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Today’s plan

Why ?
What has 
been done 
until now ?

How is the 
solution 

evaluated ? 

What is 
proposed in 
this paper ? 

What are the 
results ? 
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Motivation

Designing courses is not easy:

● What learning material do you present to students ? 
● When ? 
● How do you adapt it to each learner? 

“Given a set of course materials, how can we assign each learner the smallest number of 
activities that maximize their learning gains?”
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Related work 

Reinforcement Learning is only used a little

Adaptive scheduling requires:

Skill map
● Cognitive task analysis (CTA)
● Q-learning

Learners knowledge models 
● Bayesian Knowledge Tracing (BKT)
● IRT-Integrated Knowledge Tracing (IIKT)
● Deep Knowledge Tracing (DKT)

&

● Requires historical data
● Manual re-training
● Requires skills annotations

4



Solution

Reinforcement Scheduling
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Reinforcement Scheduling: Action Space

● Educational activities
● Conditions: No repetition & at least one activity
● Always ends with post-test
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Reinforcement Scheduling: State Space

● Pre-test scores
● Activities done (no matter the order)
● Scores of activities done (no matter the order)
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Reinforcement Scheduling: Reward Function

Design choices:

1. Exploration of longer and diverse paths
2. Prevents assigning activities to preferentially 
3. Ignore when initial guess or slip at post-test
4. Include only activities that significantly help
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Reinforcement Scheduling: Policy Optimization

Model characteristics:

1. Advantage Actor-Critic architecture (both neural network)

Actor Critic

The actor network learns πθ with parameters 
θ, the mapping between a given state s and 
the probability of taking action a

The critic network learns Vϕ with parameters 
ϕ, the mapping between the given state s and 
the reward R(s,a)

Advantage: relative benefit of taking action a 
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Reinforcement Scheduling: Policy Optimization

Model characteristics:

1. Advantage Actor-Critic architecture (both neural network)
2. Proximal Policy Optimization

The actor lags behind model update. Thus ρ(θ) and clipping reduce 
training instability and increase sample efficiency. 10

Actor Critic



Evaluation
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Course platform

● Supports different types of learning material
● Exposed an API for learner traces
● Can be set to allow different types of behavior (experimental conditions):

○ Reinforcement Scheduling (SD): one activity at a time selected by the model, not possible to 
choose activity or to go back

○ Linear Scheduling (LS): one activity at a time, all activities sequentially (predefined order)
○ Self-Directed (SD): one activity at a time selected by user, possible to go back and see 

multiple time same activity
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Course overview

● Elementary linear algebra class, decomposed in three basic skills
● For each skill: video explanations, written descriptions, worked examples and assessment questions
● Each test problem and educational activity recorded a binary score of 1 or 0 after the learner 

responded to it
● 90min or less 
● Available to Amazon employees in English-speaking region

Evaluation → pre-test and post-test with same 6 problems (2 per basic skill)

1987 enrollment splitted as follow: 
● 95% Reinforcement Scheduling (1830 completed)
● 2.5% Linear Scheduling (91 completed)
● 2.5% Self-directed (66 completed)
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Testing

14

Pilot study

● 24 learners from target 
population

● Test content and platform

Simulated learners

● BKT and IIKT 
● Test model designs choices 



Results
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R1: How does reinforcement scheduling affect learning 
gains, the number of activities completed, and dropout? 

● LS & RS →  higher course completion
● RS →  less activities
● SD + RL → higher learning gain

Due to loss of non motivated learners ?

Learners prefer not to choose activities and 
the number of activities doesn’t seem to 
have a huge influence on learning gains
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R2: Do early participants suffer from a worse assignment 
policy under reinforcement scheduling?

Almost constant completion rate and learning rate
● Delayed penalty for additional educational activities
● Positive immediate reward for assignments, encouraging 

agent’s early exploration towards longer paths
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R3: What can instructors and course designers learn from 
reinforcement scheduling?

Distribution of activities for the last 200 learners:

● mostly 4 items presented (covering the 3 
elementary skill) 
→ largest impact on score improvement

● less activities depending on user’s pre-test 
score
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R4: What are the qualitative experiences of learners under 
reinforcement scheduling?

Survey answers:
● 80% users satisfied
● Around 3.3/5 for effectiveness of ordering/selection/number of 

activities
● Overall liked the fact that it adapts to learners’ knowledge state
● Still sometimes some exploration from the model
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And now ? 

Generalization: complex evaluation ? less students ? 

Data analysis: final policy ? study students’ learning behavior ? 

Reinforcement Scheduling itself: remove penalty for many activities ? 
cap assignments but allow repetitions ? penalize loss of learners ? 
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Conclusion

● Address the problem continuous improvement of online course scheduling

● Reinforcement Scheduling: Actor-critic architecture using proximal policy optimization

● Tested on a online learning course that they created, with around 2000 participants

● RS performed better while reducing the number of learning activities presented
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Thank you for you attention

Questions ?
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