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Introduction & Contributions

Areas of
Interest

Gaze Replays L Heatmaps

In what order did an Where did a population How did a population
individual look at things focus their visual focus on one element
and for how long? attention? versus another?



Introduction & Contributions

e Using eye tracking data as a stand alone tool

e In contrast with hand-engineered heuristics for gaze-based
interventions and other non-gaze features (e.g. pupil dilation)

e Investigate boredom and curiosity

e Identify features most predictive of each emotion
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Related Work

Emotions in Academic Setting Detect Learner’s Emotions

Student motivation
Academic achievement
Boredom

Engagement

Emphatic & supportive tutor

Interaction logs

Acoustic and dialog features
Physiological sensors
Posture

Questionnaires

Eye gaze
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“Unfortunately, positive emotions (including curiosity)

declined over the course of the interaction,
demonstrating a need for affective

interventions”
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MetaTutor

= Metalutor (version 128
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ey work both indivickaally s3d togashes. 8 how they suppoi e hesty fisetianing of the

The immune syStem ks complex; It consists of several
different idnds of white blood cells that coordinate with
ane another 1o fight infections. White blood cells and
antibodies travel in the blood and are taken to the site
Infections, where they work to fight dizease.

Megakaryocyres are lacge cells that resida in the bane
marrow: platelets will break from megakanyocytes into
the bloodstream and these, along with coagulation
factors produced by the liver, travel In the blood and
azsemble In areas where blood vessels are damaged to
initiate the clotting process to stop the bleeding and
repalr damaged vessels,

Red and white blood cells in the artery
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User Study & Eye Tracking Data

e 67 undergraduate students

©)

51 considered after data validation

Used MetaTutor for about 90 minutes
Data from number of sensors, including an eye tracker
e Self-reports

O

©)
O
O

5 per student

Likert scale between 1 (strongly disagree) and 5 (strongly agree)
Boredom : mean =2.60, SD = 0.69

Curiosity: mean=2.93,SD=0.71
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User Study & Eye Tracking Data
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User Study & Eye Tracking Data

Fixations: persistent focus on a single point
Saccades: paths between two consecutive fixations

166 features in total
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User Study & Eye Tracking Data

Application-Independent

Number of fixations °
Fixation duration °
Saccade length

Angle between consecutive °
saccades °
Angle between a saccade °

and the horizontal plane

Application-Dependent:

Duration of longest fixation
Proportion of fixations and
time spent

Gaze transitions

Time of first/last fixation
Total fixation time
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Machine Learning Experiments

Two separate binary classification problems: boredom and curiosity
Emotion Present (EP) vs. Emotion Absent (EA)
10-fold cross validation
Four algorithms used
o Random Forests
o Naive Bayes
o Logistic Regression
o Support Vector Machines



Machine Learning Experiments

e Accuracy: percentage of correctly classified data points
e Cohen’s kappa: measure of classification performance which accounts
for correct predictions occuring by chance
o 0ifthe predictions were no more accurate than chance
o 1 when labels exactly match the ground truth values
e Feature reduction against overfitting
o Principal Component Analysis (PCA)
o Wrapper Feature Selection (WFS)
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Predicting Self-Reports across the Interaction

e Goal: determine the amount of gaze data preceding the self-report that
should be used for optimal prediction performance
e Baseline: a majority-class baseline, using t-tests with a Bonferroni
adjustment
e Four 4x6 General Linear Models: boredom accuracy/kappa, curiosity
accuracy/kappa as the dependent variables
o 4 classifiers
o 6 window lengths
o Treat one train/test split as a single point
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Predicting Self-Reports across the Interaction

Boredom - Accuracy by Window Length
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Predicting Self-Reports across the Interaction

e No significant effects of the classifier

e Main effect of window length both for boredom and curiosity
o Low p-value
o High eta squared value

e Significantly better than baseline
o Boredom at 75% and 100% (10.5 minutes and 14 minutes)
o Curiosity at 100% (14 minutes)
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“This study provides empirical evidence that [using a
20 second interval for affect labeling] may not always
be appropriate, depending on the data used for
prediction.”
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Identifying Important Features

e Goal: examine features selected by the WFS process

e Arrows: gaze transitions

e Circles: features related to the AOI (circle size increases with the
number of related features found)
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Identifying Important Features
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Time-Dependent Effects on Prediction

e Goal: improve performance by treating each self-report time as its own
classification problem
e Four 4x4 General Linear Models
o 4 classifiers
o 4reporttimes
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Time-Dependent Effects on Prediction
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Time-Dependent Effects on Prediction

e No significant effects for boredom
o Logistic Regression performing the best
o Single self-report time results are better
e Effect of report time for both kappa and accuracy for curiosity
o Amount of time spent interacting with MetaTutor affects the
relationship between gaze and affect
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“The results of this section seem to indicate that the
relationship between gaze and affect varies over time.
Different gaze features would be more informative at
different report times.”
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Time-Dependent Effects on Prediction

Feature Type

Boredom - Features by Self-Report
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Conclusion & Future Work

Conclusion

Eye gaze data alone - a useful tool
Longer intervals for predicting
affect

Temporal information can increase
accuracy

Future Work

Use additional data sources
Develop intervention strategies
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