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How can RL be used to help intelligent tutors make decisions
about what actions to take?



The promise of RL for intelligent tutoring systems

Typically for an ITS to do its job it needs information about students, tasks,

and some way to decide when and which tasks or resources to provide to the
students (a policy)

e E.g., basic BKT has information about tasks and infers student

knowledge, all of which can be used by another algorithm to make
decisions
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The promise of RL for intelligent tutoring systems

Typically for an ITS to do its job it needs information about students, tasks,
and some way to decide when and which tasks or resources to provide to the
students (a policy)

Rather than using an a priori policy, RL can be used to learn an optimal
policy

Furthermore, some RL approaches can also infer information about students
and tasks (see Bassen et al., 2020)
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Challenges addressed by Zhou et al., 2019

A. “The lack of simulation-based-environments to train data-hungry RL
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the need for large (often unbounded) state space representations,
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Zhou et al.’s Problem



Pyrenees

Problem

Given event A and B with p(A)=0.4, p(B)=0.5, and p(~A n ~B)=0.2. Determine p(A n B). )
Problem Statement Window

Variables Tutor

a=0.4;pA) The Tutor says:
aib; p(AnB)

aub; p(AuB)

b = 0.5; p(B)

nainb = 0.2; p(~An~B) . .
nnainb : ***TARGET VARIABLE****; p(~(~An~B) ) Dlalog Window

Good.
What principle?

Variable Window

Equations Your response:
Addition theorem for two events
For nnainb: Addition theorem for three events Re Spons c Wlndow
2) nnainb=aub Complement Theorem
For aub: The De Morgan's Law on AuB De Morgan's law
1) aib=a+b-aub The definition of independent events.

For aib: Addition Theorem for two events: A and B The definition of the mutually exclusive events or disjoint events.

Equation Window

Hint Next
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Pyrenees

Problem types:

e Worked examples
e Faded worked examples
e Problem solving

For each problem type, the
step types:

e Elicit
o Tell

Response Window

What it is Elicit / tell
Worked The student observes All-tell
example how the tutor solves a

problem
Faded The student and the Mix of tell and
worked tutor co-construct the elicit
example solution
Problem The student solves the | All-elicit
solving problem




Pyrenees

Problem types:

For each problem type, the
step types:

Worked examples

Faded worked examples

Probl

Elicit
Tell

What it is

The student observes

I heawr +hA +10+Ar cAalviAac A

How to sequence these activities?

Elicit / tell

All-tell

T raddacu

worked
example

Problem
solving

e otgueiit arra trrc

tutor co-construct the
solution

The student solves the
problem

=rmx of tell and

elicit

All-elicit



Prior research has investigated the effectiveness of WE, PS, FWE, and their
various combinations [14-17,21,23,26,31,33]. When focusing on PS and WE,
Mclaren et al. found no significant difference in learning performance between
studying WE-PS pairs and doing PS-only, but the former spent significantly less
time than the PS-only [16]. In a subsequent study, Mclaren et al. compared three
conditions: WE-only, PS-only and WE-PS pairs [15]. Similarly, no significant
differences were found among them in terms of learning gains, but the WE
condition spent significantly less time than the other two; and no significant
time on task difference was found between PS-only and WE-PS pairs.

Several studies were conducted comparing different combinations of WE, PS,
and FWE. Renkl et al. compared WE-FWE-PS with WE-PS pairs, and the for-
mer significantly outperformed the latter on student learning performance while
no significant difference was found between them on time on task [21]. Sim-
ilarly, Najar et al. compared adaptive WE/FWE/PS with WE-PS pairs [17]. _

How to sequence these activities?

TVITX

conditions: WE-FWE-PS, FWE, and PS-only [23]. Their results showed that
FWE outperformed WE-FWE-PS, which in turn outperformed PS-only, and no
significant time on task difference was found among the three conditions. Note
that in their study, the order of WE, FWE, and PS were fixed in WE-FWE-PS;
while in FWE, the tutor used an adaptive pedagogical policy, expert rules com-
bined with data-driven student models. In short, previous studies have shown
that alternating among WE, PS, and FWEs can be more effective than only
alternating between WE and PS; however, it is not clear whether the former
can be more effective than only using FWEs. On the other hand, prior research
either used a fixed policy (WE-FWE-PS) or hand-coded expert rules combined
with data-driven student models to make decisions. In this work, we applied
an offline, off-policy HRL framework to derive a hierarchical pedagogical pol-
icy directly from empirical data. Its effectiveness is directly compared against
another data-driven FWE policy induced by applying one of the state-of-the-art



Pyrenees

Problem types:

What it is Elicit / tell

e Worked examples
e Faded worked examples Worked The student observes All-tell
* Pl How to sequence these activities?

- y ) of tell and
For each | Q Let’s try DON! W "
step types: TEXApLE TSoratIon
e FElicit Problem The student solves the | All-elicit

solving problem

o Tell



But first... Inferring Intermediate Rewards with Gaussian Processes

DON (and RL generally) works better when immediate rewards are available

\\\\\\\\\\\\\\\\\\

Use Gaussian process regression to infer intermediate rewards

Azizsoltani, Kim, Ausin, Barnes, and Chi, 2019



Gaussian Processes (Generally)

“For a given set of training points, there are potentially infinitely many
functions that fit the data. Gaussian processes offer an elegant solution to
this problem by assigning a probability to each of these functions [1]. The
mean of this probability distribution then represents the most probable
characterization of the data.”

Gortler, J., Kehlbeck, R., & Deussen, O. (2019). A visual exploration of
Gaussian processes. Distill, 4(4), el7.



https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/

Gaussian Processes (In the context of Zhou’s problem)

Given delayed rewards and features
for each state, use GP regression to
learn a function that assigns
Intermediate rewards.
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Gaussian Processes (In the context of Zhou’s problem)

Given delayed rewards and features
for each state, use GP regression to
learn a function that assigns
Intermediate rewards.

e Normalized learning gain

__ posttest—pretest
NLG T v 1—pretest

e 142 features in each state
o Autonomy: amount of work done, ...
o Temporal: avgStepTime, ...
o Problem solving: problemDifficulty,
nPrincipleInProblem, ...
o Performance: pctCorrectPrin, ...
o Hints: nHint, ...



Azizsoltani, Kim, Ausin, Barnes, and Chi, 2019

Two empirical studies were performed to evaluate the effectiveness of
DOQN-Del in Spring 2018 and DQN-Inf in Fall 2018, respectively... In each
study, the effectiveness of the corresponding RL-induced policy was
compared against the Random policy. The students were randomly assigned
into the two conditions while balancing their incoming competence. Overall,
the results from both experiments showed no significant difference between
the DON-Del and Random in Spring 2018 and between the DQN-Inf and
Random in Fall 2018 on any measures of learning performance. Therefore,
despite the fact that our theoretical results showed that the ECRs of the two
RL induced policy look very reasonable, our empirical results showed they
are no better than the Random policy.
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Two empirical studies were performed to evaluate the effectiveness of
DON-Del in Spring 2018 and DQN-Inf in Fall 2018, respectively... In each
study, the effectiveness of the corresponding RL-induced policy was
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the DOQN-Del and Random in Spring 2018 and between the DQN-Inf and
Random in Fall 2018 on any measures of learning performance. Therefore,
despite the fact that our theoretical results showed that the ECRs of the two
RL induced policy look very reasonable, our empirical results showed they
are no better than the Random policy.
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Pyrenees

Problem types:

Whatitis Elicit / tell

e Worked examples
o Faded worked examples | Worker | The student observes | Atl-tel
©o How to sequence these activities?
For each | Q Let’s try HRL! @ ict]fteu e
step types: TEXApLE TSoratIon '

. Problem The student solves the | All-elicit
e Elicit

solving problem

o Tell



RL algorithms are inefficient

“RL algorithms tend to have poor sample
efficiency, often requiring hundreds of
episodes to learn simple policies, or
hundreds of thousands of episodes to learn
more complicated ones [37]... We overcome
this challenge for RS by using proximal
policy optimization (PPO), a policy gradient
method that leverages deep neural networks
to more efficiently learn a scheduling policy
[33]1” (Bassen et al., 2020, p. 4).

“Prior research in online RL pedagogical
policy induction has mainly relied on
simulations or simulated students
(computational learner models that imitate
the learning process of students). One reason
for that is online approaches often need
large amounts of exploration to learn an
effective policy, which is often too expensive
to carry out with real students” (Zhou et al.,
2021)



HRL breaks one problem into a hierarchy of sub-problems

“It has been widely shown that HRL can be more effective and data-efficient
than flat RL approaches [6,11,18,22,37]. HRL generally breaks down a large
decision-making problem into a hierarchy of small sub-problems and
iInduces a policy for each of them. Since the sub-problems are small, they
usually require less data to find the optimal policies. For example, Cuayhuitl
et al. induced navigation policies [6] at 3 levels: buildings, floors, and
corridors, showing that HRL converged to an optimal policy in much fewer
iterations.”



Formulation of HRL: Markov Decision Process (MDP)

In RL, an MDP describes a stochastic control process and formally
corresponds to a 4-tuple: <S5,A,T,R>.

S: States are vector representations (containing 142 state features)
A: Actions selected from {Elicit, Tell}

R: Reward function

T: Transition probabilities (S -> S’)



Formulation of HRL: Discrete Semi-Markov Decision Process (SMDP)

An SMDP adds the idea of options or complex activities to the MDP
formulation. The complex activities are distinct from the primitive actions in
that a complex activity may contain multiple primitive actions.



Formulation of HRL: Discrete Semi-Markov Decision Process (SMDP)

An SMDP adds the idea of options or complex activities to the MDP
formulation. The complex activities are distinct from the primitive actions in
that a complex activity may contain multiple primitive actions.

WE FWE PS

Tell Tell Done Elicit Elicit Done

Elicit Tell Elicit .. Done



Formulating the problem in terms of HRL

Worked example

Faded worked example

Problem solving

What it is

The student observes how the tutor
solves a problem

The student and the tutor
co-construct the solution

The student solves the problem

Higher level

B

All-tell

Mix of tell and elicit

All-elicit



Hierarchical Reinforcement Learning

t=1 2 3 4 S 6

The promise of hierarchical reinforcement learning
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Summary of the HRL policy induction procedure

1. Raw Logs

2. Trajectories with
Delayed Rewards

I R a1 a2 ay n-1:R ]
dy:S11—>S12 =" Sin-1——S1n

l . az,1 azz az,m-1:R
—> |d3: S21 =822 °""Sam-1——?Sam| —

Pre-processing

Reward Inference

I . ak,1 a2 agi-1R
A Sk,a — Sz =+ k-1 —— Sk,

3. Trajectories with
Inferred Immediate Rewards
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Methods and Findings



Participants and procedure

Students (N=180) were assigned into three conditions: HRL, DQN, and
Random.

e 128 students completed the study. Completion rate did not differ by
condition

Students went through four phases: textbook, 14 question pre-test, training
on the ITS, and 20 question post-test.

e During training, all three conditions received the same 12 problems in

the same order
e 14 of the post-test problems were isomorphic to the pre-test questions,

the rest were multiple-principle problems



Partial-Credit grading criteria

Each problem score was defined by the proportion of correct principle
applications evident in the solution.

e A student who correctly applied 4 of 5 possible principles would get a
score of 0.8

All of the tests were graded in a double-blind manner by a single experienced
grader.



Results

Condition |Pre Iso post |Full post |Adj post NLG Time (hours)
HRL(44) |66.4(18.8) 85.8(14.6)|75.3(16.9) | 77.7(10.3) |14.3(19.2) |2.19(.64)
DQN(45) |73.9(13.6)|85.2(13.1)|74.2(14.6) | 71.2(12.0) | —2.2(29.4) | 1.81(.58)
Random(39) 66.3(18.9) 80.5(19.5) 69.0(19.6) 71.4(13.8) | —0.1(35.0) |1.97(.52)
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DON scored significantly higher than HRL: t(125) = 2.06, p = 0.042,d =
0.46 and Random: t(125) = 2.01, p = 0.046, d = 0.46; but thereis no
significant difference between HRL and Random: t(125) = 0.02, p = 0.986,

d = 0.00.

Therefore, we mainly focus on comparing learning performances that
consider the pre-test differences, that is, adjusted post-test and NLG.
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e Significant differences from pre to iso-post for all three conditions
with large effect sizes
e No tests reported which compared conditions
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Condition | Pre Iso post |Full post |Adj post |[NLG Time (hours)
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“Adjusted post-test scores were calculated by adjusting the full-post
test scores using the pre-test scores based on a linear model generated

by ANCOVA analysis” (Zhou et al., 2021)

e I think the adjusted posttest score is the score predicted by an
ANCOVA when the pretest and condition are given
e HRL outperformed both conditions with medium effect sizes
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Results

Condition |Pre Iso post |Full post |Adj post NLG Time (hours)
HRL(44) |66.4(18.8)|85.8(14.6) 75.3(16.9) 77.7(10.3)|14.3(19.2) |2.19(.64)
DQN(45) |73.9(13.6) 85.2(13.1)|74.2(14.6) | 71.2(12.0) | —2.2(29.4) | 1.81(.58)
Random(39) 66.3(18.9) 80.5(19.5) 69.0(19.6) 71.4(13.8) | —0.1(35.0) |1.97(.52)

HRL spent significantly more time on task than DQN (p < 0.05) and
marginally significantly more time on task than Random (p < 0.07)



Results

Condition

Elicit

Tell

Pct Tell

HRL

309.0(60.4)

88.7(66.1)

22.025(15.870)

DQN

205.8(51.6)

188.9(53.0)

47.794(12.974)

Random

200.5(15.9)

203.5(17.4)

50.354(2.482)

e The HRL policy was more likely to choose PS and FWE than WE

e The HRL condition received significantly less tell than the DQN
condition: t(125) = -10.00, p < 0.0001, d = 1.78 and the Random
condition: t(125) = -10.60, p < 0.0001, d = 2.42.

e The higher SDs of the two RL methods indicate personalization

occured
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Conclusions

“The results suggest that HRL can be more effective than flat RL in
pedagogical policy induction. One possible explanation is that HRL has an
explicit problem-level vision. At the problem level, HRL views a problem as
an atomic action, and this abstraction has two potential advantages: (1) it
aggregates the effects of all steps in a problem and (2) it converts a long
step-level sequence into a short problem-level sequence. The aggregation of
steps across a problem may provide HRL with a better estimation of the
effect of taking a series of steps; while the problem sequence may give HRL a
better view of the long-term effects of each problem. Theoretically, flat RL
could learn the impact of a problem by aggregating step-level information,
but there is no guarantee that it would.”



