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ABSTRACT
Equity of educational outcome and fairness of AI with respect to
race have been topics of increasing importance in education. In this
work, we address both with empirical evaluations of grade predic-
tion in higher education, an important task to improve curriculum
design, plan interventions for academic support, and offer course
guidance to students. With fairness as the aim, we trial several
strategies for both label and instance balancing to attempt to mini-
mize differences in algorithm performance with respect to race. We
find that an adversarial learning approach, combined with grade
label balancing, achieved by far the fairest results. With equity of
educational outcome as the aim, we trial strategies for boosting
predictive performance on historically underserved groups and find
success in sampling those groups in inverse proportion to their his-
toric outcomes. With AI-infused technology supports increasingly
prevalent on campuses, our methodologies fill a need for frame-
works to consider performance trade-offs with respect to sensitive
student attributes and allow institutions to instrument their AI
resources in ways that are attentive to equity and fairness.
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• Applied computing→ Education; • Social and professional
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1 INTRODUCTION
Equity of outcome, such as degree attainment, is a primary objec-
tive of educational institutions. To evaluate how well this goal is
being satisfied, administrations, particularly in higher education,
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often group students by various attributes, such as gender and race,
and observe where disparities exist and how long they have perpet-
uated. An institution may then allocate tutoring and advising types
of resources towards groups that exhibit the most disparity in out-
come as well as employing curricular redesign and early outreach
programs to attempt to address systemic issues that contribute to
underachievement.

AI-infused tutoring [5, 46] and advising technology [36] is in-
creasingly among the resources an institution has at its disposal to
reduce disparities. In higher education, student grade prediction
was the first task for which many educational institutions adopted
AI to drive school-wide deployment of technological interventions
aimed at improving outcomes. Grade prediction was used in early-
warning detection systems to flag "at risk" students for faculty and
staff to intervene on [22], to selectively notify students of available
support resources [24], and to directly show live estimates of their
chances of passing [6]. Nascent campus course information and
virtual advising systems [13, 36] are likely candidates to integrate
the next generation of grade prediction AI to support personalized
recommendation [26]. Secondary education too has seen algorith-
mic grade prediction become increasingly pervasive and invasive.
Final grade predictions of certain students in the United Kingdom,
for example, were proposed to take the place of real grades due to
the cancellation of exams under COVID-19 [4, 35]. The proposal
was later rescinded after the predicted grades were found to exhibit
inaccuracies due to historical biases.

Fairness and bias in Artificial Intelligence (AI) has attracted sub-
stantial attention and developed into a focused research area in
the general machine learning community [8, 21, 45]. Endeavor-
ing to reduce racial biases, in particular, has been advocated in
the AI, Ethics, and Society community as part of the plan for a
just AI future [1, 34]. There has been emerging empirical research
evaluating fairness in educational contexts with respect to race
groups using data analytics [19, 44]; however, no work has yet
focused on improving educational equity and fairness from an AI
perspective. In this work, we present methodologies for evaluating
fairness of grade prediction with respect to race, then design for
equity [20] with a novel boosting of underserved groups based
on historic graduation outcomes. Our empirical results are based
on institution-wide course grades and demographics from a large
public university. We propose strategies during the data process-
ing stage, the model training stage, and the inference (prediction)
stage of the grade prediction model to improve group fairness while
maintaining overall accuracy. Experiment results demonstrate that:
(1) adversarial learning produces the highest fairness scores while
leading to minimal overall reduction in prediction performance,
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(2) our proposed equity-based strategy is largely effective as most
of the underserved groups exhibit higher average improvements
than other groups in all three evaluation metrics, and (3) the most
performant model strategies vary for different race groups.

2 RELATEDWORK
2.1 Fairness in Machine Learning and

Education
The dramatic progress of AI has led to machine learning algorithm
adoption in many high-stake applications, including employment,
criminal justice, personalized medicine, and education [18]. Nev-
ertheless, fairness in machine learning remains a problem in that
machine learning algorithms risk amplifying social inequities by
over-associating sensitive attributes (e.g., race and gender) with pre-
diction labels, which may lead to discriminatory behaviors against
certain subgroups [2, 3, 41], such as women in the STEM workforce
[28].

Many metrics have been proposed to measure group fairness.
Demographic parity requires that, for all groups of a sensitive at-
tribute (e.g. race), the overall probability of a positive prediction
of a given outcome should be the same - the sensitive attribute
should be independent of the prediction [10], i.e. 𝑃 (𝑌 ′ = 𝑘 |𝐴 = 𝑖) =
𝑃 (𝑌 ′ = 𝑘 |𝐴 = 𝑗), where the model prediction is𝑌 ′ and the sensitive
attribute is denoted by 𝐴. However, the usefulness of demographic
parity can be limited if the base rates of the two groups differ, i.e. if
𝑃 (𝑌 = 𝑘 |𝐴 = 𝑖) = 𝑃 (𝑌 = 𝑘 |𝐴 = 𝑗), where 𝑌 represents the ground
truth. Two alternative criteria were developed by conditioning the
metric on 𝑌 , yielding equalized odds and equal opportunity [21].
Equal odds requires equal true positive rate and false positive rate
between the groups, formally, 𝑃 (𝑌 ′ = 1|𝐴 = 𝑖, 𝑌 = 𝑦) = 𝑃 (𝑌 ′ =
1|𝐴 = 𝑗, 𝑌 = 𝑦),∀𝑦 ∈ {0, 1}. Equal opportunity requires only one of
these equalities and is intended to match errors in the “advantaged”
outcome, such as "admission to college", across groups, formally,
𝑃 (𝑌 ′ = 1|𝐴 = 𝑖, 𝑌 = 1) = 𝑃 (𝑌 ′ = 1|𝐴 = 𝑗, 𝑌 = 1).

In education, considerations of fairness are deeply rooted and
focused on concerns of bias and discrimination [29]. With the in-
creasing use of data and machine learning models in educational
technologies to provide support and analytic insights to students, in-
structors, and administrators, problems arise in terms of its impact
on fairness in an education system. For example, on-time college
graduation prediction from application data can treat certain sub-
groups of students unfairly and cause less accurate predictions for
them [23]. A machine learning based predictor may underestimate
underrepresented demographic groups when predicting college
student success [44], and many grade prediction approaches cannot
achieve good accuracy in predicting underachieving students [38].
The fairness problem in education may cause adverse impacts on
individuals and society by not only constraining a student’s oppor-
tunity, but also exacerbating historic social inequities. However,
formalized research on improving algorithmic fairness in educa-
tional technologies has been limited. It is therefore essential to
take into account fairness (i.e., equity of opportunity) in decision
support algorithms used in education, so as not to suppress hope
of students by closing off paths due to algorithmic bias.

2.2 Fairness Problem Categorization
Fairness problems can be generally categorized into two classes
from computational perspective: prediction outcome discrimination
due to high feature-class correlation and prediction quality disparity
due to imbalanced data [15].

Because of the intrinsic noise or additional signals of certain
high feature-class correlation that commonly exist in data, ma-
chine learning models would naturally replicate the biases in the
skewed data and eventually result in algorithmic bias. Even though
a machine learning model that excludes sensitive attributes from
model input attempts to achieve fairness through unawareness, it
may still induce prediction discrimination because a learned model
can inadvertently reconstruct sensitive attributes from a number
of seemingly unrelated features [29]. For instance, ZIP code and
surname could indicate race. The model prediction might highly de-
pend on the class memberships, and eventually show discrimination
to certain demographic groups [29].

Given that the typical objective of training a machine learning
model is to minimize the overall error but usually the training data
may be less informative for certain parts of the population, if the
model cannot simultaneously fit all populations optimally, it will
fit the majority group. Although this may maximize the overall pre-
diction accuracy, it might come at the expense of underrepresented
populations and lead to poor performance for those groups. For
example, Yu et al. [44] showed that the imbalanced student subpop-
ulations could be the main source of inequalities and unfairness
in predicting academic success of college students. Doroudi and
Brunskill [14] demonstrated that knowledge tracing algorithms
could also be inequitable, favoring fast learners over slow learners,
when using student models that are fit to aggregate populations of
students.

2.3 Mitigation of Algorithmic Bias
Strategies to mitigate algorithmic bias can be designed and imple-
mented in the three stages of a typical machine learning pipeline:
dataset construction, model training, and inference.

It is a straightforward solution during the dataset construction
stage to remove fairness sensitive features from training data. How-
ever, prediction outcome discrimination may still be perpetuated
because of other feature-class correlation. Directly removing fea-
tures might also lead to poor model performance [37]. For example,
it was shown that disregarding the race feature of students harms
both overall accuracy and demographic parity of an algorithmic
admissions system that predicts college success [30]. For a system
that predicts learning outcomes of university students using data
from a learning management system, predictions become more ac-
curate if the feature set includes student demographic information
[44]. Further techniques to ensure fairness in the data construction
stage include assigning different weights to training samples [27]
and re-weighting each label for the loss function, which are tar-
geted for imbalanced data in terms of group and predicted class,
respectively. However, even when training data is balanced, ma-
chine learning models may still capture information like gender
and race in intermediate representations [41].

Adversarial learning has been leveraged to reduce modeling bias
during training, removing information about sensitive attributes
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Figure 1: Distribution of enrollments by race across semesters

from intermediate representation of model input in predictive mod-
els [9, 32, 40, 43, 45]. In adversarial learning, a predictor and an
adversarial classifier are learned simultaneously. The goal of the pre-
dictor is to ensure the representations of model input are maximally
informative for the major prediction task, while the adversarial clas-
sifier is designed to minimize the predictor’s ability to predict the
sensitive attribute [15]. Thus, adversarial learning has the potential
to learn bias-free representations of model input by removing the
bias information about sensitive user attributes. The mitigation of
modeling bias could also be implemented at the inference stage. The
key idea is to suppress the parts of the model that have captured
sensitive attributes so as to turn off the correlation between those
attributes and model predictions [15].

3 DATASETS
3.1 Student Enrollment Data
We used a novel dataset from UC Berkeley, a large public liberal
arts university in the US, which contained anonymized student
course enrollments from Spring 2012 through Fall 2019. The dataset
consisted of per-semester course enrollment information for 82,309
undergraduates with a total of 1.97 million enrollments. A course
enrollment meant that the student was still enrolled in the course
at the conclusion of the semester. The median courses enrolled in
per semester was four. Student course scores consisted mostly of
letter grades (i.e., A, B, C, D, F) with some courses allowing students
to elect to be graded based on a PASS/No-PASS score, a passing
grade being equivalent to a C- or higher. There were 10,430 unique
courses, including 9,714 unique primarily lecture courses from 197
subjects in 124 different departments hosted in 17 different divisions
of 6 colleges. In all analyses in this paper, we only considered lecture
courses with at least 20 enrollments total over the 8 year period.
The raw data were provided in CSV format by the University’s
Enterprise Data and Analytics unit.

3.2 Student Demographic Data
In addition to student enrollment data, the dataset also contained de-
mographic information of students, including their gender, race, en-
try status, and parental incomewhen admitted. Racial subcategories
listed were: White, Asian, International, Chicano/Latino, African
American, Native American/Alaskan Native, Pacific Islander, and
Decline to State. Chicano/Latino, African American, Native Amer-
ican/Alaskan Native, and Pacific Islander students are currently
underrepresented at the University.

3.3 Descriptive Analyses by Race Group
Enrollments for each semester, broken out by race, is shown in
Figure 1. Enrollments by Asian, White, and International students
rank in the top three, accounting for 77.42% of all enrollments, with
the four underrepresented groups accounting for 17.03% of the
enrollments, and 5.55% from students declining to state their race.

Figure 2: Grade distribution by race

Figure 2 depicts the proportion of course grades in the A category
(including A-, A, and A+), not lower than B, and the proportion of
PASS grades among all the non-letter grades (i.e., including only
PASS and No-PASS grades). Generally, the proportion of enroll-
ments graded with PASS is much higher than those with A for all
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groups. Among all the enrollments with non-letter grades byWhite,
Asian, and International students, 90% ∼ 95% of them were PASS,
compared with 85% ∼ 90% of those were PASS by Chicano/Latino,
African American, Native American/Alaska Native and Pacific Is-
landers. Additionally, 55% ∼ 65% of enrollments with letter grades
by White, Asian, and International students were in the A category,
compared with 35% ∼ 55% of the enrollments by Chicano/Latino,
African American, Native American/Alaska Native, and Pacific
Islanders with the same grade type. A similar pattern exists for
proportions of the not lower than B category.

A growing literature points to opportunity gaps at a systemic
level as leading to these observed achievement gaps among student
groups, many from underresourced communities [12]. While it
can be difficult to explicate these disparities, acknowledging the
presence of racial inequity is a necessary first step towards better
serving the historically underserved [11].

4 COURSE GRADE PREDICTIONWITH LSTM
Long Short-Term Memory (LSTM), a popular variant of RNNs, has
been used to good effect as a dynamic course grade predictionmodel
[25, 26]. To prepare our dataset for training this model, enrollment
grade sequences, 𝒈𝑡 , and course sequences, 𝒄𝑡 , of a student are
converted to fixed length input vectors,

𝒈𝑡 = (𝒈1𝑡 ,𝒈2𝑡 , ...,𝒈𝑛𝑡 )

𝒈𝑖𝑡 = (𝑠1𝑡𝑖 , 𝑠
2
𝑡𝑖 , ..., 𝑠

𝑚
𝑡𝑖 , 𝑠

𝑃𝑎𝑠𝑠
𝑡𝑖 , 𝑠𝑁𝑜−𝑃𝑎𝑠𝑠

𝑡𝑖 )
𝒄𝑡 = (𝑐1𝑡 , 𝑐2𝑡 , ..., 𝑐𝑛𝑡 )

where 𝑛 denotes the number of courses,𝑚 denotes the number of
letter grades that students can receive for a course, and 𝑡 is the time
tag for semester. Therefore, 𝒈𝑖𝑡 ∈ {0, 1}𝑚+2, 𝒈𝑡 ∈ {0, 1} (𝑚+2)∗𝑛 , and
𝒄𝑡 ∈ {0, 1}𝑛 . Jiang et al. [26] showed that using previous semester’s
course grades and current semester’s enrollments as input to the
hidden layer of LSTM always achieved better grade prediction
performance than only using the previous semester’s grades. In
order to separate the loss calculated from the letter grades and
PASS/NO-PASS grades and mask the semesters that students did
not enroll in, a two-level masked cross-entropy loss function was
specified as:

𝐿𝑚𝑎𝑠𝑘𝑒𝑑 = 𝑀𝑎𝑠𝑘𝑒𝑑𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝒈̂𝑡+1,𝒈𝑡+1)

= −
∑
𝑡

∑
𝑖,𝒈̂𝑖

𝑡+1≠0

( ˆ𝒈𝑖1
𝑇

𝑡+1log𝒈
𝑖1
𝑡+1 + ˆ𝒈𝑖2

𝑇

𝑡+1log𝒈
𝑖2
𝑡+1) (1)

where 𝒈𝑖1𝑡 = (𝑠1
𝑡𝑖
, 𝑠2
𝑡𝑖
, ..., 𝑠𝑚

𝑡𝑖
), 𝒈𝑖2𝑡 = (𝑠𝑃𝑎𝑠𝑠

𝑡𝑖
, 𝑠𝑁𝑜−𝑃𝑎𝑠𝑠
𝑡𝑖

), and ˆ𝒈𝑖1𝑡 and
ˆ𝒈𝑖2𝑡 denote the ground truth of grade (i.e., the labels for training
the grade prediction model).

5 STRATEGIES TO MITIGATE BIAS IN GRADE
PREDICTION

We will employ and adapt strategies for mitigating algorithmic bias,
as referred to in related work, to the grade prediction task. These
strategies can be utilized in three stages of the LSTM prediction
pipeline: data construction, model training, and inference. We sum-
marize all the strategies which will be described in this section in
Table 1.

Table 1: Summary of strategieswhichwill be used to attempt
to mitigate bias in the LSTM grade prediction model

Strategy Name Stage

fairness through
unawareness default (loss) -

weight loss by grade label grade label
weighted loss data construction

weight loss by sample
alone, grad-rate
(wgh), equal
(wgh)

data construction

sensitive feature added to
input race (feature) data construction

multiple features added to
input multi data construction

adversarial learning adversarial model training
remove features for
prediction infer-rmv inference

(prediction)

Figure 3: Pre-processing strategies to improve fairness

5.1 Data Construction Strategies
Figure 3 illustrates the LSTM grade prediction framework and three
factors in the data construction stage that may introduce bias into
the prediction model.

First, training samples can be very imbalanced with respect to
sensitive student attributes, which may lead to the prediction qual-
ity disparity problem as is mentioned in the "Related Work" section.
To deal with the issue of imbalanced data samples and aim for fair-
ness in the data construction stage with respect to race, we can
balance the influence of training samples in the loss function by as-
signing weights to counteract racial underrepresentation [27]. The
adjusted loss function of the LSTM grade prediction is expressed
as:

𝐿𝑤𝑔𝑠 = −
∑
𝑡

𝜆 (𝑟 (𝒈̂𝑡+1))𝑀𝑎𝑠𝑘𝑒𝑑𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝒈̂𝑡+1,𝒈𝑡+1) (2)

where 𝑟 (𝒈̂𝑡+1) denotes the race of the student sample that has the
grade label 𝒈̂𝑡+1, and 𝜆(𝑟 (𝒈̂𝑡+1)) assigns the student sample with a
specific weight associated with their race. Normally, the form of
𝜆(∗) varies, but the weights associated with majority groups should
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be set smaller than those of minority groups in the data, so as to
give the model greater chances to learn from the less represented
groups. Scenarios may occur When the weight of a certain race
group is set much larger than that of other groups, then the model
will mainly learn from that group and ignore samples from other
groups.

Even if the number of instances are the same across groups, an
institution may still like to utilize a "weight loss by sample" strategy
to mitigate historic equity gaps, such as differences in graduation-
rate with respect to racial, gender, or socioeconomic groupings. We
introduce this equity oriented weighting, in which group weights
are set in negative correlation to their historic outcomes. This can
also be applied when instances are not balanced, by overrepre-
senting groups with lower historic outcomes, which may also be
underrepresented, instead of bringing them to parity. This is an
example of equity by design [20], where the design and efficacy of
an intervention is centered around non-dominant groups.

A second factor that may introduce bias is imbalanced label dis-
tribution across groups. Student grade label distributions in colleges
and universities have been reported to exhibit inflation, narrow-
ing, and unevenness [7, 33, 38, 42], also reflected in our dataset
as illustrated in Figure 2 where roughly half of grades are in the
𝐴 category and more than 80% are 𝐵 or better. When differences
between group grade distributions exist and there are significant
group size differences, a model is likely to be biased towards the
distribution of the largest groups, worsening the grade prediction
fairness problem. Similar to instance balancing, we can balance
labels by giving different weights to training samples based on their
grade labels, with a resulting adjusted loss function of the LSTM
grade prediction defined as:

𝐿𝑤𝑏𝑙 = −
∑
𝑡

∑
𝑖,𝒈̂𝑖

𝑡+1≠0

𝜎 (𝒈𝑖 𝑡+1) ( ˆ𝒈𝑖1
𝑇

𝑡+1log𝒈
𝑖1
𝑡+1 + ˆ𝒈𝑖2

𝑇

𝑡+1log𝒈
𝑖2
𝑡+1) (3)

where 𝜎 (𝒈̂𝑖
𝑡+1) assigns each enrolled course of a student sample

with a specific weight according to its grade label 𝒈̂𝑖
𝑡+1. In the case

of using both a race group representation-based instance balanc-
ing with label-based balancing, the two weighting schemes are
combined as defined by:

𝐿𝑤𝑏𝑠𝑙 = −
∑
𝑡

𝜆 (𝑟 (𝒈̂𝑡+1 ) )
∑

𝑖,𝒈̂𝑖
𝑡+1≠0

𝜎 (𝒈𝑖 𝑡+1 ) (
ˆ𝒈𝑖1
𝑇
𝑡+1 log𝒈𝑖1𝑡+1 + ˆ𝒈𝑖2

𝑇
𝑡+1 log𝒈𝑖2𝑡+1 ) (4)

Third, the "fairness through unawareness" strategy has been
demonstrated to be ineffective because it falls short of being blind
to sensitive attributes as they can be inadvertently reconstructed
from a number of seemingly unrelated features [16, 29, 30, 44].
Instead, sensitive student attributes, such as gender, race, and family
income, should be acknowledged and modeling strategies employed
to mitigate any bias introduced by them. A first step is to present
sensitive attributes, 𝒇𝑡 , along with grade information to the model
(Figure 3). The feature embeddings learned by the LSTM might
take away sensitive attribute-related information from the grade
embeddings and enable them to be less biased from those attributes.

5.2 Model Training Strategy with Adversarial
Learning

Adversarial learning is a technique that has been used to attempt to
learn bias-free deep representations from biased data [9, 32, 43, 45].
Its mission is to enforce the deep representations to be maximally
informative for predicting the labels of the main task while min-
imally discriminative for predicting sensitive attributes [15]. We
start with the LSTM grade prediction model that outputs a probabil-
ity distribution of grades for each course student took in a semester.
The goal in this scenario is for the LSTM to be accurate at the task

Figure 4: LSTM grade prediction framework with adversar-
ial learning

of predicting student grades while maintaining maximum uncer-
tainty with respect to the race of the student. A straightforward
approach is to apply an attribute discriminator to the hidden states
learned by the LSTM to infer race and penalize the model according
to the negative gradients from the adversarial loss that indicates
the informativeness of hidden states for race prediction. We add
another output layer on top of the hidden states in the LSTM model
to predict the sensitive attribute of race 𝒇𝑡 at time slice 𝑡 , as illus-
trated in Figure 4. The adversarial loss function for predicting the
categorical sensitive attribute is cross-entropy, which is formulated
as:

𝐿𝑜𝑠𝑠𝐹 = −
∑
𝑡

𝒇𝑇𝑡 log𝒇𝑡 (5)

If we subtract 𝑙𝑜𝑠𝑠𝐹 from the original masked cross entropy loss of
the LSTM grade prediction model, which is formulated in (1), the
model will be encouraged to maximize 𝑙𝑜𝑠𝑠𝐹 , which will prevent
the learned course grade embedding and hidden states of the model
from being able to predict race accurately. Meanwhile, the model
still has to maintain the ability to predict grades, therefore, the
weight of the two losses needs to be tuned so as not to harm the
grade prediction performance unnecessarily. The final loss function
is formulated as:

𝐿 = −
∑
𝑡

∑
𝑖,𝒈̂𝑖

𝑡+1≠0

( ˆ𝒈𝑖1
𝑇

𝑡+1log𝒈
𝑖1
𝑡+1 + ˆ𝒈𝑖2

𝑇

𝑡+1log𝒈
𝑖2
𝑡+1) + 𝛼

∑
𝑡

𝒇𝑇𝑡 log𝒇𝑡 (6)

where 𝛼 is a coefficient that controls the importance of the adver-
sarial loss function.

5.3 Inference Strategy
An additional strategy we trial towards achieving fairer grade pre-
diction is to use sensitive attributes in training, but not in the
inference (i.e., prediction) stage. For the LSTM model that takes
in sensitive attributes concatenated with grades as model input,
illustrated in Figure 3, we hypothesize that the feature embeddings
learned by the LSTM might take away some sensitive attribute-
related information from the grade embeddings and enable the
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grade embeddings to be less biased based on sensitive attributes.
Therefore, in the inference stage of grade prediction, we can at-
tempt to remove feature information from the input by only giving
the historical grades to the model input.

6 EXPERIMENT RESULTS ANALYSIS
In this section, we evaluate the proposed strategies in terms of
model fairness and equity, where the metrics of accuracy, true
positive rate, and true negative rate are selected to be reported
according to equity of odds and equity of opportunity that are men-
tioned in related work. Accuracy measures the overall predictive
power of the model. If we set a cutoff for letter grades to divide
them into two groups, such as "not lower than 𝐴(𝐵)" and "lower
than 𝐴(𝐵)", then true positive rate (TPR) reflects the probability
of predicting well-performing students, which can be a measure
of equal opportunity among groups when an intervention uses a
predicted high grade to open up opportunities for students [21]. A
high false negative rate (FNR) can lead to reduced opportunities in
the form of a hypothetical grade-based intervention “underplacing”
or unjustly precluding students from opportunities. True negative
rate (TNR), on the other hand, captures the possibility that students
who need help for their studies can be accurately detected. While
in Hardt et al. [21], they select equal TPR to represent equity of
opportunity, in our context we also consider TNR as it represents
equity of opportunity to be helped. These metrics can shed light
on potential consequences of using grade prediction in different
applications. In this work, we set the grade category 𝐴 as the cutoff
for binary grade prediction due to the grade distribution that en-
rollments with grades in the 𝐴 category take up around 56.12% of
the overall enrollments in our data. Students who cannot receive an
𝐴 can be deemed as scoring behind half of the students on average.
We used the datasets introduced in the "Datasets" section for exper-
iments, where data from 2012 Spring to 2018 Summer are used for
training, 2018 Fall for validation, and 2019 Fall as the test set. The
size of the training, validation, and test data are in the proportion
of 13:1:1.

6.1 Debias the Imbalanced Grade Labels
Given the uneven distribution of grades in the whole data popu-
lation with 56.12% not lower than 𝐴, as well as the disparities in
grade distributions among groups, we evaluate how weighting the
loss function by grade label (i.e., balancing by grade label) mitigates
the prediction quality disparity problem due to the imbalanced
labels. Specifically, we trained the model by minibatch, calculating
𝜎 (𝒈̂𝑖

𝑡+1) in equation (3) based on the proportion of each type of

label (i.e., grade type) in each minibatch, 𝜎 (𝒈̂𝑖
𝑡+1) =

1/𝑝 (𝒈̂𝑖
𝑡+1)∑

𝑡 1/𝑝 (𝒈̂𝑖𝑡+1)
,

where function 𝑝 calculates the proportion of the grade type that a
student received for the 𝑖-th course, i.e., 𝒈̂𝑖

𝑡+1, in each minibatch.
Figure 5 shows a comparison of average results in terms of the

three metrics between models with unweighted loss and models
with weighted loss by grade label. All the values are averaged based
on the results of all the strategies listed in Table 1. Overall, models
with unweighted loss tended to achieve higher TPR than TNR on av-
erage (80.12% v.s. 73.13%), which is largely because the model has fit
the larger proportion of samples with grade label 𝐴 better than the

other group of samples with grade lower than𝐴. After adopting the
weighted loss by grade label, the gap between overall TPR and TNR
became narrower (78.39% v.s. 74.91%). When splitting the whole
student population by race, it is apparent that the model achieved
higher TPR but lower TNR for White, Asian, and International
students than Chicano/Latino, African American, Native American,
and Pacific Islander students, likely due to the larger proportion of
students with 𝐴 in the first race groups. Models with weighted loss
function by grade label also decreased the TPR and increased TNR
for all race groups, with changes more salient for the first three
groups, meaning the unfairness problem between well-performing
students and underachieving students within each race group has
been mitigated to some degree. The average prediction accuracy
results show that weighting the loss function by grade label boosted
accuracy for Chicano/Latino, African American, Native American,
and Pacific Islander students without sacrificing much accuracy for
White, Asian, and International students 1. Therefore, we consider
weighting the loss by grade label in training as an efficient strategy
to debias the imbalanced grade labels, and apply it to all models
introduced in subsequent analyses.

6.2 Debias the Imbalanced Race Groups
Sample re-weighting based on student race can be a solution to
deal with the problem of imbalanced race groups, which aims at
giving underrepresented groups larger representation in training
by weighting the loss function to draw more emphasis from the
model. Without sample re-weighting, each sample is given the same
weight in the loss function, but the majority groups will attract
more attention from the model training process because they have
more samples than lesser represented groups. We use "default" to
denote this strategy because it used the default loss function, equa-
tion (1), which is the same as the "fairness through unawareness"
strategy we mentioned in section "Strategies to Mitigate Bias in
Grade Prediction with LSTM".

In order to assign lesser represented groups with larger weights
and the vice versa, we define the weighting function 𝜆 in equation
(2) as 𝜆(𝒓) = 1/𝒓 , where 𝒓 is a proportion vector of enrollments
by each race group in the data. Therefore, after re-weighting, each
race will share equal weight in the loss function on average. This
strategy is denoted by "equal".

If we consider a curricular recommender system in which the
grade prediction model affects the quality and success of a student’s
curricular path, such as on-time graduation in higher education, an
institution may elect for the efficacy of the recommender system to
be boosted for historically underserved groups even at the expense
of the efficacy on groups with historically high graduation rates.
This equity of outcome strategy is defined by weighing groups in
reverse proportion to a longer-term educational outcome, such as
the average graduation rate of all race groups 𝒅. We defined the
weighting function 𝜆 in equation (2) as 𝜆(𝒅) = 1 − 𝒅 this time
because this formula tends to assign larger weights to races with
lower graduation rates than using the inverse for our data, where
𝒅 is the 6-year graduation rate vector of all race groups according

1The overall decrease of accuracy might result from the much larger population of the
first three race groups than the other four.
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Figure 5: Results of comparison between models with unweighted loss and models with weighted loss by grade label

Figure 6: Evaluation results comparison between models with weighted loss by race

to a diversity report2 from the University. This strategy enables
the model to focus on the groups for which an administration may
want to focus attention on. Note that attention is proportional
to a group’s historic educational outcomes and not to its relative
representation (i.e., not strictly related to being in the minority or
majority, as with the instance balance condition). This equity of
outcome condition is denoted by "grad-rate".

If a particular group is predicted to perform better when they
are more represented, then would it follow that a group would
perform the best if it was the only group contained in the training
data? As a last condition, we define a strategy whereby training
the grade prediction model is conducted separately on each group.
This experiment setting is denoted by "alone".

Evaluation results on the three metrics are shown in Figure 6,
with enrollments and graduation rate distributions across race in
the bottom for reference3. We found that separating race groups
and training on them separately is not an ideal strategy for any
group, as the accuracy decreased for all groups compared with
training on the whole data, especially for Chicano/Latino, African
American, and Pacific Islanders. Compared with results by the
other strategies, TNR for most race groups was also the lowest
under separated training, though TPR were slightly better than
other strategies for the first three groups and Native American. The
salient discrepancies of results among race groups underscore that

2https://diversity.berkeley.edu/reports-data/diversity-data-dashboard
3The height of each bar in the histogram represents the proportion of the corresponding
value of a group to the maximum value of all the groups

different patterns exist in the data of different race groups leading
to disparities in the model’s learning power and predictive power
for each group.

Comparedwith "fairness through unawareness" (default), weight-
ing samples to cater to race groups inversely proportional to grad-
uation rates (grad-rate) helped to increase the TNR and accuracy
for African American and Native American students, who histori-
cally have most struggled with on-time graduation2, while almost
maintained the group’s TPR. This means more underserved stu-
dents can be recommended appropriate remediation with minimal
"underplacing" of others (i.e., FNR).

Balancing samples by race lowered the accuracy, TPR, and TNR
for almost all race groups except Pacific Islanders, likely due to
the number of Pacific Islanders only occupying around 0.2% of the
student population, far lower than other race groups. In light of
the worse results by training only with Pacific Islanders, we can
infer that the data pattern of this group is hard for the model to fit.
Nevertheless, it is worth mentioning that weighting samples based
on race population achieved the highest TPR, TNR, and accuracy for
Pacific Islanders, a noticeable improvement compared with other
strategies. This improvement is generally hard to attain due to the
intrinsic tension between TPR and TNR. Also worthy of note is
that, in terms of accuracy, both the default and grad-rate strategies
perform substantially better than the alone strategy. This indicates
that additional training instances provide a net positive impact on
the strength of the grade prediction model over a smaller training
set that is homogeneous with respect to race.
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Figure 7: Results of models adding sensitive student attributes to the input

6.3 The Impact of Sensitive Attributes
To evaluate the impact of sensitive attributes on the predictive
power and fairness of the grade prediction model, we first added
only student race information to the model input by concatenating
a one-hot race representation to the grades input, followed by ad-
ditional concatenated attributes, including gender, family income
when admitted, entry status, and major(s), as we described in sec-
tion "Data Construction Strategies". In addition, we evaluated the
inference strategy proposed in the "Inference" section by deleting
sensitive attributes from the model input in the prediction (infer-
ence) stage, hypothesizing that the learned feature embeddings
might take away some sensitive attribute-related information from
the learned course grade embeddings, thus potentially debiasing
the course grade embedding.

Evaluation results (Figure 7) reveal that adding sensitive at-
tributes to the model input helped to increase the prediction accu-
racy for most race groups in general, which resonates with previous
research find that the inclusion of race as a feature could improve
overall accuracy in predicting college success [30]. However, as
we fed more features to the model, the model became more dis-
criminatory when it came to TPR and TNR. In particular, models
incorporating race tended to increase the TPR for White, Asian, In-
ternational, Chicano/Latino, and Native American students, while
decreasing the TPR for African American and Pacific Islanders.
The trend to discriminate against students from underrepresented
groups became more obvious with respect to TPR when all the sen-
sitive attributes were added to the model input. Such discrimination
will lead to more underestimation for underrepresented groups (i.e.,
lower true positive rate and higher false negative rate). On the other
hand, TNR for Chicano/Latino, African American, Native Ameri-
can, and Pacific Islanders increased when more sensitive attributes
were included. The accompanied inverse trends of TPR and TNR
as more attributes were included in the model input demonstrated
the tension and tradeoff between TPR and TNR, which suggests
it is hard for the model to improve detection of underperforming
students without also "underplacing" other students. Our results
also echo previous research showing that being aware of sensitive
attributes might induce identity-based biases in predictive analytics
[39]. The large gap of TPR and TNR between majority groups and
underrepresented groups is also observed in Yu et al. [44].

The post-preprocessing strategy of removing sensitive attributes
from the model input in the prediction (inference) stage exhibited

more extreme patterns of TPR and TNR for majority groups and
underrepresented groups, where even all race groups received the
highest TPR and the lowest TNR. Though counter-intuitive, the
results suggest that the adjusted inference model tended to make
overestimation on all groups of students at the expense of accurately
predicting underperforming students.

6.4 Summary of Group Fairness Results
Group fairness is defined by equalized odds [21]. In our case, this
would mean each student race group would have the same true
positive and false positive rates. We evaluated the group fairness
of the proposed strategies based on their TPR, TNR, and accuracy.
The range (i.e., max value - min value) and standard deviation of
each metric over all the groups could be deemed as a group fairness
measure, lower values corresponding to less disparity between race
groups and therefore greater fairness. Ideally, the range and stan-
dard deviation should be both 0 if group fairness is fully attained.
Table 2 presents the evaluation results of the proposed strategies
on all race groups. We selected five models based on the proposed
strategies, where "default" is the same original LSTM grade pre-
diction model as seen in previous sections, "grad-rate(wgh)" and
"equal(wgh)" are two loss weighting strategies by graduation rate
and by population, respectively, which were discussed in section
"Debias the Imbalanced Race Groups", "race(feature)" denotes the
strategy of race being explicitly included in the model input dis-
cussed in section "The Impact of Protect Features", and "adversar-
ial" refers to the adversarial learning strategy proposed in section
"Model Training Strategy with Adversarial Learning". Note that: (1)
All these strategies were also complemented with the "weighting
loss by grade label" strategy for the sake of improvements to fair-
ness and accuracy, as described in section "Debias the Imbalanced
Grade Labels" and (2) The "alone" strategy from the section "De-
bias the Imbalanced Race Groups" and the "multi" and "infer-rmv"
strategies from section "The Impact of Sensitive Features" are not
included here due to poor performance in group fairness and overall
accuracy shown in those sections’ analyses.

The adversarial learning strategy achieved all the minimums of
range and standard deviation for TPR, TNR, and accuracy, demon-
strating the best group fairness among all the compared strategies.
Because the adversarial loss of predicting race is designed to ensure
that the learned course grade embeddings and the hidden states of
the model be minimally discriminative in terms of race, the model
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Table 2: Performance of the four fairness and equity-based strategies compared to no strategy (default). Results are reported
using themetrics of TPR, TNR, and accuracy for each race groupwith group fairnessmeasures of range and standard deviation.
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STD

TPR(%)

default 80.10 79.67 78.16 70.31 72.46 78.34 72.58 78.39 9.79 4.02
grad-rate(wgh) 79.89 80.07 78.27 70.09 71.96 77.71 72.58 79.82 9.98 4.13
equal(wgh) 77.36 76.65 75.49 69.93 68.51 74.52 79.03 79.46 10.52 3.90
race(feature) 82.70 79.99 79.10 71.72 71.17 80.89 70.97 79.53 11.73 5.14
adversarial 80.27 79.37 77.91 70.79 72.26 77.07 72.58 78.42 9.48 3.80

TNR(%)

default 70.76 74.76 73.56 81.01 78.63 77.62 80.23 74.91 10.25 3.75
grad-rate(wgh) 70.67 73.68 72.79 80.92 79.99 79.02 79.07 73.89 10.25 4.09
equal(wgh) 70.04 74.89 72.17 78.27 80.20 76.22 81.40 73.69 11.36 4.15
race(feature) 67.95 75.09 72.53 79.84 81.42 78.32 80.23 74.21 13.47 4.89
adversarial 71.27 74.61 72.99 80.03 79.34 77.62 79.07 74.75 8.76 3.45

Accuracy(%)

default 76.50 77.55 76.25 76.14 76.04 78.00 77.03 76.86 1.96 0.76
grad-rate(wgh) 76.33 77.31 75.99 76.00 76.62 78.33 76.35 76.82 2.34 0.85
equal(wgh) 74.54 75.89 74.11 74.48 75.29 75.33 80.41 76.93 6.30 2.16
race(feature) 77.01 77.88 76.36 76.15 77.11 79.67 76.35 77.19 3.52 1.23
adversarial 76.80 77.31 75.86 75.83 76.37 77.33 76.35 76.81 1.50 0.62

could learn bias-free deep representations from biased data. Though
not the best strategy in terms of TPR, TNR, and accuracy, adver-
sarial learning did not sacrifice much with respect to these metrics.
No single strategy was always best with respect to those metrics;
however, the strategy that most frequently scored the highest was
the one in which race was included as a feature in the input. It was
also most frequently the worst strategy with respect to measures
of group fairness and always worse than the default in that regard,
underscoring the inescapable but necessary trade-offs at play when
designing for fairness [17, 31].

We group predictive performance metrics together by strategy to
more clearly observe how strongly different groups favor different
strategies. Figure 8 depicts a heat map of the increase (blue) or
decrease (red) in each metric relative to the default LSTM grade
prediction model. Three of the four underrepresented groups were
highly benefited by one of the four strategies; the Native American
group was boosted in all three metrics by the "race feature" strategy.
For the Pacific Islanders group, balancing sample representation
by race achieved the highest scores for the group in all metrics,
handling the problem of the small population very well. Three of
the four strategies helped to improve the TNR and accuracy for
African American students. The debiased course grade representa-
tions learned by the adversarial learning strategy increased the TNR
and accuracy for that group without much sacrifice of TPR. The
comparatively lower TPR of African American students signifies
that African American students tended to be underestimated.

7 CONCLUSIONS
Fairness through unawareness was not most effective in achieving
group fairness, as expected. However, presenting race explicitly
to the input of the model led to the most unfair results out of all
strategies. Instead, adversarial learning achieved the best fairness
scores on all three metrics of TPR, TNR, and Accuracy.

Our equity of outcome approach, which sampled instances by
group with inverse proportion to a historic educational outcome

Figure 8: Heat map of performance of the four fairness and
equity-based strategies. A white background means perfor-
mance was the same as the default (no-strategy), bluemeans
performancewas higher, and redmeans it was lower. Higher
opacity represents higher magnitude.

(e.g., graduation rate), was effective in boosting the predictive accu-
racy of most of the historically underserved groups. Oversampling
underrepresented groups helped in the case of Pacific Islanders, but
was not effective for other groups and training exclusively on a
group generally led to lower predictive performance for that group
as compared to training on all groups.

We found grade label balancing to be an effective strategy for
improving grade prediction TNR and TPR among underrepresented
groups. This finding underscores the simple but important obser-
vation that a student group that mostly produces a minority label
(e.g., lower grade) will likely be more poorly predicted than a group
mostly producing the majority label. In educational contexts, where
the majority grade is often higher than the minority grade, this will
lead to perpetuating inequity, where students scoring lower will
be worst served by the algorithms intended to help them. Grade
label balancing mitigates this effect and further work is needed
to develop additional best practices to address equity and fairness
in the myriad of educational scenarios in which machine learning
could otherwise widen achievement gaps.
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