rapport à une référence.
 - En électromagnétisme, on prend l'infini comme référence, en posant: $\lim_{r \to +\infty} V(r) = 0$

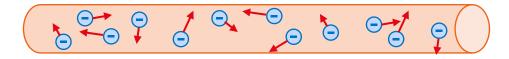
$$V(r) = \frac{Q}{4\pi\varepsilon r}$$

 Dans un circuit, on choisit un point arbitraire comme référence, appelé « masse ». La tension est la différence de potentiel électrostatique aux bornes d'un composant



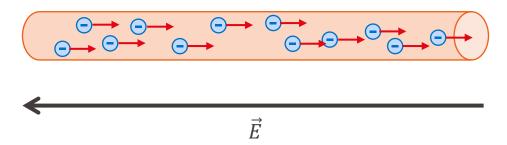
C. Lafforgue

Pas de champ électrique: pas de déplacement moyen des charges



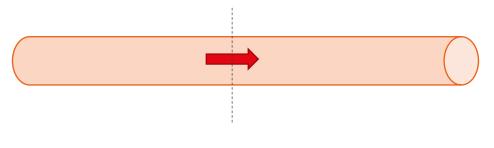
C. Lafforgue

Champ électrique: déplacement directionnel des charges



Lafforgue

 On définit le courant électrique comme le flux de charges traversant le matériau (combien de charges passent à un endroit donné pendant un temps donné)



 $I = \frac{dq}{dt}$

Unité: ampère (A)

- Par convention, le courant électrique est définit comme le flux de charges positives
- On définit un sens conventionnel pour représenter le courant graphiquement
 - Le sens conventionnel n'est pas forcément le sens physique de déplacement des charge!

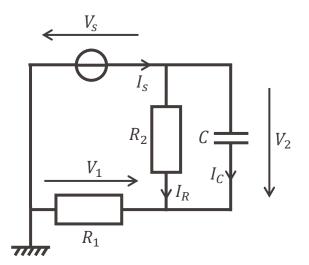
Sens conventionnel (arbitraire)

C. Lafford

Le courant électrique définit le flux de charge traversant un composant

Exemple de schéma électrique

Lafforgue



- Chaque grandeur peut être positive ou négative
- Le choix des sens conventionnels est arbitraire et libre

C. Lafforgue

Circuits électriques

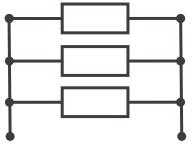
Un dipôle électrique a deux bornes

 Connexion en série: les éléments sont connectés les uns à la suite des autres

Les éléments sont parcourus par le même courant



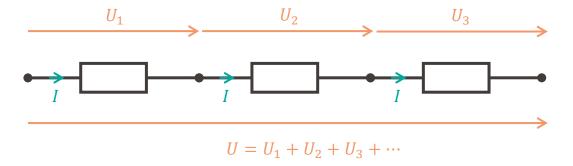
 Connexion en parallèle: les éléments sont connectés aux mêmes bornes



Les éléments partagent la même tension à leurs bornes

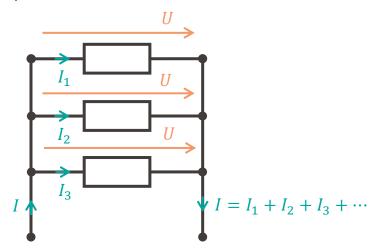
Circuits électriques

- Connexion en série: les éléments sont connectés les uns à la suite des autres
 - Le courant est le même dans chaque élément (pas de courant sortant)
 - La tension totale est la somme des tensions individuelles



Circuits électriques

- Connexion en parallèle: les éléments sont connectés aux mêmes bornes
 - Le courant total est la somme des courants individuels
 - La tension est la même aux bornes de chaque élément individuel (même différence de potentiel)



Puissance électrique

C. Lafforgue

- La puissance électrique est une grandeur relative à la capacité qu'un composant ou un circuit a à fournir de l'énergie
- Elle est simplement donnée par:

$$P = UI$$

Plus généralement, on peut écrire:

$$p(t) = u(t)i(t)$$

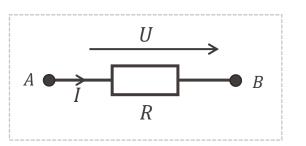
Composants passifs

La résistance

Symbole	Signification	Grandeur	Unité
	Résistance	R (résistance)	ohm (Ω)

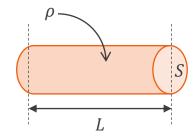
- La résistance est un composant de base utilisé pour:
 - Contrôler tension/courant
 - Convertir l'énergie électrique en chaleur
 - ...
- C'est un dipôle passif

Loi d'Ohm: U = RI



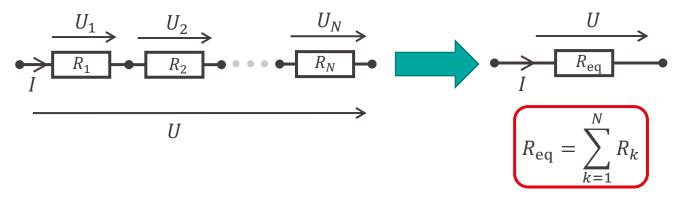
- La résistance dépend:
 - Du matériau \rightarrow **résistivité** ρ (unité: $\Omega \cdot m$)
 - De la distance parcourue \rightarrow **longueur** L (unité: m)
 - De la section transversale → surface S (unité: m²)

$$R = \frac{\rho L}{S}$$



Agencement en série

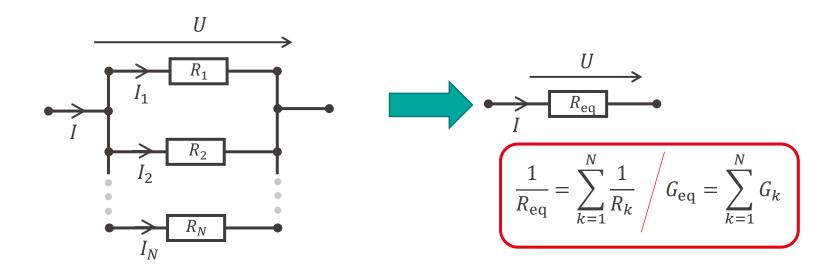
Plus généralement:



 Remarque: la résistance équivalente est plus grande que la plus grande des résistances individuelles en série

Agencement en parallèle

Plus généralement:



 Remarque: la résistance équivalente est plus petite que la plus petite des résistances individuelles en parallèle

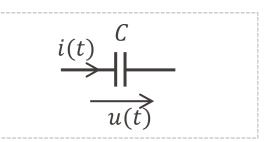
Le condensateur

Symbole	Signification	Grandeur	Unité
	Condensateur	C (capacité)	farad (F)

- Le condensateur est un composant de base utilisé pour:
 - Le stockage d'énergie
 - Le filtrage de signaux parasites
 - La protection de systèmes électriques sensibles
 - •
- C'est un dipôle passif

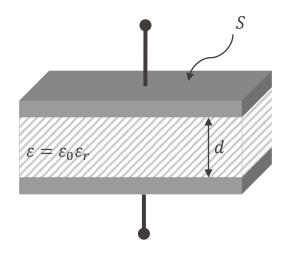
Le condensateur plan

Equation: $i(t) = C \frac{du}{dt}(t)$



- Le condensateur est caractérisé par:
 - Une surface S
 - Une séparation d
 - Une permittivité diélectrique $\varepsilon = \varepsilon_0 \varepsilon_r$

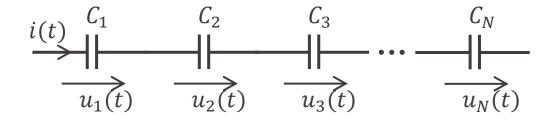
$$C = \frac{\varepsilon S}{d}$$



C. Lafforgue

Agencement de condensateurs

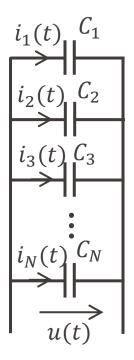
Condensateurs en série



$$\frac{1}{C_{\text{eq}}} = \sum_{k=1}^{N} \frac{1}{C_k}$$

Agencement de condensateurs

Condensateurs en parallèle



$$C_{\text{eq}} = \sum_{k=1}^{N} C_k$$

L'inductance

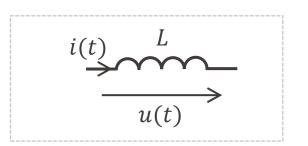
o. Lallorgue

Symbole	Signification	Grandeur	Unité
	Inductance, bobine	L (inductance)	henry (H)

- L'inductance est un composant de base utilisé pour:
 - Le stockage d'énergie
 - Le filtrage de signaux parasites
 - La protection de systèmes électriques sensibles
 - •
- C'est un dipôle passif

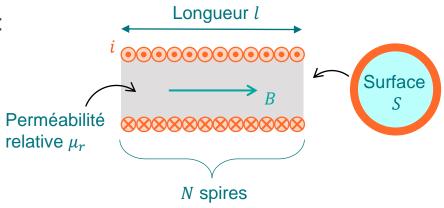
L'inductance

Equation: $u(t) = L\frac{di}{dt}(t)$



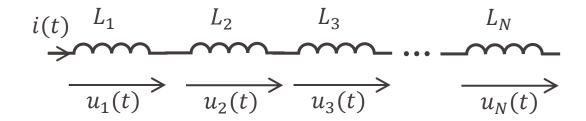
- L'inductance est caractérisée par:
 - Sa longueur *l*
 - Son nombre de spire N
 - Sa surface (d'une spire) S
 - Le matériau de son cœur

$$L = \frac{\mu N^2 S}{l}$$



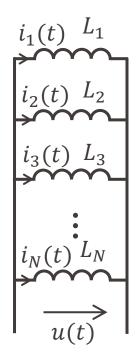
Agencement d'inductances

inductances en série



$$L_{\text{eq}} = \sum_{k=1}^{N} L_k$$

Inductances en parallèle



$$\frac{1}{L_{\text{eq}}} = \sum_{k=1}^{N} \frac{1}{L_k}$$

Lois et théorèmes

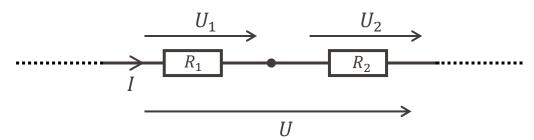
C. Lafforgue

Lois de Kirchhoff

- Les lois de Kirchhoff complètent la définition mathématique du problème
- Deux lois sont formulées:
 - Loi des nœuds
 - Loi des mailles
- Il est important de faire un schéma clair pour ne pas s'emmêler les pinceaux!

35

• On fixe U. Que valent U_1 et U_2 ?



Loi des mailles:

$$U = U_1 + U_2$$

Loi d'Ohm:

$$U_1 = R_1 I$$

$$U_2 = R_2 I$$

Résistance équivalente:

$$U = (R_1 + R_2)I$$

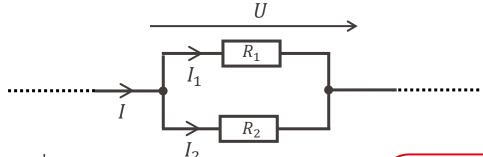
$$\Rightarrow I = \frac{U}{R_1 + R_2}$$

En substituant:

$$U_1 = \frac{R_1}{R_1 + R_2} U$$

$$U_2 = \frac{R_2}{R_1 + R_2} U$$

• On fixe I. Que valent I_1 et I_2 ?



Loi des nœuds:

$$I = I_1 + I_2$$

Loi d'Ohm:

$$U = R_1 I_1$$
$$U = R_2 I_2$$

Résistance équivalente:

$$U = \frac{R_1 R_2}{R_1 + R_2} I$$

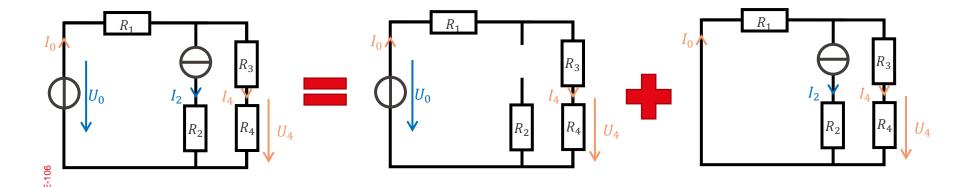
En substituant:

$$I_1 = \frac{R_2}{R_1 + R_2} I$$

$$I_2 = \frac{R_1}{R_1 + R_2} I$$

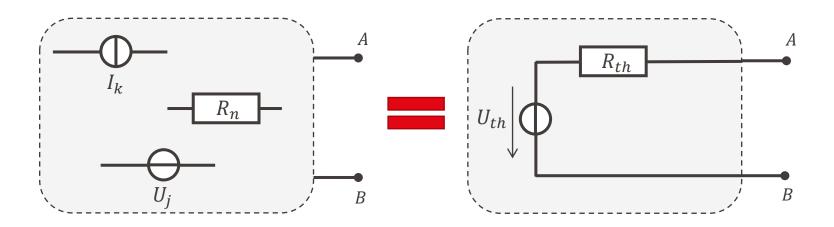
Principe de superposition

- Le principe de superposition permet de séparer un problème à N sources en N problèmes à une source
 - Particulièrement utile pour résoudre les systèmes à plusieurs sources
- Une source de tension éteinte est un « court-circuit »
- Une source de courant éteinte est un « circuit ouvert »



Théorème de Thévenin

• **Objectif:** Remplacer un circuit complexe par une source de tension et une résistance en série



Théorème de Thévenin

 Objectif: Remplacer un circuit complexe par une source de tension et une résistance en série

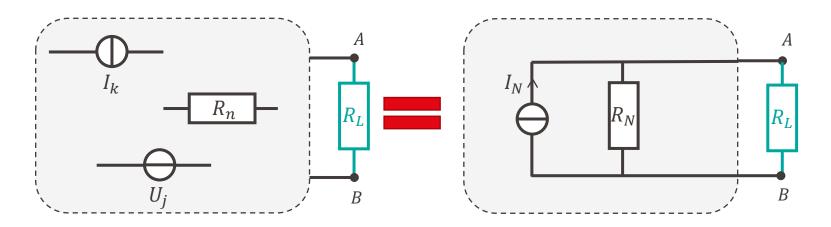
Procédure:

- Identifier clairement les bornes de sortie du circuit à remplacer
- Calculer ou mesurer la tension à vide (tensions entre A et B sans charge)
- Calculer ou mesurer la résistance vue par les bornes A et B (en éteignant toutes les sources)

Théorème de Norton

1 -1

• **Objectif:** Remplacer un circuit complexe par une source de courant et une résistance en parallèle



Théorème de Norton

 Objectif: Remplacer un circuit complexe par une source de courant et une résistance en parallèle

Procédure:

- Identifier clairement les bornes de sortie du circuit à remplacer
- Calculer ou mesurer le courant de court-circuit (courant dans la branche AB pour une charge nulle)
- Calculer ou mesurer la résistance vue par les bornes A et B (en éteignant toutes les sources)

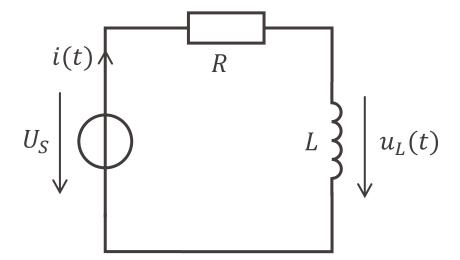
Régime transitoire

Régime transitoire

- Les condensateurs et inductances ont une réaction dynamique: les évolutions de courant et tension ne sont pas instantanées
- Les circuits sont régis par des équations différentielles

Circuit RL

On modélise un circuit dépendant du temps t:



Loi des mailles:

$$U_S = Ri(t) + u_L(t)$$

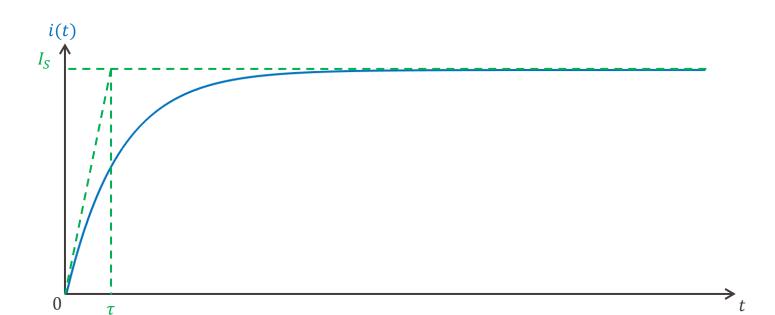
Relation caractéristique de l'inductance

$$u_L(t) = L\frac{di}{dt}(t)$$

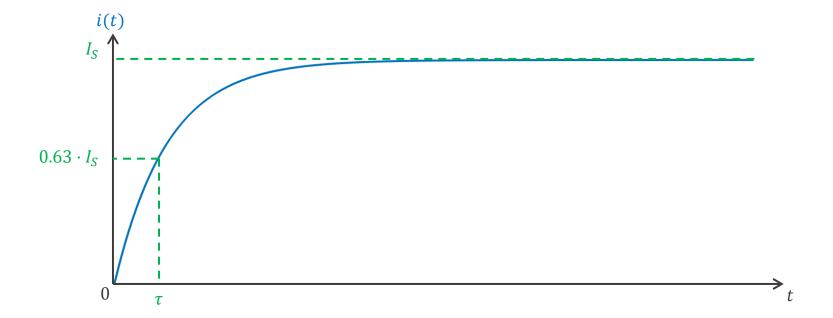
Donc on obtient:

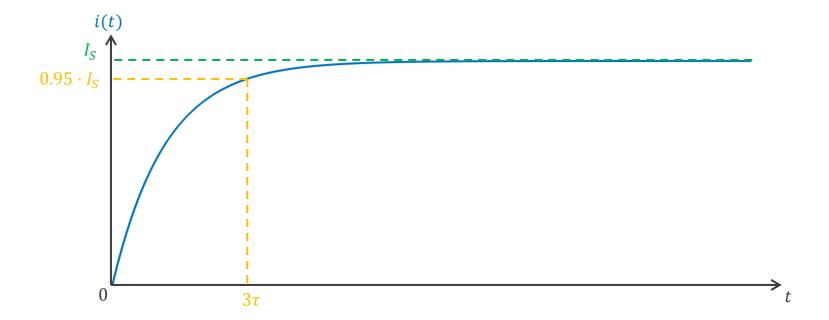
$$U_S = L\frac{di}{dt}(t) + Ri(t)$$

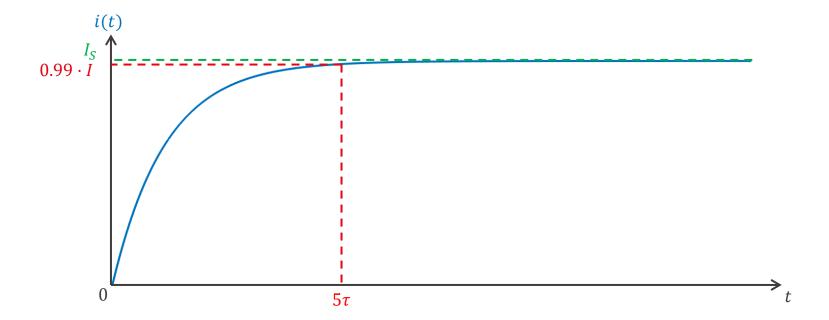
$$\frac{di}{dt}(t) + \frac{R}{L}i(t) = \frac{1}{L}U_S$$



$$i(t) = I_s \left(1 - e^{-t/\tau} \right)$$

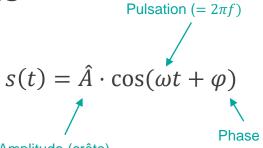




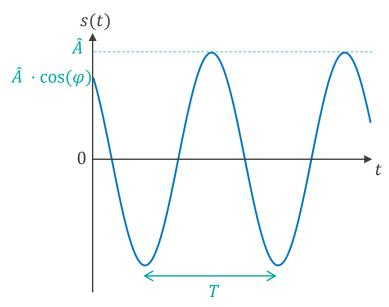


Régime permanent sinusoïdal

- <u>Définition</u>: On appelle régime permanent sinusoïdal un régime dans lequel courants et tensions évoluent périodiquement sous forme de signaux sinusoïdaux une fois le régime transitoire passé.
 - Par exemple, dans les circuits vus précédemment, le régime transitoire est passé lorsque $t>5\tau$

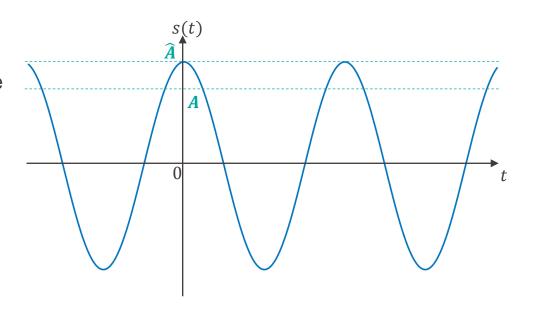


Amplitude (crête)



- L'amplitude:
 - · Aussi appelée valeur crête
 - Correspond à la valeur maximale du signal
- Autre paramètre lié: la valeur efficace

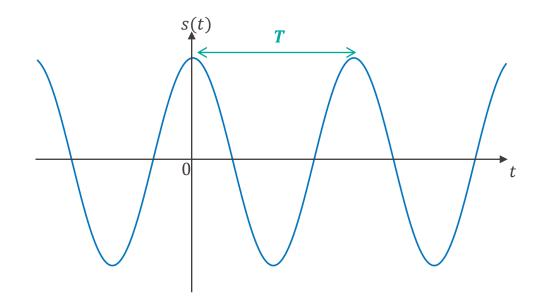
$$A = \sqrt{\frac{1}{T} \int_{0}^{T} s(t)^{2} dt} = \frac{\hat{A}}{\sqrt{2}}$$



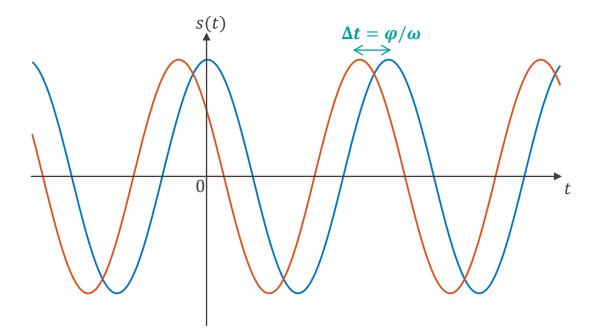
- La pulsation:

• Liée à la périodicité du signal
$$\omega = 2\pi f = \frac{2\pi}{T}$$

- *T* s'exprime en seconde (s)
- *f* s'exprime en hertz (Hz)
- ω s'exprime en radian par seconde (rad/s, ou s⁻¹)



- La phase:
 - Traduit le retard d'un signal
 - φ s'exprime en radian (rad)



Signaux alternatifs – Formalisme complexe

- Que pouvons-nous faire?
 - Les fonctions trigonométriques ont d'autres propriétés intéressantes...
 - ... liées aux nombres complexes
- Nombres complexes:
 - On considère $\underline{x} \in \mathbb{C}$
 - Le cours de maths nous dit que $\underline{x} = \hat{X}(\cos(\theta) + j\sin(\theta)) = \hat{X}e^{j\theta}$
 - Donc $Re[\underline{x}] = \hat{X}\cos(\theta) = Re[\hat{X}e^{j\theta}]$
 - En appliquant à notre cas: $\hat{A}\cos(\omega t + \varphi) = Re[\hat{A}e^{j(\omega t + \varphi)}]$

Signaux alternatifs – Formalisme complexe

- Exemple:
 - $u(t) = \widehat{U}\cos(\omega t + \varphi)$
 - On définit une tension complexe assosciée:

$$\underline{u}(t) = \widehat{U}e^{j(\omega t + \varphi)}$$

On a alors:

$$u(t) = Re\big[\underline{u}(t)\big]$$

 On peut alors étudier les circuits avec les grandeurs sous forme complexe, et on prend la partie réelle du résultat.

Signaux alternatifs – Formalisme complexe

- On voit qu'en régime permanent sinusoïdal il y a deux grandeurs à déterminer:
 - L'amplitude \hat{X}
 - La phase φ
- On définit alors les phaseurs:

Phaseur instantané:

$$\underline{x}(t) = \widehat{X}e^{j(\omega t + \varphi)}$$

Phaseur crête:

$$\underline{\hat{X}} = \hat{X}e^{j\varphi}$$

Phaseur efficace:

$$\underline{X} = Xe^{j\varphi}$$

- On remarque que dans tous les cas, tension et courant sous leur forme de phaseur sont proportionnels
 - En formalisme complexe, on obtient aussi une forme de loi d'Ohm!
 - Cette loi s'écrit $\underline{U} = \underline{Z} \underline{I}$
 - <u>Z</u> est appelée **impédance**
 - Pour une résistance:

$$\underline{Z} = R$$

Pour un condensateur:

$$\underline{Z} = \frac{1}{jC\omega}$$

• Pour une inductance:

$$\underline{Z} = jL\omega$$

L'impédance

- Propriétés
 - L'impédance <u>Z</u> est un nombre complexe
 - Elle depend de la pulsation (et donc de la fréquence)
 - Elle est homogène à des ohms (Ω)

L'impédance

- Grandeurs associées:
 - On peut aussi écrire

$$\underline{I} = \underline{Y} \underline{U}$$

$$\underline{Y} = \frac{1}{\underline{Z}}$$

- <u>Y</u> est appelée admittance
- L'impédance <u>Z</u> peut avoir une partie réelle et/ou une partie imaginaire

$$\underline{Z} = R + jX$$

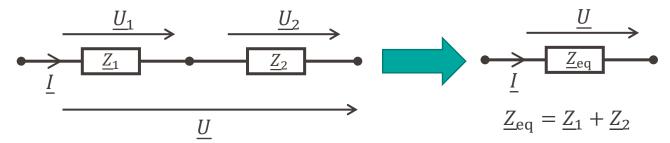
- La partie réelle *R* est appelée **résistance**
- La partie imaginaire *X* est appelée **réactance**

L'impédance

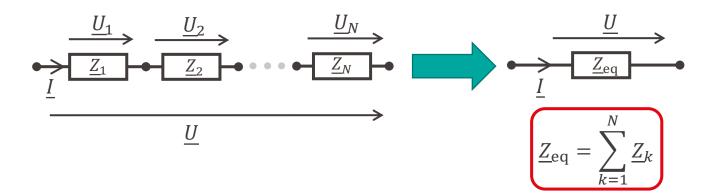
Composant	Loi	<u>Z</u>	<u>z</u>	$arg(\underline{Z})$
Résistance Résistance	u(t) = Ri(t)	R	R	0
Condensateur	$i(t) = C \frac{du}{dt}(t)$	<u>1</u> jCω	$\frac{1}{C\omega}$	$-\frac{\pi}{2}$
Inductance	$u(t) = L\frac{di}{dt}(t)$	jLω	Lω	$\frac{\pi}{2}$

Agencement en série

Deux résistances en série s'additionnent:

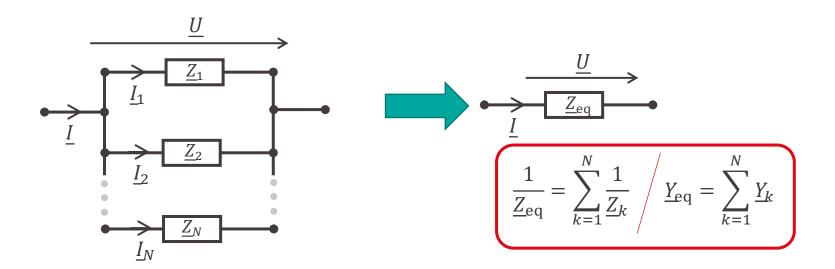


• Plus généralement:



Agencement en parallèle

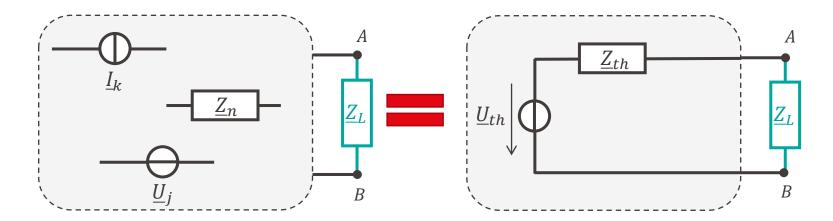
Plus généralement:



 Remarque: la résistance équivalente est plus petite que la plus petite des résistances individuelles en parallèle

Théorème de Thévenin

 Objectif: Remplacer un circuit (à une fréquence donnée) par une source de tension et une impédance en série



Théorème de Thévenin

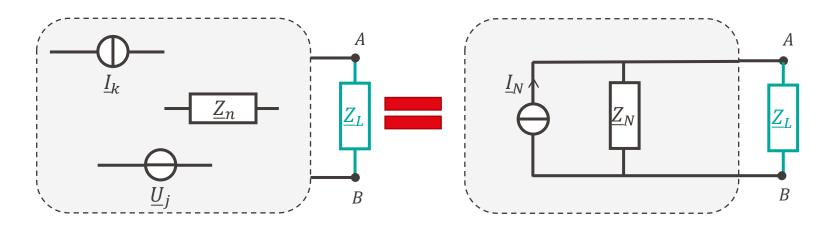
 Objectif: Remplacer un circuit (à une fréquence donnée) par une source de tension et une impédance en série

Procédure:

- Identifier clairement les bornes de sortie du circuit à remplacer
- Calculer ou mesurer la tension à vide (tensions entre A et B sans charge)
- Calculer ou mesurer l'impédance vue par les bornes A et B (en éteignant toutes les sources)

Théorème de Norton

 Objectif: Remplacer un circuit (à une fréquence donnée) par une source de courant et une impédance en parallèle



Théorème de Norton

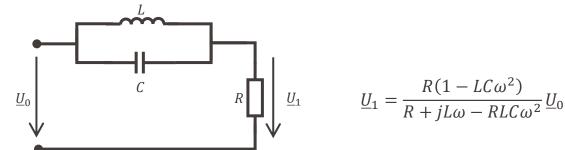
 Objectif: Remplacer un circuit (à une fréquence donnée) par une source de courant et une impédance en parallèle

Procédure:

- Identifier clairement les bornes de sortie du circuit à remplacer
- Calculer ou mesurer le courant de court-circuit (courant dans la branche AB pour une charge nulle)
- Calculer ou mesurer l'impédance vue par les bornes A et B (en éteignant toutes les sources)

Méthodes de résolution en régime permanent sinusoïdal

- Les mêmes méthodes qu'en régime statique sont applicables en régime sinusoïdal:
 - Agencement d'impédances
 - Théorèmes de Thévenin et de Norton
 - Equivalence de sources
 - Principe de superposition
- Les grandeurs dans le circuit dépendent de la fréquence



Quadripôles

- On a étudié avant des dipôles:
 - Résistance
 - Condensateur
 - Inductance
- Les Quadripôles sont des systèmes avec 4 bornes
 - 2 bornes d'entrée
 - 2 bornes de sortie

Quadripôles

- Il est possible de créer n'importe quelle forme de filtre avec des résistances, des condensateurs et des inductances
- Il y a 4 familles principales de filtres

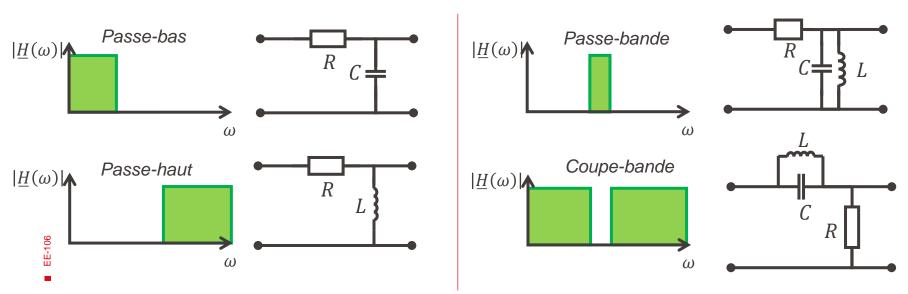
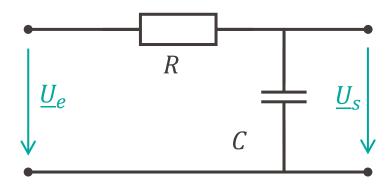


Diagramme de Bode

C. Lafforg

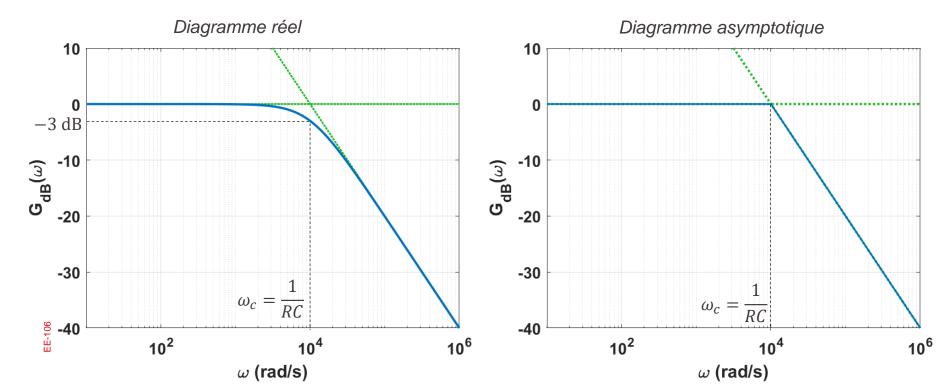
- Les fonctions de transfert peuvent rapidement être compliquées
- Le diagramme de Bode est un moyen de représenter le comportement fréquentiel d'un système
 - Il permet une résolution graphique simplifiée
 - Il sert à visualiser rapidement le gain et la phase en fonction de la fréquence
 - Il se trace en échelle logarithmique

Diagramme de Bode - Exemple



$$\underline{H}(\omega) = \frac{1}{1 + jRC\omega} \Rightarrow \begin{cases} |\underline{H}(\omega)| = \frac{1}{\sqrt{1 + (RC\omega)^2}} \\ \phi(\omega) = -\arctan(RC\omega) \end{cases}$$

$$\underline{H}(\omega) = \frac{1}{1 + jRC\omega} \Rightarrow \begin{cases} |\underline{H}(\omega)| = \frac{1}{\sqrt{1 + (RC\omega)^2}} \\ \phi(\omega) = -\arctan(RC\omega) \end{cases}$$



Puissance active

 $p(t) = UI\cos(\phi)[1 + \cos(2\omega t + 2\alpha)] + UI\sin(\phi)\sin(2\omega t + 2\alpha)$ Composante pulsée
Composante alternative

- On appelle <u>puissance active P</u> la valeur moyenne de la puissance instantanée
- En régime sinusoïdal, on a donc:

$$P = UI\cos(\phi)$$

- L'unité est le watt (W)
- Elle correspond à l'énergie convertible en travail ou en chaleur
 - Elle est maximale pour $\phi = 0$
 - Elle est nulle pour $\phi = \pm \pi/2$

Puissance réactive

 $p(t) = UI\cos(\phi)[1 + \cos(2\omega t + 2\alpha)] + UI\sin(\phi)\sin(2\omega t + 2\alpha)$ Composante pulsée
Composante alternative

- On appelle <u>puissance réactive Q</u> l'amplitude de composante alternative
- En régime sinusoïdal, on a donc: $O = UI \sin(\phi)$
- L'unité est le volt-ampère réactif (VAr)
- Elle correspond une énergie non convertible
 - Elle est maximale pour $\phi = \pm \pi/2$
 - Elle est nulle pour $\phi = 0$

Puissance apparente

 $p(t) = UI\cos(\phi)[1 + \cos(2\omega t + 2\alpha)] + UI\sin(\phi)\sin(2\omega t + 2\alpha)$

Composante pulsée

Composante alternative

- On appelle <u>puissance apparente S</u> l'amplitude de des fluctuations de la puissance instantanée par rapport à sa valeur moyenne
- En régime sinusoïdal, on a donc:

$$S = UI$$

- L'unité est le volt-ampère (VA)
- Elle est liée à P et Q par:

$$S = \sqrt{P^2 + Q^2}$$

Puissance complexe

On définit la puissance complexe par:

$$\underline{S} = P + jQ$$

On peut aussi écrire:

$$\underline{S} = UI\cos(\phi) + jUI\sin(\phi) = UIe^{j\phi}$$

- Cette grandeur contient toutes les informations sur la puissance instantanée:
 - $\operatorname{Re}(\underline{S}) = P$; $\operatorname{Im}(\underline{S}) = Q$
 - $|\underline{S}| = \sqrt{P^2 + Q^2} = S$
 - $arg(\underline{S}) = \phi$

• Enfin, on a aussi:

$$\underline{S} = \underline{U}\underline{I}^*$$

• Pour une impédance *Z*:

$$\underline{S} = \underline{Z} \ I^2 = \frac{U^2}{\underline{Z}^*}$$

• En posant $\underline{Z} = R + jX$:

$$\underline{S} = RI^2 + jXI^2$$

Facteur de puissance

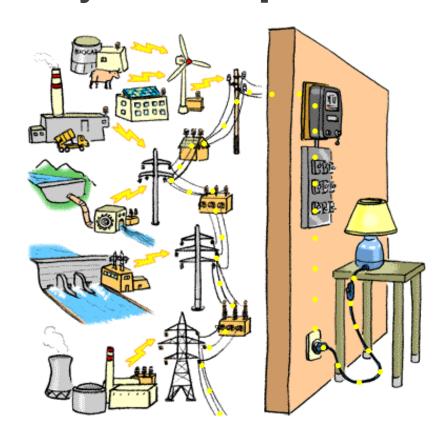
• Le facteur de puissance est le rapport de la puissance active et de la puissance apparente:

$$FP = \frac{P}{S} = \cos(\phi)$$

- Pour une charge purement résistive, $\phi = 0$ donc FP = 1
- En présence d'une charge réactive, le facteur de puissance diminue
- Cela augmente les pertes au niveau du réseau électrique (et peut alors augmenter les coûts de l'électricité)

Réseau électrique

Systèmes de production d'électricité



- Il existe de nombreux moyens de produire de l'électricité
- La majorité des systèmes sont basés sur des machines tournantes

- L'ingénierie des systèmes de production joue un rôle majeur dans notre société
 - Demande de plus en forte
 - Doit être stable
 - Doit polluer le moins possible

Puissance et énergie

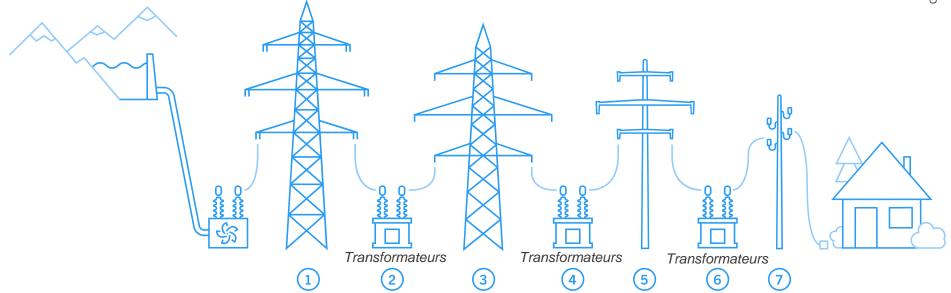
• La puissance instantanée p(t) défini l'énergie que le système peut donner (ou consommer) pendant un instant infinitésimal à un instant donné

 L'énergie traduit la consommation de puissance pendant une certaine durée T

$$E = \int_{0}^{T} p(t)dt$$
 [Unité: joule (J), ou watt-heure (Wh)]

 La puissance moyenne P est l'énergie consommée (ou fournie) divisée par la durée

$$P = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{E}{T}$$



1) Réseau très haute tension

Transport de l'électricité depuis les grandes centrales et l'étranger

Tension: 380/220 kV

3) Réseau haute tension

Transport de l'électricité suprarégional

Tension: de 36 kV à 220 kV

5) Réseau moyenne tension

Transport de l'électricité régional

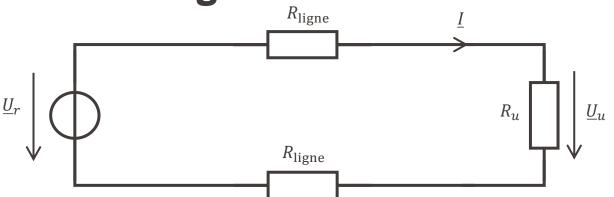
Tension: de 1 kV à 36 kV

7) Réseau basse tension

Acheminement domestique

Tension: 220/400 V

Pertes dans les lignes



Pertes dans les lignes



Transport e l'électricité

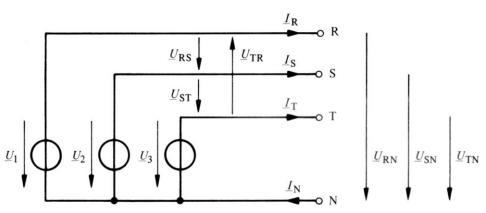
c. Lallorgu

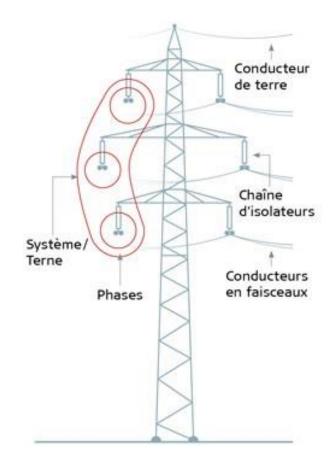
- Les transformateurs permettent d'augmenter la tension et de réduire le courant
 - Moins de pertes dans les lignes sur les longues distances!
- Les transformateurs fonctionnent uniquement en régime alternatif
 (AC)
- Mais les hautes tensions sont effectivement dangereuses
 - Solutions: mettre les lignes hors de portée (sous terre par exemple)

Transport de l'électricité: le triphasé

- On utilise un réseau triphasé
 - Les machines électriques ont un fonctionnement optimal en polyphasé
 - On peut montrer que dans ce cas la puissance instantanée totale est constante

Schéma d'une source triphasée:





Pour aller plus loin: systèmes triphasés

Système polyphasé

Un système polyphasé est un ensemble de m grandeurs (tensions ou courants) sinusoïdales de **même fréquence**, déphasées les unes par rapport aux autres et appelées **phases**.

Système polyphasé symétrique

Un système polyphasé symétrique à *m* phases et d'ordre *k* est un ensemble de *m* grandeurs sinusoïdales (tensions ou courants) de **même fréquence**, de **même valeur efficace** et telles que le **déphasage** entre deux grandeurs consécutives vaut:

$$\frac{k2\pi}{m}$$

k est appelé ordre de succession des phases

Pour aller plus loin : systèmes triphasés

Système direct

On appelle **direct** un système dont le diagramme des phaseurs est ordonné dans le sens trigonométrique négatif (sens des aiguilles d'une montre).

Système inverse

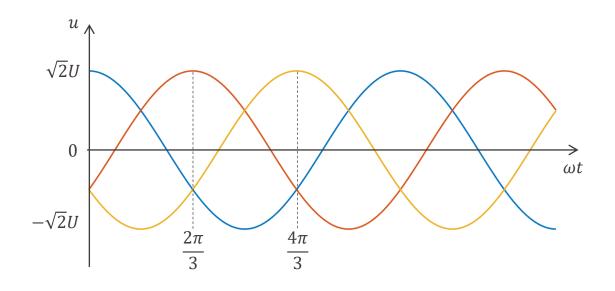
On appelle **inverse** un système dont le diagramme des phaseurs est ordonné dans le sens trigonométrique positif (sens inverse des aiguilles d'une montre).

Système homopolaire

On appelle **homopolaire** un système dans lequel toutes les grandeurs sont en phase.

Systèmes triphasés

• Système triphasé direct d'ordre 1 (m = 3, k = 1).



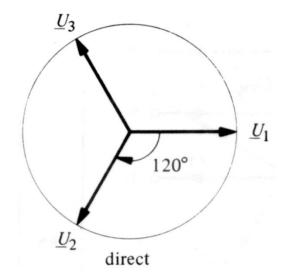
$$u_1(t) = \sqrt{2}U\cos(\omega t)$$

$$u_2(t) = \sqrt{2}U\cos\left(\omega t - \frac{2\pi}{3}\right)$$

$$u_3(t) = \sqrt{2}U\cos\left(\omega t - \frac{4\pi}{3}\right)$$

Systèmes triphasés

• Système triphasé *direct* d'ordre 1 (m = 3, k = 1)



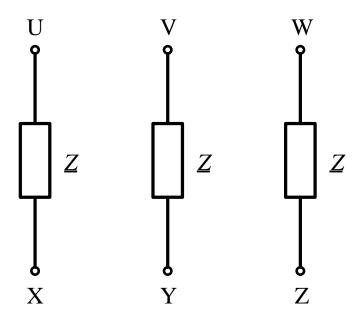
$$\underline{U}_1 = U$$

$$\underline{U}_2 = Ue^{-j\frac{2\pi}{3}}$$

$$\underline{U}_3 = Ue^{-j\frac{4\pi}{3}}$$

$$\underline{U}_1 + \underline{U}_2 + \underline{U}_3 = 0$$

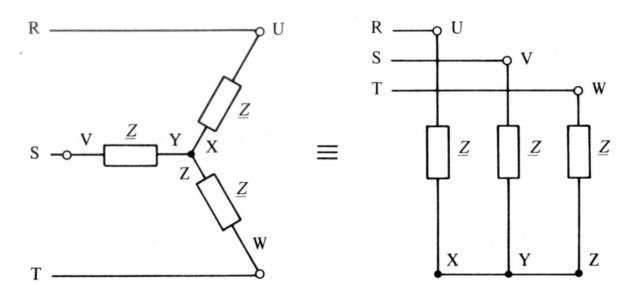
Charge triphasée équilibrée



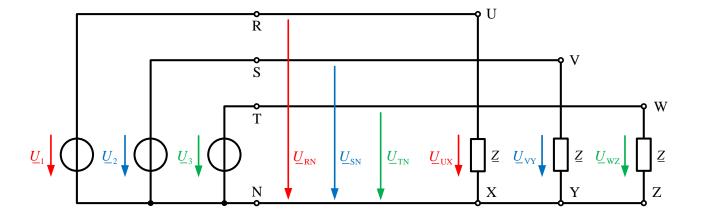
- Trois impédances identiques
- Ces trois impédances peuvent être connectées en étoile ou en triangle

Connexion en étoile

- Montage symbolisé par le signe Y
- Le point commun (XYZ) est appelé point neutre de la charge

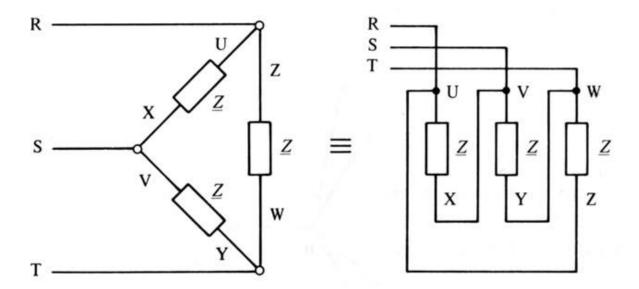


Connexion en étoile

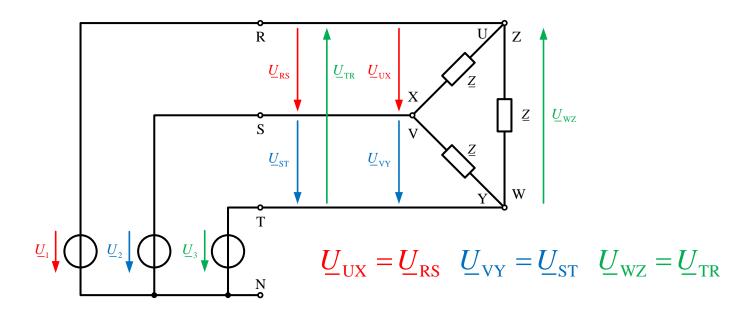


Connexion en triangle

■ Montage symbolisé par le signe Δ



Connexion en triangle



Conversion triangle - étoile

Le passage d'un montage en *triangle* à celui en *étoile* d'une charge d'impédances est utilisé pour :

- Obtenir une réduction momentanée de la puissance.
 Technique largement utilisée pour le démarrage de moteurs asynchrones
- Permettre l'adaptation à un réseau ayant une tension plus élevée.

R. Dufy, « La fée électricité » Musée d'art moderne, Paris