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How can RL be used to help intelligent tutors make decisions 
about what actions to take? 



The promise of RL for intelligent tutoring systems

Typically for an ITS to do its job it needs information about students, tasks, 
and some way to decide when and which tasks or resources to provide to the 
students (a policy)

● E.g., basic BKT has information about tasks and infers student 
knowledge, all of which can be used by another algorithm to make 
decisions
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Furthermore, some RL approaches can also infer information about students 
and tasks (see Bassen et al., 2020)
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Challenges addressed by Zhou et al., 2019
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How to sequence these activities?
💡 Let’s try DQN! 💡



But first… Inferring Intermediate Rewards with Gaussian Processes

DQN (and RL generally) works better when immediate rewards are available

💡 Use Gaussian process regression to infer intermediate rewards 💡

Azizsoltani, Kim, Ausin, Barnes, and Chi, 2019

X



Gaussian Processes (Generally)

“For a given set of training points, there are potentially infinitely many 
functions that fit the data. Gaussian processes offer an elegant solution to 
this problem by assigning a probability to each of these functions [1]. The 
mean of this probability distribution then represents the most probable 
characterization of the data.” 

Görtler, J., Kehlbeck, R., & Deussen, O. (2019). A visual exploration of 
Gaussian processes. Distill, 4(4), e17.

https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
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Gaussian Processes (In the context of Zhou’s problem)

Given delayed rewards and features 
for each state, use GP regression to 
learn a function that assigns 
intermediate rewards.

● Normalized learning gain 

● 142 features in each state
○ Autonomy: amount of work done, ...
○ Temporal: avgStepTime, ...
○ Problem solving: problemDifficulty, 

nPrincipleInProblem, ...
○ Performance: pctCorrectPrin, …
○ Hints: nHint, ...



Azizsoltani, Kim, Ausin, Barnes, and Chi, 2019

Two empirical studies were performed to evaluate the effectiveness of 
DQN-Del in Spring 2018 and DQN-Inf in Fall 2018, respectively… In each 
study, the effectiveness of the corresponding RL-induced policy was 
compared against the Random policy. The students were randomly assigned 
into the two conditions while balancing their incoming competence. Overall, 
the results from both experiments showed no significant difference between 
the DQN-Del and Random in Spring 2018 and between the DQN-Inf and 
Random in Fall 2018 on any measures of learning performance. Therefore, 
despite the fact that our theoretical results showed that the ECRs of the two 
RL induced policy look very reasonable, our empirical results showed they 
are no better than the Random policy.



Azizsoltani, Kim, Ausin, Barnes, and Chi, 2019

Two empirical studies were performed to evaluate the effectiveness of 
DQN-Del in Spring 2018 and DQN-Inf in Fall 2018, respectively… In each 
study, the effectiveness of the corresponding RL-induced policy was 
compared against the Random policy. The students were randomly assigned 
into the two conditions while balancing their incoming competence. Overall, 
the results from both experiments showed no significant difference between 
the DQN-Del and Random in Spring 2018 and between the DQN-Inf and 
Random in Fall 2018 on any measures of learning performance. Therefore, 
despite the fact that our theoretical results showed that the ECRs of the two 
RL induced policy look very reasonable, our empirical results showed they 
are no better than the Random policy.

☹ DQN didn’t work for this problem 
☹
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RL algorithms are inefficient

“RL algorithms tend to have poor sample 
efficiency, often requiring hundreds of 
episodes to learn simple policies, or 
hundreds of thousands of episodes to learn 
more complicated ones [37]... We overcome 
this challenge for RS by using proximal 
policy optimization (PPO), a policy gradient 
method that leverages deep neural networks 
to more efficiently learn a scheduling policy 
[33]” (Bassen et al., 2020, p. 4).

“Prior research in online RL pedagogical 
policy induction has mainly relied on 
simulations or simulated students 
(computational learner models that imitate 
the learning process of students). One reason 
for that is online approaches often need 
large amounts of exploration to learn an 
effective policy, which is often too expensive 
to carry out with real students” (Zhou et al., 
2021)



HRL breaks one problem into a hierarchy of sub-problems

“It has been widely shown that HRL can be more effective and data-efficient 
than flat RL approaches [6,11,18,22,37]. HRL generally breaks down a large 
decision-making problem into a hierarchy of small sub-problems and 
induces a policy for each of them. Since the sub-problems are small, they 
usually require less data to find the optimal policies. For example, Cuayhuitl 
et al. induced navigation policies [6] at 3 levels: buildings, floors, and 
corridors, showing that HRL converged to an optimal policy in much fewer 
iterations.”



Formulation of HRL: Markov Decision Process (MDP)

In RL, an MDP describes a stochastic control process and formally 
corresponds to a 4-tuple: <S,A,T,R>.

● S: States are vector representations (containing 142 state features)
● A: Actions selected from {Elicit, Tell}
● R: Reward function
● T: Transition probabilities (S -> S’)



Formulation of HRL: Discrete Semi-Markov Decision Process (SMDP)

An SMDP adds the idea of options or complex activities to the MDP 
formulation. The complex activities are distinct from the primitive actions in 
that a complex activity may contain multiple primitive actions.



Formulation of HRL: Discrete Semi-Markov Decision Process (SMDP)

An SMDP adds the idea of options or complex activities to the MDP 
formulation. The complex activities are distinct from the primitive actions in 
that a complex activity may contain multiple primitive actions.

TellElicit Elicit .. Done

WE FWE PS

Tell Tell ... Done Elicit Elicit ... Done



Higher level 

↕
Lower level

Formulating the problem in terms of HRL

What it is Elicit / tell

Worked example The student observes how the tutor 
solves a problem

All-tell

Faded worked example The student and the tutor 
co-construct the solution

Mix of tell and elicit

Problem solving The student solves the problem All-elicit
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Summary of the HRL policy induction procedure



Methods and Findings



Participants and procedure

Students (N=180) were assigned into three conditions: HRL, DQN, and 
Random. 

● 128 students completed the study. Completion rate did not differ by 
condition

Students went through four phases: textbook, 14 question pre-test, training 
on the ITS, and 20 question post-test.

● During training, all three conditions received the same 12 problems in 
the same order

● 14 of the post-test problems were isomorphic to the pre-test questions, 
the rest were multiple-principle problems



Partial-Credit grading criteria

Each problem score was defined by the proportion of correct principle 
applications evident in the solution. 

● A student who correctly applied 4 of 5 possible principles would get a 
score of 0.8

All of the tests were graded in a double-blind manner by a single experienced 
grader.



Results



Results

DQN scored significantly higher than HRL: t(125) = 2.06, p = 0.042, d = 
0.46 and Random: t(125) = 2.01, p = 0.046, d = 0.46; but there is no 
significant difference between HRL and Random: t(125) = 0.02, p = 0.986, 
d = 0.00.

Therefore, we mainly focus on comparing learning performances that 
consider the pre-test differences, that is, adjusted post-test and NLG.



Results

● Significant differences from pre to iso-post for all three conditions 
with large effect sizes

● No tests reported which compared conditions



● No tests reported comparing pretest to full posttest

Results



Results

“Adjusted post-test scores were calculated by adjusting the full-post 
test scores using the pre-test scores based on a linear model generated 
by ANCOVA analysis” (Zhou et al., 2021)
● I think the adjusted posttest score is the score predicted by an 

ANCOVA when the pretest and condition are given
● HRL outperformed both conditions with medium effect sizes



Results

HRL significantly outperformed both conditions with medium effect sizes



Results

HRL spent significantly more time on task than DQN (p < 0.05) and 
marginally significantly more time on task than Random (p < 0.07)



Results

● The HRL policy was more likely to choose PS and FWE than WE
● The HRL condition received significantly less tell than the DQN 

condition: t(125) = −10.00, p < 0.0001, d = 1.78 and the Random 
condition: t(125) = −10.60, p < 0.0001, d = 2.42.

● The higher SDs of the two RL methods indicate personalization 
occured





“The results suggest that HRL can be more effective than flat RL in 
pedagogical policy induction. One possible explanation is that HRL has an 
explicit problem-level vision. At the problem level, HRL views a problem as 
an atomic action, and this abstraction has two potential advantages: (1) it 
aggregates the effects of all steps in a problem and (2) it converts a long 
step-level sequence into a short problem-level sequence. The aggregation of 
steps across a problem may provide HRL with a better estimation of the 
effect of taking a series of steps; while the problem sequence may give HRL a 
better view of the long-term effects of each problem. Theoretically, flat RL 
could learn the impact of a problem by aggregating step-level information, 
but there is no guarantee that it would.”

Conclusions


