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● Using eye tracking data as a stand alone tool
● In contrast with hand-engineered heuristics for gaze-based 

interventions and other non-gaze features (e.g. pupil dilation)
● Investigate boredom and curiosity
● Identify features most predictive of each emotion
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Emotions in Academic Setting
● Student motivation
● Academic achievement
● Boredom
● Engagement
● Emphatic & supportive tutor

Related Work

Detect Learner’s Emotions
● Interaction logs
● Acoustic and dialog features
● Physiological sensors
● Posture
● Questionnaires
● Eye gaze

7



“
“Unfortunately, positive emotions (including curiosity)

declined over the course of the interaction, 
demonstrating a need for affective

interventions”
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● 67 undergraduate students
○ 51 considered after data validation

● Used MetaTutor for about 90 minutes
● Data from number of sensors, including an eye tracker
● Self-reports

○ 5 per student
○ Likert scale between 1 (strongly disagree) and 5 (strongly agree)
○ Boredom : mean = 2.60, SD = 0.69
○ Curiosity: mean = 2.93, SD = 0.71

User Study & Eye Tracking Data
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Fixations: persistent focus on a single point

Saccades: paths between two consecutive fixations 

166 features in total

User Study & Eye Tracking Data
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Application-Independent
● Number of fixations
● Fixation duration
● Saccade length
● Angle between consecutive 

saccades
● Angle between a saccade 

and the horizontal plane

User Study & Eye Tracking Data

Application-Dependent:
● Duration of longest fixation
● Proportion of fixations and 

time spent
● Gaze transitions
● Time of first/last fixation
● Total fixation time
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● Two separate binary classification problems: boredom and curiosity 
● Emotion Present (EP) vs. Emotion Absent (EA)
● 10-fold cross validation
● Four algorithms used

○ Random Forests
○ Naive Bayes
○ Logistic Regression
○ Support Vector Machines

Machine Learning Experiments
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● Accuracy: percentage of correctly classified data points
● Cohen’s kappa: measure of classification performance which accounts 

for correct predictions occuring by chance
○ 0 if the predictions were no more accurate than chance
○ 1 when labels exactly match the ground truth values

● Feature reduction against overfitting
○ Principal Component Analysis (PCA)
○ Wrapper Feature Selection (WFS)

Machine Learning Experiments
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● Goal: determine the amount of gaze data preceding the self-report that 
should be used for optimal prediction performance

● Baseline: a majority-class baseline, using t-tests with a Bonferroni 
adjustment

● Four 4x6 General Linear Models: boredom accuracy/kappa, curiosity 
accuracy/kappa as the dependent variables
○ 4 classifiers
○ 6 window lengths
○ Treat one train/test split as a single point

Predicting Self-Reports across the Interaction
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● No significant effects of the classifier
● Main effect of window length both for boredom and curiosity

○ Low p-value
○ High eta squared value

● Significantly better than baseline
○ Boredom at 75% and 100% (10.5 minutes and 14 minutes)
○ Curiosity at 100% (14 minutes)

Predicting Self-Reports across the Interaction

22



“
“This study provides empirical evidence that [using a 
20 second interval for affect labeling] may not always 

be appropriate, depending on the data used for 
prediction.”
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● Goal: examine features selected by the WFS process
● Arrows: gaze transitions
● Circles: features related to the AOI (circle size increases with the 

number of related features found)

Identifying Important Features
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Identifying Important Features
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● Goal: improve performance by treating each self-report time as its own 
classification problem

● Four 4x4 General Linear Models
○ 4 classifiers
○ 4 report times

Time-Dependent Effects on Prediction
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● No significant effects for boredom
○ Logistic Regression performing the best
○ Single self-report time results are better

● Effect of report time for both kappa and accuracy for curiosity
○ Amount of time spent interacting with MetaTutor affects the 

relationship between gaze and affect

Time-Dependent Effects on Prediction
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“
“The results of this section seem to indicate that the 

relationship between gaze and affect varies over time. 
Different gaze features would be more informative at 

different report times.”
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Time-Dependent Effects on Prediction
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Conclusion
● Eye gaze data alone - a useful tool
● Longer intervals for predicting 

affect
● Temporal information can increase 

accuracy

Conclusion & Future Work

Future Work
● Use additional data sources
● Develop intervention strategies 
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