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Contribution

Proposing data processing approaches to remove biases for grade prediction

tasks
Adapting adversarial learning architecture to remove bias for grade prediction

e |Implementing a testing for multiple



Motivation

e Grade predictionis an important task to help struggling students and college
admission

e Equalized odds and equalized opportunities

e We may need a more fair but less performant approach



Methods:Base Model

Linasked = MaskedCrossEntropy(gs+1, gr+1)
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Methods: Data construction

Sensitive attribute balancing Lyngs =~ Z A(r(ge+1))MaskedCrossEntropy(ges1, gr+1)
t
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Model does not
learn hidden states
that can be used for
discrimination

Methods: Adversarial learning
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Methods: Adversarial learning

Adversarial loss Lossp = — Z f;Tlog 1
t
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Methods: Sensitive feature inclusion

Default not additional attributes

Leave out sensitive features in inference
Include race attribute

Multiple sensitive features



Experiments: Dataset
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Figure 1: Distribution of enrollments by race across semesters




Experiments: Dataset
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Experiments: Metrics

True positive rate (opportunities for performing students)

True negative rate (support for struggling students)

Accuracy (Overall performance)

Range of other metrics among subgroups (Fairness)

Standard deviation of other metrics among subgroups (Fairness)



Results: Label balancing

Average True Positive Rate (%)
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Figure 5: Results of comparison between models with unweighted loss and models with weighted loss by grade label
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Figure 6: Evaluation results comparison between models with weighted loss by race




Results: Adding sensitive attribute

True Positive Rate (%) True Negative Rate (%) Accuracy (%)
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Figure 7: Results of models adding sensitive student attributes to the input



Results: Fairness results
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default 80.10 | 79.67 | 78.16 | 70.31 | 72.46 | 78.34 | 72.58 | 78.39 9.79 | 4.02
grad-rate(wgh) | 79.89 | 80.07 | 78.27 | 70.09 | 71.96 | 77.71 | 72.58 | 79.82 9.98 | 4.13
TPR(%) equal(wgh) 77.36 | 76.65 | 7549 | 69.93 | 68.51 | 74.52 | 79.03 | 79.46 | 10.52 | 3.90

race(feature) 82.70 | 79.99 | 79.10 | 71.72 | 71.17 | 80.89 | 70.97 | 79.53 | 11.73 | 5.14
adversarial 80.27 | 7937 | 77.91 | 70.79 | 72.26 | 77.07 | 7258 | 7842 | 9.48 | 3.80

default 70.76 | 74.76 | 73.56 | 81.01 | 78.63 | 77.62 | 80.23 | 74.91 | 10.25 | 3.75
grad-rate(wgh) | 70.67 | 73.68 | 72.79 | 80.92 | 79.99 | 79.02 | 79.07 | 73.89 | 10.25 | 4.09
TNR(%) equal(wgh) 70.04 | 74.89 | 72.17 | 78.27 | 80.20 | 76.22 | 81.40 | 73.69 | 11.36 | 4.15

race(feature) 67.95 | 75.09 | 7253 | 79.84 | 81.42 | 7832 | 80.23 | 74.21 | 13.47 | 4.89

adversarial 71.27 | 7461 | 7299 | 80.03 | 79.34 | 77.62 | 79.07 | 74.75 | 8.76 | 3.45

default 76.50 | 77.55 | 76.25 | 76.14 | 76.04 | 78.00 | 77.03 | 76.86 1.96 | 0.76

grad-rate(wgh) | 76.33 | 77.31 | 7599 | 76.00 | 76.62 | 78.33 | 76.35 | 76.82 2.34 | 085

Accuracy(%) equal(wgh) 74.54 | 75.89 | 7411 | 7448 | 75.29 | 7533 | 80.41 | 7693 | 6.30 | 2.16
race(feature) 77.01 | 77.88 | 76.36 | 76.15 | 77.11 | 79.67 | 76.35 | 77.19 352 | 123

adversarial 76.80 | 77.31 | 75.86 | 75.83 | 7637 | 7733 | 7635 | 76.81 1.50 | 0.62




Conclusion

e Addingthe race feature is the least fair (it just had the least drop?)
e Adversarial learning is the most fair (is it significant?)
e Equality of outcome approach boosted the accuracy (How true is this?)



Questions?



