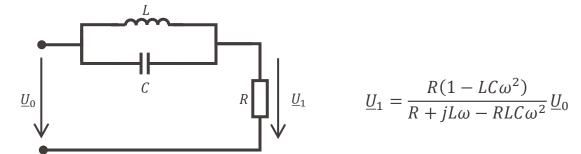
EPFL

■ Ecole Polytechnique Fédérale de Lausanne

Dr. Christian Lafforgue - christian.lafforgue@epfl.ch

Rappels

Les grandeurs dans le circuit dépendent de la fréquence



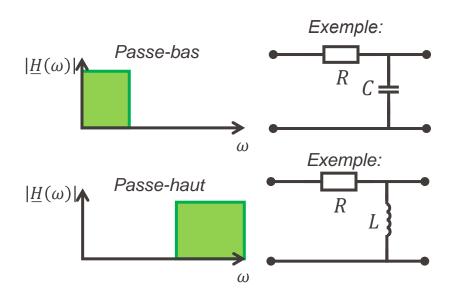
- Cette propriété est utilisée pour réaliser des filtres
 - Systèmes qui permettent de sélectionner/rejeter des signaux en fonction de leur fréquence

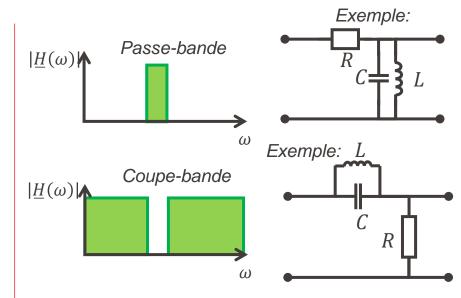
- L'étude des filtres consiste en:
 - Définir sa fonction de transfert

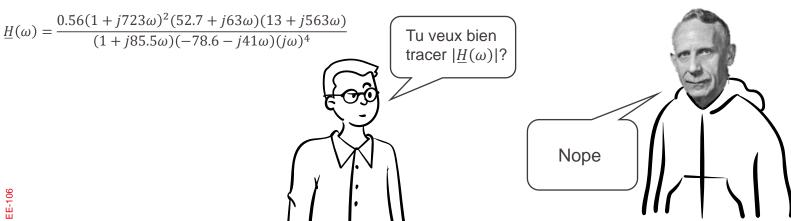
$$\underline{H}(\omega) = \frac{\underline{U}_{\text{sortie}}(\omega)}{\underline{U}_{\text{entrée}}(\omega)}$$

• Etudier et tracer l'évolution de $|\underline{H}(\omega)|$ et $\arg(\underline{H}(\omega))$ en fonction de la fréquence du signal d'entrée

On a vu 4 familles de filtres:







Lafforgue

- Les fonctions de transfert peuvent rapidement être compliquées
- Le diagramme de Bode est un moyen de représenter le comportement fréquentiel d'un système
 - Il permet une résolution graphique simplifiée
 - Il sert à visualiser rapidement le gain et la phase en fonction de la fréquence
 - Il se trace en échelle logarithmique

Les fonctions de transfert peuvent rapidement être compliquées

$$\underline{H}(\omega) = \frac{j\omega}{1 + j2\omega}$$

• Résolution « classique »

Résolution en logarithme

•
$$\log_k(k) = 1$$

- Les fonctions de transfert peuvent rapidement être compliquées
- Il est plus aisé et rapide d'étudier les fonctions de transfert en échelle logarithmique
 - On définit une nouvelle unité: le décibel (dB)
 - Il est défini sur le gain: $G_{dB}(\omega) = 20 \cdot \log_{10}(|\underline{H}(\omega)|)$

Diagramme de Bode – Tracé en échelle logarithmique

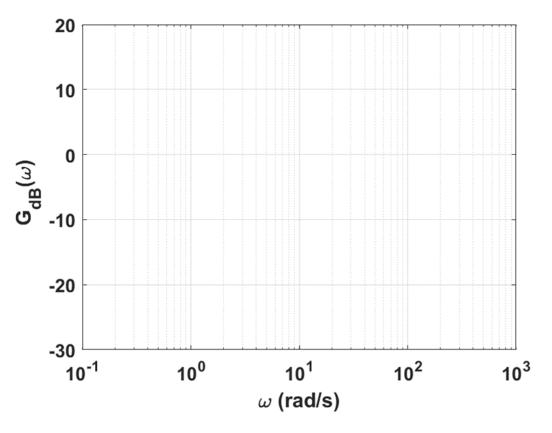
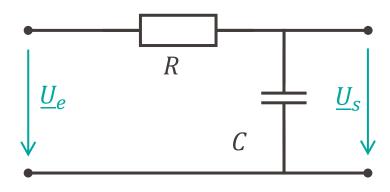


Diagramme de Bode - Exemple



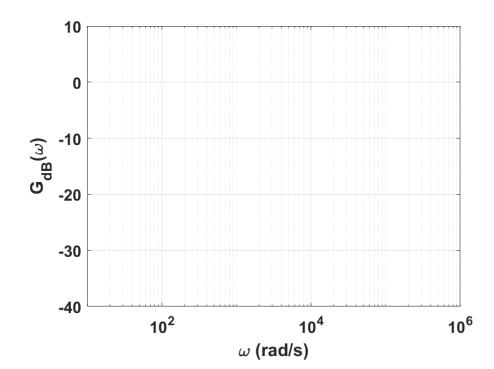
$$\underline{H}(\omega) = \frac{1}{1 + jRC\omega} \Rightarrow \begin{cases} |\underline{H}(\omega)| = \frac{1}{\sqrt{1 + (RC\omega)^2}} \\ \phi(\omega) = -\arctan(RC\omega) \end{cases}$$

Diagramme de Bode - Exemple

$$\underline{H}(\omega) = \frac{1}{1 + jRC\omega} \Rightarrow \begin{cases} |\underline{H}(\omega)| = \frac{1}{\sqrt{1 + (RC\omega)^2}} \\ \phi(\omega) = -\arctan(RC\omega) \end{cases}$$

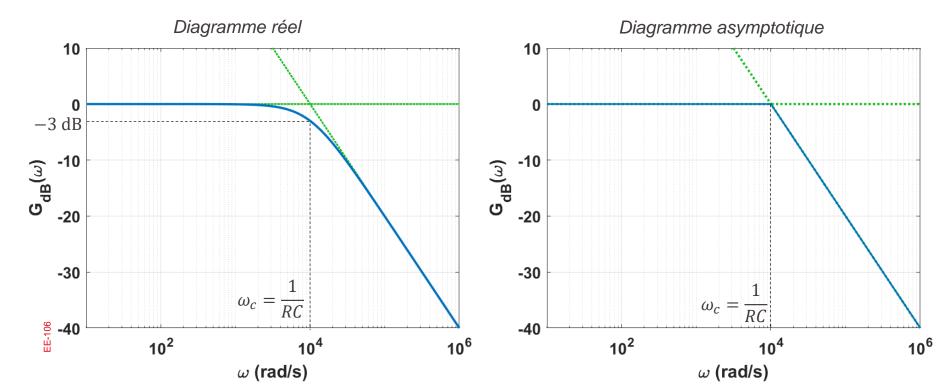
- Cas limites:
 - $\omega \rightarrow 0$

• $\omega \to +\infty$



- **A.** 0 dB
- B. 1 dB
- C. $+\infty$ dB
- D. $-\infty$ dB
- E. 20 dB
- F. -20 dB

$$\underline{H}(\omega) = \frac{1}{1 + jRC\omega} \Rightarrow \begin{cases} |\underline{H}(\omega)| = \frac{1}{\sqrt{1 + (RC\omega)^2}} \\ \phi(\omega) = -\arctan(RC\omega) \end{cases}$$



On s'intéresse ici aux fonctions de transfert de la forme:

$$\underline{H}(\omega) = K \frac{\left(1 + j\frac{\omega}{\omega_1}\right) \left(1 + j\frac{\omega}{\omega_2}\right) \dots \left(1 + j\frac{\omega}{\omega_n}\right)}{(j\omega)^L \left(1 + j\frac{\omega}{\omega'_1}\right) \left(1 + j\frac{\omega}{\omega'_2}\right) \dots \left(1 + j\frac{\omega}{\omega'_n}\right)}$$

 Pour tracer le gain de ces fonctions, il suffit de connaitre quelques formes simples:

$$K; \frac{1}{(j\omega)^L}; \left(1+j\frac{\omega}{\omega_0}\right); \frac{1}{\left(1+j\frac{\omega}{\omega_0}\right)}$$

Diagramme de Bode – Constante *K*

17

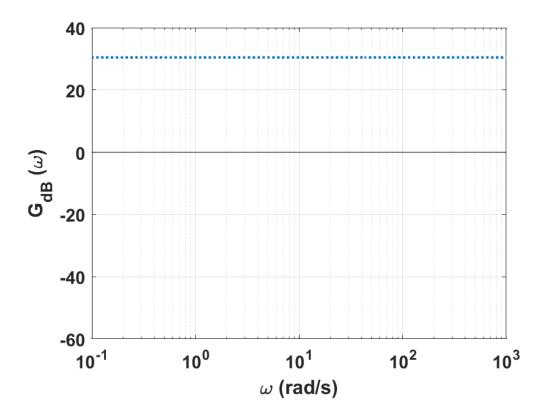


Diagramme de Bode -

Terme $\frac{1}{(j\omega)^L}$ avec L>0

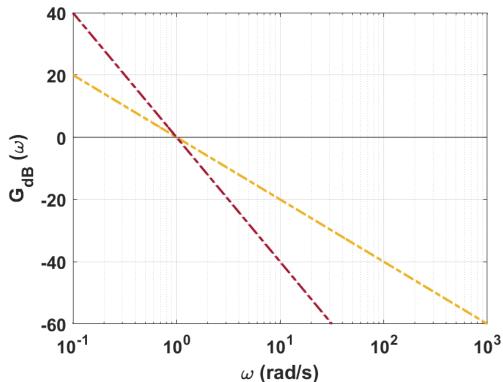


Diagramme de Bode -

Terme $\frac{1}{(j\omega)^L}$ avec L < 0

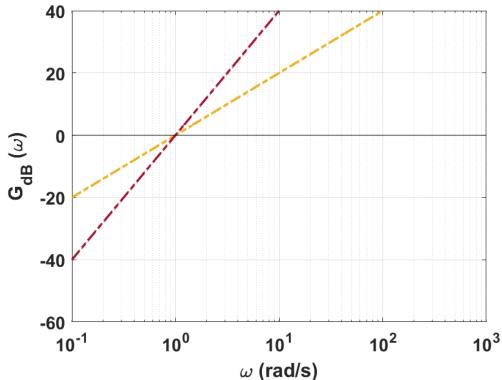
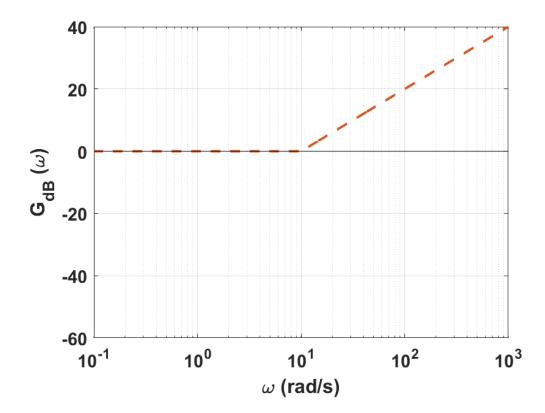


Diagramme de Bode -

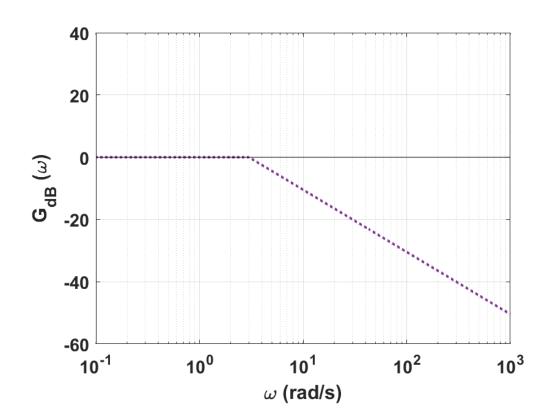
Terme $1+j\frac{\omega}{\omega_0}$

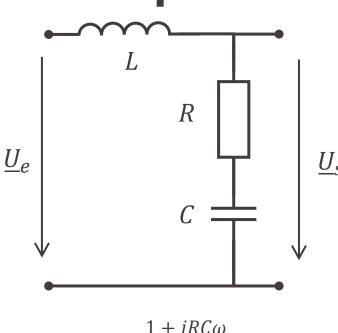


21

Diagramme de Bode -

Terme $\frac{1}{1+j\frac{\omega}{\omega_0}}$





$$\underline{H}(\omega) = \frac{1 + jRC\omega}{1 + jRC\omega - LC\omega^2}$$

$$\underline{H}(\omega) = \frac{1 + j\omega}{1 + j\omega - 0.02\omega^2}$$

$$\underline{H}(\omega) = \frac{1 + j\frac{\omega}{1}}{\left(1 + j\frac{\omega}{5}\right)\left(1 + j\frac{\omega}{10}\right)}$$

$$G_{dB}(\omega) = 20 \log_{10} \left(\left| 1 + j \frac{\omega}{1} \right| \right) + 20 \log_{10} \left(\frac{1}{\left| 1 + j \frac{\omega}{5} \right|} \right) + 20 \log_{10} \left(\frac{1}{\left| 1 + j \frac{\omega}{10} \right|} \right)$$

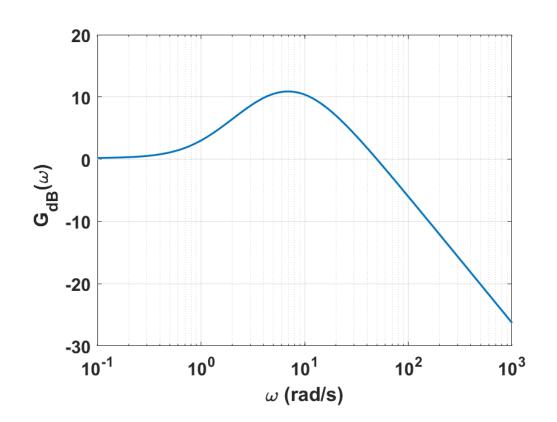
$$R = 10 \Omega$$

 $C = 100 \text{ mF}$
 $L = 200 \text{ mH}$

$$G_{dB}(\omega) = 20 \log_{10} \left(\left| 1 + j \frac{\omega}{1} \right| \right)$$

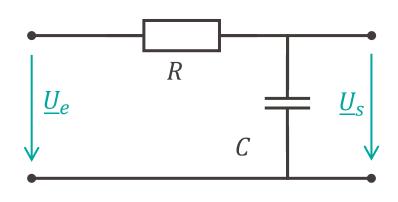
$$+ 20 \log_{10} \left(\frac{1}{\left| 1 + j \frac{\omega}{5} \right|} \right)$$

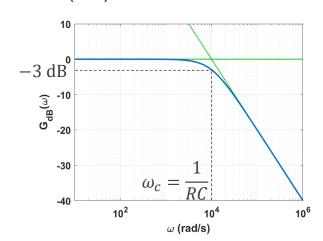
$$+ 20 \log_{10} \left(\frac{1}{\left| 1 + j \frac{\omega}{10} \right|} \right)$$



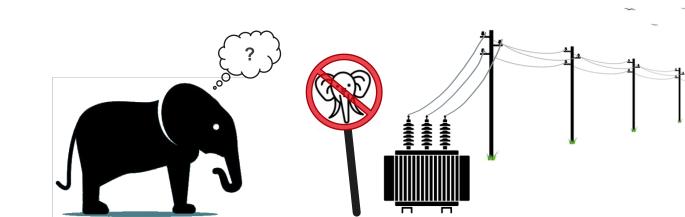
Points clés

- Le diagramme de Bode est un outil graphique pour étudier un système en régime permanent sinusoïdal
 - On trace la gain et la phase en échelle logarithmique
- On peut facilement tracer un diagramme asymptotique
 - Uniquement en traçant des droites
- On définit une nouvelle unité: le décibel (dB)





Puissance en régime permanent sinusoïdal



- En régime statique, on a vu: P = UI
- On définit la puissance instantanée: p(t) = u(t)i(t)
- Avec $u(t) = \widehat{U}\cos(\omega t + \alpha)$ et $i(t) = \widehat{I}\cos(\omega t + \beta)$:

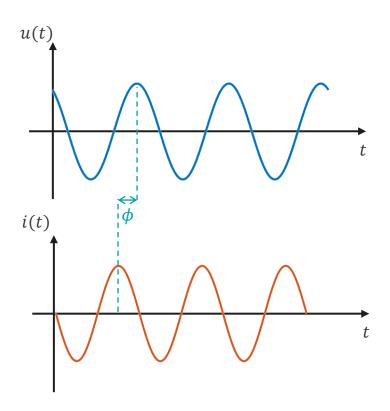
$$p(t) = \widehat{U}\widehat{I}\cos(\omega t + \alpha)\cos(\omega t + \beta)$$

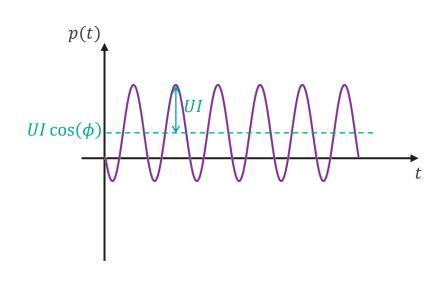
$$p(t) = \frac{\widehat{U}\widehat{I}}{2}\cos(\alpha - \beta) + \frac{\widehat{U}\widehat{I}}{2}\cos(2\omega t + \alpha + \beta)$$

Constante Sinusoïde de fréquence 2\omega

$$p(t) = \frac{UI\cos(\phi)}{UI\cos(2\omega t + 2\alpha - \phi)}$$

Puissance instantanée





- La puissance moyenne dépend du déphasage
- La puissance instantanée oscille avec une amplitude UI
- On peut décomposer la puissance instantanée en deux parties:
 - Une partie toujours positive (puissance consommée)
 - Une partie alternative (à valeur moyenne nulle)

C. Lafforgue

- La puissance moyenne dépend du déphasage
- La puissance instantanée oscille avec une amplitude UI
- On peut décomposer la puissance instantanée en deux parties:
 - Une partie toujours positive (puissance consommée)
 - Une partie alternative (à valeur moyenne nulle)

$$p(t) = UI\cos(\phi) + UI\cos(2\omega t + 2\alpha - \phi)$$

$$\Leftrightarrow p(t) = UI\cos(\phi) + UI[\cos(2\omega t + 2\alpha)\cos(\phi) + \sin(2\omega t + 2\alpha)\sin(\phi)]$$

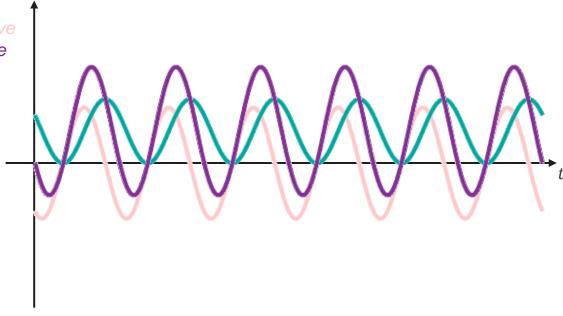
$$\Leftrightarrow p(t) = \frac{UI\cos(\phi)[1+\cos(2\omega t+2\alpha)]}{UI\sin(\phi)\sin(2\omega t+2\alpha)}$$

Composante pulsée

Composante alternative

 $p(t) = UI\cos(\phi)[1 + \cos(2\omega t + 2\alpha)] + UI\sin(\phi)\sin(2\omega t + 2\alpha)$

Composante pulsée Composante alternative Puissance instantanée



Puissance active

 $p(t) = \frac{UI\cos(\phi)[1 + \cos(2\omega t + 2\alpha)]}{Composante\ puls\'ee} + \frac{UI\sin(\phi)\sin(2\omega t + 2\alpha)}{Composante\ alternative}$

- On appelle <u>puissance active P</u> la valeur moyenne de la puissance instantanée
- En régime sinusoïdal, on a donc:

$$P = UI\cos(\phi)$$

- L'unité est le watt (W)
- Elle correspond à l'énergie convertible en travail ou en chaleur
 - Elle est maximale pour $\phi = 0$
 - Elle est nulle pour $\phi = \pm \pi/2$

Puissance réactive

 $p(t) = \frac{UI\cos(\phi)[1 + \cos(2\omega t + 2\alpha)]}{Composante\ puls\'ee} + \frac{UI\sin(\phi)\sin(2\omega t + 2\alpha)}{Composante\ alternative}$

- On appelle <u>puissance réactive Q</u> l'amplitude de composante alternative
- En régime sinusoïdal, on a donc: $O = UI \sin(\phi)$

- L'unité est le volt-ampère réactif (VAr)
- Elle correspond une énergie non convertible
 - Elle est maximale pour $\phi = \pm \pi/2$
 - Elle est nulle pour $\phi = 0$

Puissance apparente

 $p(t) = \frac{UI\cos(\phi)[1 + \cos(2\omega t + 2\alpha)] + UI\sin(\phi)\sin(2\omega t + 2\alpha)}{Composante\ puls\'ee}$ Composante alternative

- On appelle <u>puissance apparente S</u> l'amplitude de des fluctuations de la puissance instantanée par rapport à sa valeur moyenne
- En régime sinusoïdal, on a donc:

$$S = UI$$

- L'unité est le volt-ampère (VA)
- Elle est liée à *P* et *Q* par:

$$S = \sqrt{P^2 + Q^2}$$

Puissance complexe

On définit la puissance complexe par:

$$\underline{S} = P + jQ$$

On peut aussi écrire:

$$\underline{S} = UI\cos(\phi) + jUI\sin(\phi) = UIe^{j\phi}$$

- Cette grandeur contient toutes les informations sur la puissance instantanée:
 - $\operatorname{Re}(\underline{S}) = P$; $\operatorname{Im}(\underline{S}) = Q$
 - $|\underline{S}| = \sqrt{P^2 + Q^2} = S$
 - $arg(\underline{S}) = \phi$

• Enfin, on a aussi:

$$\underline{S} = \underline{U}\underline{I}^*$$

■ Pour une impédance <u>Z</u>:

$$\underline{S} = \underline{Z} \ I^2 = \frac{U^2}{\underline{Z}^*}$$

• En posant $\underline{Z} = R + jX$:

$$\underline{S} = RI^2 + jXI^2$$

$$u(t) = 20\cos\left(5000t + \frac{\pi}{3}\right)$$
$$i(t) = 12\cos\left(5000t + \frac{\pi}{6}\right)$$

A.
$$S = 240 \text{ VA}$$

B.
$$S = 120 \text{ VA}$$

C.
$$S = 207.8 \text{ VA}$$

D.
$$S = 103.9 \text{ VA}$$

E.
$$S = 60 \text{ VA}$$

$$u(t) = 20\cos\left(5000t + \frac{\pi}{3}\right)$$
$$i(t) = 12\cos\left(5000t + \frac{\pi}{6}\right)$$

A.
$$P = 240 \text{ W}$$

B.
$$P = 120 \text{ W}$$

C.
$$P = 207.8 \text{ W}$$

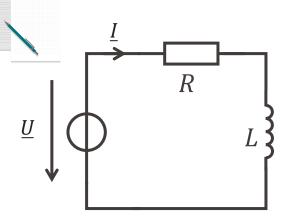
D.
$$P = 103.9 \text{ W}$$

E.
$$P = 60 \text{ W}$$

$$u(t) = 20\cos\left(5000t + \frac{\pi}{3}\right)$$
$$i(t) = 12\cos\left(5000t + \frac{\pi}{6}\right)$$

- A. Q = 240 VAr
- **B.** Q = 120 VAr
- C. Q = 207.8 VAr
- **D.** Q = 103.9 VAr
- E. Q = 60 VAr

Exemple



$$\underline{U} = 230 \text{ V}$$

 $R = 5 \Omega$

$$L = 10 \text{ mH}$$

$$f = 50 \text{ Hz}$$

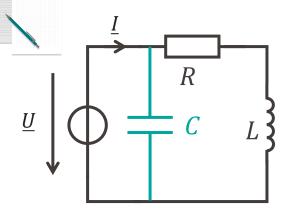
Facteur de puissance

 Le facteur de puissance est le rapport de la puissance active et de la puissance apparente:

$$FP = \frac{P}{S} = \cos(\phi)$$

- Pour une charge purement résistive, $\phi = 0$ donc FP = 1
- En présence d'une charge réactive, le facteur de puissance diminue
- Cela augmente les pertes au niveau du réseau électrique (et peut alors augmenter les coûts de l'électricité)

Exemple: correction de facteur de puissance



$$\underline{U} = 230 \text{ V}$$

$$R = 5 \Omega$$

$$L = 10 \text{ mH}$$

$$f = 50 \text{ Hz}$$

Que doit valoir C pour annuler la puissance réactive?

```
f = 50 \text{ Hz}

U = 230 \text{ V}

P = 7.59 \text{ kW}

Q = 4.77 \text{ kVAr}

S = 8.96 \text{ kVA}
```

- A. C = 1.8 mF
- B. $C = 287 \, \mu F$
- C. C = 3.5 kF
- D. $C = 555 \, \text{F}$
- **E.** C = 35.3 mF
- F. C = 222 mF

Points clés

En régime permanent sinusoïdal, on définit une puissance complexe:

$$\underline{S} = \underline{U}\underline{I}^* = P + jQ$$

- P est la puissance active, en W: puissance convertie
- Q est la puissance réactive, en VAr: puissance alternative
- $S = |\underline{S}|$ est la puissance apparente, en VA
- La qualité d'un système électrique peut être quantifiée par le facteur de puissance:

$$FP = \frac{P}{S} = \cos(\phi)$$

R. Dufy, « La fée électricité » Musée d'art moderne, Paris