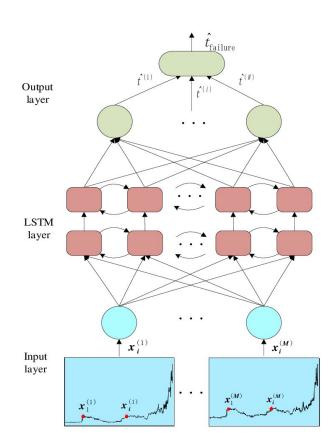
Towards Equity and Algorithmic Fairness in Student Grade Prediction

By Weijie Jiang and Zachary A. Pardos

Contribution


- Proposing data processing approaches to remove biases for grade prediction tasks
- Adapting adversarial learning architecture to remove bias for grade prediction
- Implementing a testing for multiple

Motivation

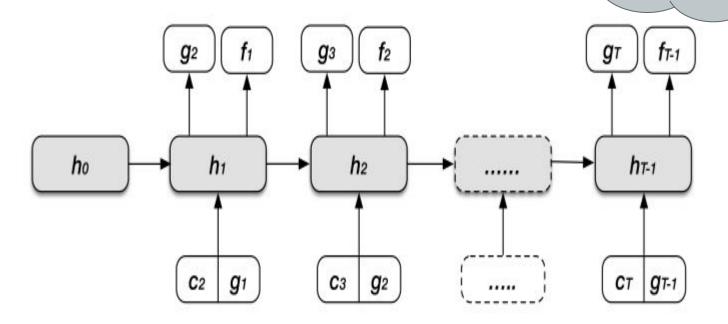
- Grade prediction is an important task to help struggling students and college admission
- Equalized odds and equalized opportunities
- We may need a more fair but less performant approach

Methods:Base Model

$$\begin{split} L_{masked} &= MaskedCrossEntropy(\hat{\boldsymbol{g}}_{t+1}, \boldsymbol{g}_{t+1}) \\ &= -\sum_{t} \sum_{i, \hat{\boldsymbol{g}}_{t+1}^i \neq \boldsymbol{0}} (\boldsymbol{g^{\hat{i}1}}_{t+1}^T \text{log} \boldsymbol{g_{t+1}^{i1}} + \boldsymbol{g^{\hat{i}2}}_{t+1}^T \text{log} \boldsymbol{g_{t+1}^{i2}}) \end{split}$$

Methods: Data construction

Sensitive attribute balancing


Grade label balancing

Final Loss

$$\begin{split} L_{wgs} &= -\sum_{t} \lambda(r(\hat{g}_{t+1})) Masked Cross Entropy(\hat{g}_{t+1}, g_{t+1}) \\ \lambda(r) &= 1/r, \qquad \lambda(d) = 1 - d \\ L_{wbl} &= -\sum_{t} \sum_{i, \hat{g}_{t+1}^{i} \neq 0} \sigma(\hat{g}^{i}_{t+1}) (\hat{g}^{\hat{i}1}_{t+1}^{T} \log g_{t+1}^{i1} + \hat{g}^{\hat{i}2}_{t+1}^{T} \log g_{t+1}^{i2}) \\ \sigma(\hat{g}^{i}_{t+1}) &= \frac{1/p(\hat{g}^{i}_{t+1})}{\sum_{t} 1/p(\hat{g}^{i}_{t+1})} \\ L_{wbsl} &= -\sum_{t} \lambda(r(\hat{g}_{t+1})) \sum_{i, \hat{g}^{i} \neq 0} \sigma(\hat{g}^{i}_{t+1}) (\hat{g}^{\hat{i}1}_{t+1}^{T} \log g_{t+1}^{i1} + \hat{g}^{\hat{i}2}_{t+1}^{T} \log g_{t+1}^{i2}) \end{split}$$

Methods: Adversarial learning

Model does not learn hidden states that can be used for discrimination

Methods: Adversarial learning

Adversarial loss

$$Loss_F = -\sum_t \hat{f}_t^T \log f_t$$

Total Loss
$$L = -\sum_{t} \sum_{i, \hat{g}_{t+1}^{i} \neq 0} (\hat{g^{i1}}_{t+1}^{T} \log g_{t+1}^{i1} + \hat{g^{i2}}_{t+1}^{T} \log g_{t+1}^{i2}) + \alpha \sum_{t} \hat{f_{t}}^{T} \log f_{t}$$

Methods: Sensitive feature inclusion

- Default not additional attributes
- Leave out sensitive features in inference
- Include race attribute
- Multiple sensitive features

Experiments: Dataset

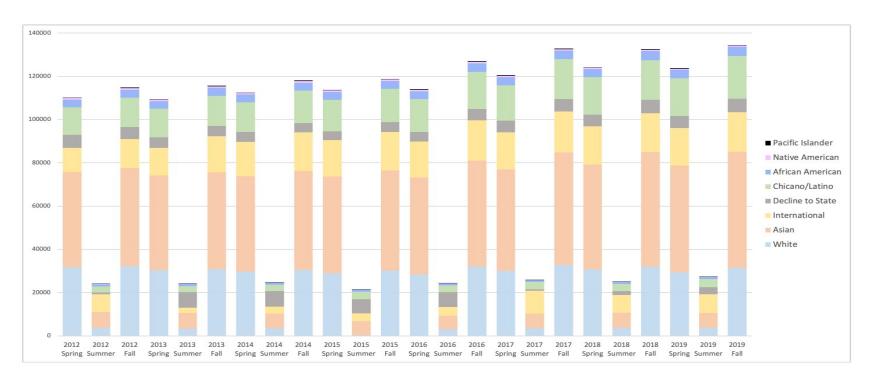
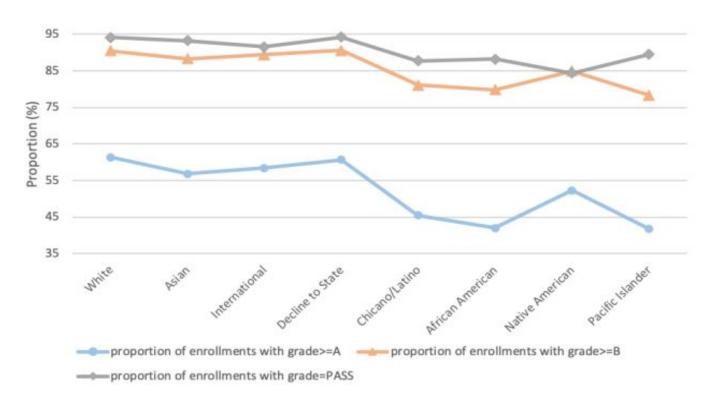



Figure 1: Distribution of enrollments by race across semesters

Experiments: Dataset

Experiments: Metrics

- True positive rate (opportunities for performing students)
- True negative rate (support for struggling students)
- Accuracy (Overall performance)
- Range of other metrics among subgroups (Fairness)
- Standard deviation of other metrics among subgroups (Fairness)

Results: Label balancing

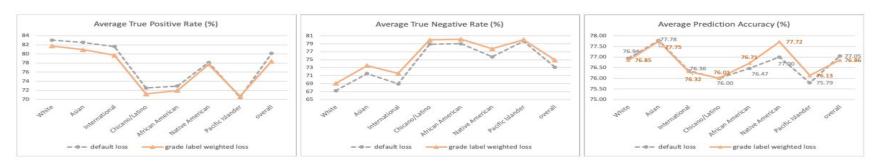


Figure 5: Results of comparison between models with unweighted loss and models with weighted loss by grade label

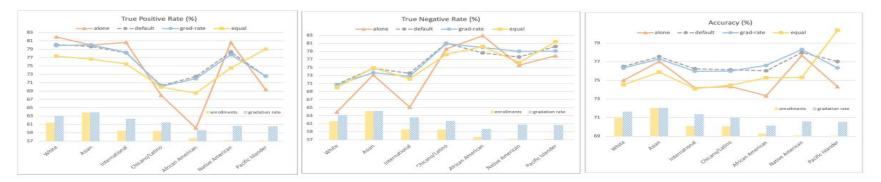


Figure 6: Evaluation results comparison between models with weighted loss by race

Results: Adding sensitive attribute

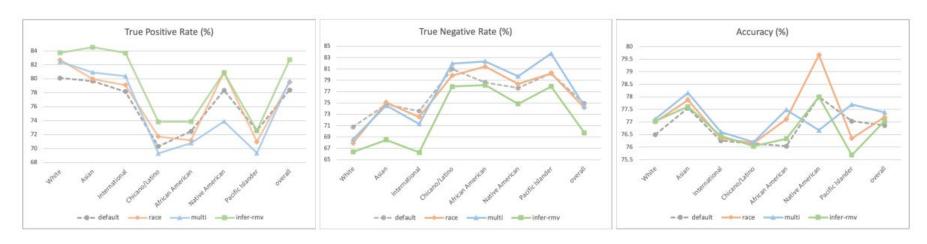


Figure 7: Results of models adding sensitive student attributes to the input

Results: Fairness results

		White Asian International Chicano Latino American American Pacific Islander STD									
		White	Asian	Internat	Chican	African	Native	Pacific	Overall	Range	STD
TPR(%)	default	80.10	79.67	78.16	70.31	72.46	78.34	72.58	78.39	9.79	4.02
	grad-rate(wgh)	79.89	80.07	78.27	70.09	71.96	77.71	72.58	79.82	9.98	4.13
	equal(wgh)	77.36	76.65	75.49	69.93	68.51	74.52	79.03	79.46	10.52	3.90
	race(feature)	82.70	79.99	79.10	71.72	71.17	80.89	70.97	79.53	11.73	5.14
	adversarial	80.27	79.37	77.91	70.79	72.26	77.07	72.58	78.42	9.48	3.80
TNR(%)	default	70.76	74.76	73.56	81.01	78.63	77.62	80.23	74.91	10.25	3.75
	grad-rate(wgh)	70.67	73.68	72.79	80.92	79.99	79.02	79.07	73.89	10.25	4.09
	equal(wgh)	70.04	74.89	72.17	78.27	80.20	76.22	81.40	73.69	11.36	4.15
	race(feature)	67.95	75.09	72.53	79.84	81.42	78.32	80.23	74.21	13.47	4.89
	adversarial	71.27	74.61	72.99	80.03	79.34	77.62	79.07	74.75	8.76	3.45
Accuracy(%)	default	76.50	77.55	76.25	76.14	76.04	78.00	77.03	76.86	1.96	0.76
	grad-rate(wgh)	76.33	77.31	75.99	76.00	76.62	78.33	76.35	76.82	2.34	0.85
	equal(wgh)	74.54	75.89	74.11	74.48	75.29	75.33	80.41	76.93	6.30	2.16
	race(feature)	77.01	77.88	76.36	76.15	77.11	79.67	76.35	77.19	3.52	1.23
	adversarial	76.80	77.31	75.86	75.83	76.37	77.33	76.35	76.81	1.50	0.62

Conclusion

- Adding the race feature is the least fair (it just had the least drop?)
- Adversarial learning is the most fair (is it significant?)
- Equality of outcome approach boosted the accuracy (How true is this?)

Questions?