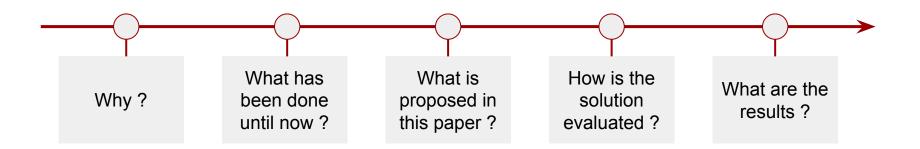
Reinforcement Learning for the Adaptive Scheduling of Educational Activities

Jonathan Bassen, Bharathan Balaji, Michael Schaarschmidt, Candace Thille, Jay Painter, Dawn Zimmaro, Alex Games, Ethan Fast, John C Mitchell

Best paper award - CHI 2020

Today's plan



Motivation

Designing courses is not easy:

- What learning material do you present to students?
- When?
- How do you adapt it to each learner?

"Given a set of course materials, how can we assign each learner the smallest number of activities that maximize their learning gains?"

Related work

Adaptive scheduling requires:

Skill map

- Cognitive task analysis (CTA)
- Q-learning

Learners knowledge models

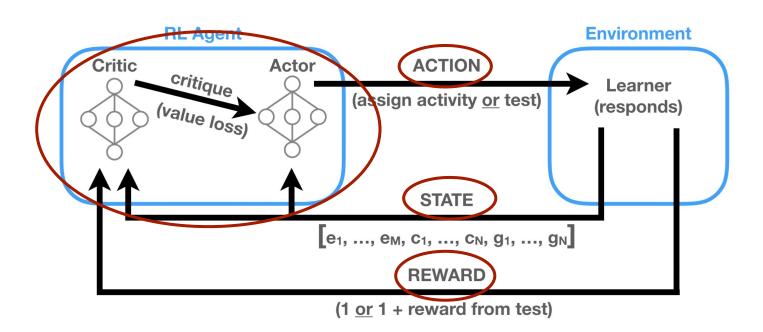
- Bayesian Knowledge Tracing (BKT)
- IRT-Integrated Knowledge Tracing (IIKT)
- Deep Knowledge Tracing (DKT)

- Requires historical data
- Manual re-training
- Requires skills annotations

Reinforcement Learning is only used a little

Solution

Reinforcement Scheduling



Reinforcement Scheduling: Action Space

$$A_i = [a_1, ..., a_N, a_{N+1}]$$

- Educational activities
- Conditions: No repetition & at least one activity
- Always ends with post-test

Reinforcement Scheduling: State Space

$$S_i = [e_1, ..., e_M, c_1, ..., c_N, g_1, ..., g_N]$$

- Pre-test scores
- Activities done (no matter the order)
- Scores of activities done (no matter the order)

Reinforcement Scheduling: Reward Function

$$R_{i} = 1$$

$$= 1 + \sum_{p=1}^{M} \left[max(0, o_{p} - e_{p}) \right] - (1 + \psi) * H$$

[after educational activity is assigned]
[after post-test is assigned]

Design choices:

- 1. Exploration of longer and diverse paths
- 2. Prevents assigning activities to preferentially
- 3. Ignore when initial guess or slip at post-test
- 4. Include only activities that significantly help

Reinforcement Scheduling: Policy Optimization

Model characteristics:

1. Advantage Actor-Critic architecture (both neural network)

Actor

The actor network learns π_{θ} with parameters θ , the mapping between a given state s and the probability of taking action a

Critic

The critic network learns V_{ϕ} with parameters ϕ , the mapping between the given state s and the reward R(s,a)

Advantage: relative benefit of taking action $a \longrightarrow A(s_t, a_t) = R(s_t, a_t) + \gamma V_{\phi}(s_{t+1}) - V_{\phi}(s_t)$

Reinforcement Scheduling: Policy Optimization

Model characteristics:

- 1. Advantage Actor-Critic architecture (both neural network)
- 2. Proximal Policy Optimization

$$J_{ heta} = \mathbb{E}_t \left[min(
ho(heta)A(s,a), clip(
ho(heta), 1-arepsilon, 1+arepsilon) A(s,a))
ight]$$
 $ho(heta) = rac{\pi_{ heta}(a|s)}{\pi_{ heta, tr}(a|s)}$

Critic

$$L_{\phi} = \frac{1}{2} \sum_{t} V_{\phi}(s_{t}) - (R(s_{t}, a_{t}) + \gamma V_{\phi}(s_{t+1}))^{2}$$

The actor lags behind model update. Thus $\rho(\theta)$ and clipping reduce training instability and increase sample efficiency.

Evaluation

Course platform

- Supports different types of learning material
- Exposed an API for learner traces
- Can be set to allow different types of behavior (experimental conditions):
 - Reinforcement Scheduling (SD): one activity at a time selected by the model, not possible to choose activity or to go back
 - <u>Linear Scheduling (LS):</u> one activity at a time, all activities sequentially (predefined order)
 - Self-Directed (SD): one activity at a time selected by user, possible to go back and see multiple time same activity

Course overview

- Elementary linear algebra class, decomposed in three basic skills
- For each skill: video explanations, written descriptions, worked examples and assessment questions
- Each test problem and educational activity recorded a binary score of 1 or 0 after the learner responded to it
- 90min or less
- Available to Amazon employees in English-speaking region

Evaluation → pre-test and post-test with same 6 problems (2 per basic skill)

1987 enrollment splitted as follow:

- 95% Reinforcement Scheduling (1830 completed)
- 2.5% Linear Scheduling (91 completed)
- 2.5% Self-directed (66 completed)

Testing

Simulated learners

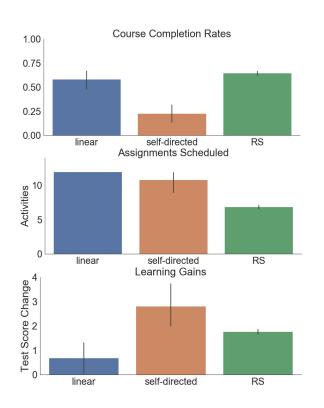
- BKT and IIKT
- Test model designs choices

Pilot study

- 24 learners from target population
- Test content and platform

Results

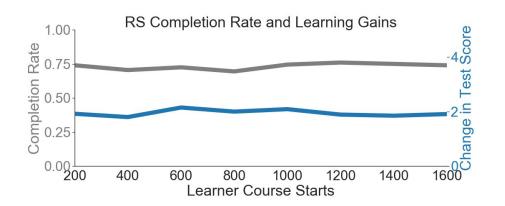
R1: How does reinforcement scheduling affect learning gains, the number of activities completed, and dropout?

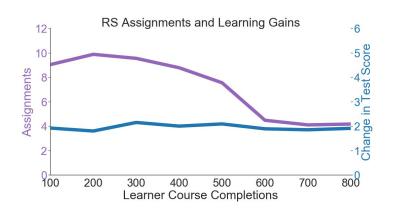


- LS & RS → higher course completion
- RS → less activities
- SD + RL → higher learning gain
 Due to loss of non motivated learners?

Learners prefer not to choose activities and the number of activities doesn't seem to have a huge influence on learning gains

R2: Do early participants suffer from a worse assignment policy under reinforcement scheduling?

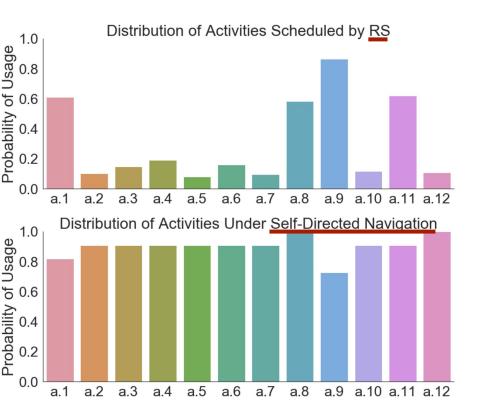




Almost constant completion rate and learning rate

- Delayed penalty for additional educational activities
- Positive immediate reward for assignments, encouraging agent's early exploration towards longer paths

R3: What can instructors and course designers learn from reinforcement scheduling?



Distribution of activities for the last 200 learners:

- mostly 4 items presented (covering the 3 elementary skill)
 - → largest impact on score improvement
- less activities depending on user's pre-test score

R4: What are the qualitative experiences of learners under reinforcement scheduling?

Survey answers:

- 80% users satisfied
- Around 3.3/5 for effectiveness of ordering/selection/number of activities
- Overall liked the fact that it adapts to learners' knowledge state
- Still sometimes some exploration from the model

And now?

<u>Generalization</u>: complex evaluation? less students?

<u>Data analysis:</u> final policy? study students' learning behavior?

Reinforcement Scheduling itself: remove penalty for many activities? cap assignments but allow repetitions? penalize loss of learners?

Conclusion

- Address the problem continuous improvement of online course scheduling
- Reinforcement Scheduling: Actor-critic architecture using proximal policy optimization
- Tested on a online learning course that they created, with around 2000 participants
- RS performed better while reducing the number of learning activities presented

Thank you for you attention

Questions?