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ABSTRACT
Educational recommender systems channel most of the research ef-
forts on the effectiveness of the recommended items.While teachers
have a central role in online platforms, the impact of recommender
systems for teachers in terms of the exposure such systems give to
the courses is an under-explored area. In this paper, we consider
data coming from a real-world platform and analyze the distribu-
tion of the recommendations w.r.t. the geographical provenience of
the teachers. We observe that data is highly imbalanced towards
the United States, in terms of offered courses and of interactions.
These imbalances are exacerbated by recommender systems, which
overexpose the country w.r.t. its representation in the data, thus gen-
erating unfairness for teachers outside that country. To introduce
equity, we propose an approach that regulates the share of recom-
mendations given to the items produced in a country (visibility)
and the position of the items in the recommended list (exposure).
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• Information systems → Learning to rank; Recommender
systems; Personalization; Collaborative filtering; • Applied
computing→ Law, social and behavioral sciences.
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1 INTRODUCTION
Learning paradigms are shifting towards online environments [15,
27], thanks to Massive Online Open Courses (MOOC) platforms.
Recommender systems are the means that allows MOOC platforms
to direct appropriate resources to learners [4]. Course recommen-
dation functionalities are common in these platforms, with a clear
focus on the learners and the opportunities offered to them [19].

The impact that recommender systems have on teachers is an
under-explored perspective. However, teachers are a key stakehold-
ers in a MOOC platform, since they are the ones that provide the
courses, and they are directly affected by the way recommenda-
tion lists are shaped. Indeed, according to how many times the
courses of a teacher are recommended (visibility) [10] and where
they appear in the ranking, that teacher is given a certain expo-
sure by the system [28]. Disparities in the visibility and exposure
given to teachers might lead to undesired consequences [24], such
as unfairness [11, 23]. In this paper, we focus on group unfairness,
shaping groups based on the geographic provenience of the teachers
offering the courses. Our goal is to study if imbalances in the coun-
try of provenience of the teachers might affect the opportunities
of teachers coming from certain parts of the world to offer their
services, by being under-exposed. Specifically, we consider two de-
mographic groups, the first covering the country with the highest
representation of teachers in the platform (in our data, the United
States), and the second containing the rest of the world. There are
multiple reasons why this is an interesting setting. Considering the
reference dataset for this study, COCO [9] (presented in Section 2.4),
the United States covers more than 40% of the courses and nearly
50% of the ratings. The remaining 73 countries attract a very small
percentage of ratings and courses, thus leading to an important
geographic imbalance in the input data. However, in a binary setting
such as the one we consider, the most represented country does not
constitute an overall majority in the data. This offers an interesting
benchmark to study the interplay between geographic imbalance
and minority groups and their impact on unfairness.

When recommender systems overexpose teachers coming from
the country with the highest representation, teachers from the rest
of the world are unfairly affected by how recommendations are
generated. In this work, we consider five state-of-the-art collabo-
rative filtering models, and show that they exacerbate disparities
emerging from geographic imbalance, under-exposing the teachers
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coming from the rest of the world. To overcome these phenomena, 
we propose a re-ranking approach that aims to re-distribute the 
recommendations between the United States and the rest of the 
world, following a notion of equity [30].

Specifically, our contributions are as follows: (i) we assess how 
recommender systems affect g roups o f t eachers based on their 
provenience, (ii) we propose an approach to introduce equity in 
the recommendations’ distribution, and (iii) we show that we can 
introduce equity without affecting recommendation effectiveness.

2 PRELIMINARIES
2.1 Recommendation scenario
Let U = {u1,u2, ...,un } be a set of learners, C = {c1, c2, ..., c j } be a 
set of courses, andV be a totally ordered set of values used to express 
a preference. The set of ratings is a ternary relation R ⊆ U × C × V ; 
each rating is denoted by ruc . We consider a temporal split of 
the data, where a fixed percentage of the ratings of the learners 
(ordered by timestamp) is used for training and the rest goes to the 
test set [1].

The recommendation goal is to learn a function f that estimates 
the relevance (r̂uc ) of the learner-course pairs that do not appear 
in the training data. We denote as R̂ the set of recommendations, 
and as R̂G those involving courses of a group G.

Let A = {a1, a2, ..., ak } be the set of geographic areas in which 
courses are organized. Specifically, we consider a geographic area 
as the country associated to a course. We denote as Ac the set of 
geographic areas of a course c . Note that, since teachers of a course 
could be from different geographical areas, several geographic areas 
may appear in a course. We shape two groups, the most represented 
area, M = {c ∈ C : 1 ∈ Ac }, and the rest, m = {c ∈ C : 1 < Ac }. 
Note that 1 identifies the most represented country.

2.2 Metrics
Representation. The representation of a group is the amount of 
times that this group appears in the data. We consider two forms 
of representation, based on (i) the amount of courses offered by a 
group and (ii) the amount of ratings collected for that group. We 
define with R the representation of a group G (RC denotes a course-
based representation, while RR a rating-based representation):

RC (G ) = |G |/|C | (1)

RR (G ) = |{ruc : c ∈ G}|/|R | (2)

Eq. (1) accounts for the proportion of courses of a group, while
Eq. (2) for the proportion of ratings associated to a group. The
representation of a group is measured by considering only the
training set. Given a group G, the representation of the other, G, is
computed as R∗ (G ) = 1 − R∗ (G ) (where ‘*’ refers to C or R).
Disparate Impact.We assess unfairness with two notions of dis-
parate impact generated by a recommender system.

Definition 2.1 (Disparate visibility). The disparate visibility of a
group is the difference between the share of recommendations for
items of that group and the representation of that group [10]:

∆V (G ) =
1
|U |

∑
u ∈U

|{r̂uc : c ∈ R̂G }|
|R̂ |

− R∗ (G ) (3)

Its range is in [−R∗ (G ), 1−R∗ (G )]; it is 0 when there is no disparate
visibility, while negative/positive values indicate that the group had
a share of recommendations lower/higher than its representation.

Definition 2.2 (Disparate exposure). The disparate exposure of a
group is the difference between the exposure obtained by the group
in the recommendations [28] and the representation of that group:

∆E (G ) =
1
|U |

∑
u ∈U

∑k
pos=1

1
loд2 (pos+1) ,∀c ∈ R̂G∑k

pos=1
1

loд2 (pos+1)
− R∗ (G ) (4)

where pos is the position of an item in the top-k recommendations.
This metric also ranges in [−R∗ (G ), 1−R∗ (G )]; it is 0 when there

is no disparate exposure, while negative/positive values indicate
that the exposure given to the group in the recommendations is
lower/higher than its representation.

Notice that the disparate visibility/exposure of one group can be
computed as the opposite of the value obtained for the other group.

2.3 Recommendation algorithms
We consider five Collaborative Filtering algorithms. For the class of
memory-basedmodels, we choose UserKNN [12] and ItemKNN [26].
As matrix factorization based approaches, we consider BPR [25],
BiasedMF [17], and SVD++ [16]. We contextualize our results with
two non-personalized models (Most Popular and Random Guess).

2.4 Dataset
To the best of our knowledge, COCO [9] is the only educational
dataset that contains the geographic provenience of the users. It
was collected from an online course platform, and each course is
associated to one or more teachers, belonging to 74 countries.

We pre-processed the dataset to remove all learners with less
than 3 ratings. Our final dataset contains 12,472 courses and 298,644
learners, who provided 1,296,598 ratings. We encoded each country
with subsequent integers, with the United States having ID 1.

3 DISPARATE IMPACT ASSESSMENT
3.1 Experimental setting
The test is composed by the most recent 20% of the ratings of each
learner. We run the recommendation algorithms using the LibRec
library (v.2). For each user, we store the first 100 results (top-n) to
then mitigate disparities through a re-ranking. The recommenda-
tion list for each learner is composed by 20 courses (top-k).

Each algorithm was run with the following hyper-parameters:
(i) UserKNN. similarity: Pearson; neighbors: 50; similarity shrink-
age: 10; (ii) ItemKNN. similarity: Cosine; neighbors: 200; similarity
shrinkage: 10; (iii) BPR. iterator learnrate: 0.01; iterator learnrate
maximum: 0.01; iterator maximum: 100; user regularization: 0.01;
item regularization: 0.01; factor number: 10; learnrate bolddriver:
false; learnrate decay=1.0; (iv) BiasedMF. iterator learnrate: 0.01;
iterator learnrate maximum: 0.01; iterator maximum: 10; user regu-
larization: 0.01; item regularization: 0.01; bias regularization: 0.01;
number of factors: 10; learnrate bolddriver: false; learnrate decay:
1.0; (v) SVD++. iterator learnrate: 0.01; iterator learnrate maximum:
0.01; iterator maximum: 13; user regularization: 0.01; item regular-
ization: 0.01; impItem regularization: 0.001; number of factors: 10;
learnrate bolddriver: false; learnrate decay: 1.0.
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Table 1: Effectiveness, disparate visibility, and disparate ex-
posure of group m, considering both a course- and a rating-
based representation of the groups.

Algorithm NDCG ∆VC ∆EC ∆VR ∆ER
MostPop 0.0193 -0.3091 -0.2117 -0.2447 -0.1473
RandomG 0.0006 0.0000 -0.0001 0.0644 0.0643
UserKNN 0.0372 -0.0402 -0.1457 0.0242 -0.0813
ItemKNN 0.2068 -0.0862 -0.0783 -0.0218 -0.0139

BPR 0.1401 -0.0715 -0.0658 -0.0071 -0.0014
BiasedMF 0.0007 -0.1065 -0.0949 -0.0421 -0.0305
SVD++ 0.0044 -0.0534 -0.0543 0.0110 0.0101

To evaluate recommendation quality, wemeasure the NDCG [13].

3.2 Characterizing User Behavior
In COCO, RC (M ) = 0.41 and RR (M ) = 0.47. Considering that
the dataset contains 74 countries, we observe a strong geographic
imbalance in terms of offered courses. This imbalance is worsened
when we consider the ratings. The vast majority of the ratings
in this dataset is 5 [4]. Also under this geographical setting, user
satisfaction is equally distributed along the two groups.

Observation 1. There is a strong geographic imbalance in the
representation of each group, in terms of offered items. The
most represented group usually attracts more ratings, thus
increasing the existing imbalance.

3.3 Assessing Effectiveness and Disparities
In Table 1, we report the results obtained by each model. Results
show that ItemKNN is the most effective algorithm. Considering
that the rating distribution is skewed towards high values, these re-
sults connect to widely-known phenomena that make the algorithm
successful [21], such as the data size and the fact that the neigh-
borhoods will not change much, given that the ratings are very
similar. When considering a course-based representation, Random
Guess provides the most equitable visibility and exposure. Hence,
when picking the items to recommend at random, the recommen-
dation lists are shaped following the distribution in the course
offer; nevertheless, this is the least effective algorithm. Finally, BPR
returns the most equitable recommendations when considering
a rating-based representation. We connect these results to those
of Cremonesi et al. [8], who showed that factorization approaches
can recommend long-tail items, by building factors that capture all
the preferences. BPR also returns the second best NDCG.

Observation 2. Geographic imbalance leads to disparate vis-
ibility and exposure at the advantage of the most represented
group. Recommendation effectiveness is decoupled from equity
of visibility and exposure, with BPR returning the best trade-off
between the two properties in the course-based representation.

4 MITIGATING DISPARATE IMPACT
We mitigate disparities with a re-ranking algorithm that intro-
duces items of the disadvantaged group in the recommendation list.
A re-ranking is the only option when optimizing ranking-based
metrics, like visibility and exposure. In-processing regularizations,

such as [2, 14], would not be possible, since a model does not pre-
dict if and where an item will be ranked. Re-rankings have been
employed to reduce disparities, both for non-personalized rank-
ings [3, 7, 22, 28, 31, 32] and for recommender systems [5, 18, 20, 29],
with approaches such as Maximal Marginal Relevance [6]. These
optimize either visibility or exposure, so no comparison is possible.

4.1 Algorithm
The idea behind our mitigation algorithm is to move up in the
recommendation list the course that causes the minimum loss in
prediction for all the learners. Algorithm 1 describes the mitigation
process, which is divided into three methods.

The first, optimizeVisibilityExposure (lines 1-6), starts the mit-
igation. It makes two interventions: one based on visibility and
the second one based on exposure. The second method, called
mitiдation (lines 7-29), regulates the visibility and exposure inside
the recommendation list. The checkPosition method (lines 30-34) is
responsible for checking the position of an item in the list, taking
into account if we perform a visibility- or exposure-based mitiga-
tion. The role of each line is commented in blue in the algorithm.

4.2 Impact of Mitigation
Tables 2 and 3 report the results after mitigating considering the
course- and rating-based representations of the groups. Given the
temporal split of the data, we cannot perform statistical tests to
validate the results so, under each metric, we report the gain/loss
obtained after running our mitigation. Our results present a general
pattern, which leads us to our third observation.

Observation 3. When providing a re-ranking based on mini-
mal predicted loss, effectiveness remains stable, but disparate
visibility and disparate exposure are mitigated. Interventions
to adjust both visibility and exposure are needed to provide
equity; if we mitigate only having a visibility goal, disparate
exposure still occurs (fourth column, in red, in Tables 2 and 3).

5 CONCLUSIONS AND FUTUREWORK
In this paper, we considered course recommender systems, with
a focus on how teachers can be affected by the way courses are
geographically distributed. Considering a real-world dataset com-
ing from an online course platform, we assessed that the most
represented country (the United States) is over-exposed by state-of-
the-art recommendationmodels, affecting the teachers from the rest
of the world. To overcome this issue, we proposed a re-ranking ap-
proach that aims to provide equity, by reaching the target visibility
and exposure while causing the minimum loss in relevance.

In future work, we will go beyond this type of mitigation of the
disparities, to re-distribute the recommendations in equitable ways
between the individual countries, taking into account for multiple
aspects (e.g., the language of the courses offered in non-English
countries and that of the learners).
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Input: r ecList : ranked list (records contain user , item, pr edict ion, exposur e , posit ion) 
Output: r eRankedList : ranked list adjusted by visibility and exposure

1 define optimizeVisibilityExposure (r ecList )
2 begin
3 r eRankedList ←mitigation(r ecList , “visibility”) ; // mitigation to target the desired visibility

4 r eRankedList ←mitigation(r eRankedList , “exposure”) ; // mitigation to regulate the exposure

5 return r eRankedList ; // return the re-ranked list

6 end
7 define mitigation (r ecList , r eRankinдType ) // add the courses of the disadvantaged group to the top-k
8 begin
9 for user ∈ l ist .users do // for each user

10 for item ∈ top-n do // we loop over all items that belong to this user
11 if checkPosition(item, itemsOut, reRankingType) is True then // check the position
12 itemsOut.add(item) ; // add the item as possible candidate to move out to the list

13 else if checkPosition(item, itemsOut, reRankingType) is False then
14 itemsIn.add(item) ; // add the item as possible candidate to move in to the list

15 end
16 end
17 while itemsIn not empty and itemsOut not empty do // computes all possible swaps and the loss of each one
18 itemsIn ← itemsIn .pop (f ir st ); itemsOut ← itemsOut .pop (last ); loss ← itemsOut .last − itemsIn .f ir st ;

possibleSwaps.add(id,user,itemsOut.last,itemsIn.first,loss);
19 end
20 end
21 if reRankingType == “visibility” then sortByLoss(possibleSwaps); // sort by loss in case of visibility ;
22 else if reRankingType == “exposure” then sortByExposureLoss(possibleSwaps); // sort by exposure loss in case of exposure ;
23 while propor tions < tarдetPropor tions and possibleSwaps not empty do // do swaps until the target proportions are reached
24 l ist ← swap(l ist, itemOut, itemIn); // makes the swap of the candidate with minor loss

25 propor tions ← updatePropor tions (itemOut, itemIn, r eRankinдType ); // updates group proportions

26 end
27 return l ist ; // returns the re-ranked list

28 end
29 define checkPosition(item, itemsOut, r eRankinдType ) // check the position of an item in the list

30 begin
31 if reRankingType == “visibility” then return item .posit ion < top-k ;
32 else if reRankingType == “exposure” then return item .posit ion < itemsOut .last .posit ion ;
33 end

Algorithm 1: Visibility and exposure mitigation algorithm.

Table 2: Results for groupm of the mitigation based on RC ,
both after optimizing for Visibility and after optimizing for
Exposure (here, we report only the NDCG and the disparate
exposure; visibility, by design, remains the same).

Visibility Exposure
Algorithm NDCG ∆VC ∆EC NDCG ∆EC
MostPop 0.0181 0.0000 -0.0924 0.0166 0.0000
(gain/loss) -0.0012 0.3091 0.1193 -0.0027 0.2117
RandomG 0.0006 0.0000 -0.0001 0.0006 0.0000
(gain/loss) 0.0000 0.0000 0.0000 0.0000 0.0000
UserKNN 0.0369 0.0000 -0.0233 0.0360 0.0000
(gain/loss) -0.0003 0.0402 0.1225 -0.0012 0.1457
ItemKNN 0.2061 0.0000 -0.0301 0.2038 0.0000
(gain/loss) -0.0008 0.0862 0.0481 -0.0030 0.0782

BPR 0.1395 0.0000 -0.0288 0.1375 0.0000
(gain/loss) -0.0006 0.0714 0.0370 -0.0026 0.0658
BiasedMF 0.0007 0.0000 -0.0266 0.0006 0.0000
(gain/loss) -0.0001 0.1064 0.0682 -0.0001 0.0948
SVD++ 0.0043 0.0000 -0.0063 0.0043 0.0000

(gain/loss) -0.0001 0.0534 0.0480 -0.0001 0.0543

Table 3: Results for groupm of the mitigation based on RR ,
both after optimizing for Visibility and after optimizing for
Exposure (here, we report only the NDCG and the disparate
exposure; visibility, by design, remains the same).

Visibility Exposure
Algorithm NDCG ∆VR ∆ER NDCG ∆ER
MostPop 0.0186 0.0000 -0.0986 0.0178 0.0000
(gain/loss) -0.0007 0.2448 0.0488 -0.0015 0.1474
RandomG 0.0006 0.0000 0.0217 0.0006 0.0000
(gain/loss) 0.0000 -0.0644 -0.0426 0.0000 -0.0643
UserKNN 0.0369 0.0000 -0.0237 0.0364 0.0000
(gain/loss) -0.0003 -0.0241 0.0577 -0.0008 0.0814
ItemKNN 0.2068 0.0000 -0.0113 0.2061 0.0000
(gain/loss) 0.0000 0.0219 0.0026 -0.0007 0.0139

BPR 0.1401 0.0000 -0.0083 0.1396 0.0000
(gain/loss) 0.0000 0.0071 -0.0069 -0.0005 0.0015
BiasedMF 0.0007 0.0000 -0.0060 0.0007 0.0000
(gain/loss) 0.0000 0.0421 0.0245 0.0000 0.0305
SVD++ 0.0044 0.0000 -0.0575 0.0045 0.0000

(gain/loss) 0.0000 -0.0110 -0.0675 0.0001 -0.0101
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