
Enabling Real-Time Adaptivity in MOOCs with a
Personalized Next-Step Recommendation Framework

Zachary A. Pardos

UC Berkeley

Berkeley, CA

zp@berkeley.edu

Steven Tang

UC Berkeley

Berkeley, CA

steventang@berkeley.edu

Daniel Davis

TU Delft

Delft, Netherlands

d.j.davis@tudelft.nl

Christopher Vu Le

UC Berkeley

Berkeley, CA

chrisvle@berkeley.edu

ABSTRACT
In this paper, we demonstrate a first-of-its-kind adaptive

intervention in a MOOC utilizing real-time clickstream data and a

novel machine learned model of behavior. We detail how we
augmented the edX platform with the capabilities necessary to

support this type of intervention which required both tracking
learners’ behaviors in real-time and dynamically adapting content

based on each learner’s individual clickstream history. Our chosen

pilot intervention was in the category of adaptive pathways and
courseware and took the form of a navigational suggestion

appearing at the bottom of every non-forum content page in the
course. We designed our pilot intervention to help students more

efficiently navigate their way through a MOOC by predicting the

next page they were likely to spend significant time on and
allowing them to jump directly to that page. While interventions

which attempt to optimize for learner achievement are candidates
for this adaptive framework, behavior prediction has the benefit of

not requiring causal assumptions to be made in its suggestions.

We present a novel extension of a behavioral model that takes into
account students’ time spent on pages and forecasts the same.

Several approaches to representing time using Recurrent Neural
Networks are evaluated and compared to baselines without time,

including a basic n-gram model. Finally, we discuss design

considerations and handling of edge cases for real-time
deployment, including considerations for training a machine

learned model on a previous offering of a course for use in a
subsequent offering where courseware may have changed. This

work opens the door to broad experimentation with adaptivity and

serves as a first example of delivering a data-driven personalized

learning experience in a MOOC.

Author Keywords
Adaptivity; Personalization; Real-time intervention; MOOC;

RNN; Behavioral modeling; Navigational efficiency; edX

INTRODUCTION
The path towards a more democratized learner success model for

MOOCs has been hampered by a lack of capabilities to provide a
personalized experienced to the varied demographics MOOCs aim

to serve. Primary obstacles to this end have been insufficient

support of real-time learner data across platforms and a lack of
maturity of recommendation models that accommodate the

learning context and breadth and complexity of subject matter

material in MOOCs. In this paper, we address both shortfalls with
a framework for augmenting a MOOC platform with real-time

logging and dynamic content presentation capabilities as well as a

novel course-general recommendation model geared towards
increasing learner navigational efficiency. We piloted this

intervention in a portion of a live course as a proof-of-concept of
the framework. The necessary augmentation of platform

functionality was all made without changes to the open-edX

codebase, our target platform, and instead only requires access to

modify course content via an instructor role account.

The organization of the paper begins with related work, followed
by technical details on augmentation of the platform’s

functionality, a description of the recommendation model and its

back-tested prediction results, and finally an articulation of the
design decisions that went into deploying the recommendation

framework in a live course.

RELATED WORK
In searching for answers to the problem of dismal completion

rates in MOOCs, previous research has shown that MOOC
learners often feel lost or isolated in their learning experience [9].

So far, the attempts to address this problem have largely come in
the form of self-regulated learning (SRL) support interventions.

For example, [10] tested the effectiveness of recommending self-

regulating learning strategies to MOOC learners in the pre-course
survey, but did not observe any significant changes in behavior as

a result. As an example of a MOOC experiment integrated in the
course content, [5] ran experiments in two MOOCs evaluating the

effectiveness of providing learners with retrieval cues (to facilitate

the active retrieval of information from memory) and study
planning support (planning and reflecting on one’s learning

activities each week)—both foundational techniques in self-
regulation. However, in both studies the authors report null

results, with no evidence that providing this support to learners

was beneficial. Another approach to instructional interventions in
MOOCs is found in [17] where the authors manipulated the

course discussion forum. In one condition, the course instructor
was active in the discussion forum and provided support to the

learners in answering their questions; in the other, the instructor

was absent and the learners were on their own to discuss amongst
themselves. Just as in the previous two studies, this yielded no
significant change in behavior between the conditions.

To address the challenge of implementing a real-time, adaptive

intervention in a MOOC, we act on the need to find a way to
effectively support learners in improving their navigational

efficiency with the course materials. We here present a new form
of support for MOOC learners in our next step recommendation

system, as prior work has shown a strong relationship between the

success of a MOOC learner (measured by course completion) and
the characteristics of their learning path through the course [4, 6,

18]. While novel to the MOOC context specifically, such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

L@S 2017, April 20-21, 2017, Cambridge, MA, USA

© 2017 ACM. ISBN 978-1-4503-4450-0/17/04…$15.00

DOI: http://dx.doi.org/10.1145/3051457.3051471

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3051457.3051471

recommender systems have been applied to educational settings in
the past, namely in intelligent tutoring systems (ITS). Both [1] and

[10] provide an overview of the various approaches used to
recommend and adapt course content and resources to learners in
the context of ITS.

To highlight some example use cases of learning path adaptivity

in prior research, we begin with an early example of real-time
“task-loop adaptivity” (defined in [1] as the guiding of learners

from task to task) offered in [2]. The authors here present a

tutoring system which models a student’s learning path in terms of
correct and incorrect actions, and would adaptively intervene to

guide students back to the correct path of action with immediate
feedback.

The authors in [13, 12] provide real-time adaptive hints to coding
assignments in the context of computer programming MOOCs.

Both approaches are “step-loop” [1] in that they provide adaptive
hints regarding the learners’ problem solving process. However,

they take different approaches in doing so; [13] models the ideal

process of solving the problem in a “Problem Solving Policy,” as
defined by an expert, and guides learners towards this behavior.

[12], on the other hand, leverages the scale of MOOCs and
proposes algorithms which use the surrounding context of a code

snippet to identify the problem and recommend a solution to the

learner. The authors in [8] present a personalized navigation
support system in the context of a JavaScript programming

course. By monitoring the learner’s performance on previous
problems, the system presented learners with a next-step

suggestion to try problems of the appropriate, or “optimal,”

difficulty level. By addressing the issue of learners navigating
themselves to tasks that are too easy or too difficult, this system
increased learner achievement and engagement.

[15], [3], and [16] describe the design and deployment of an

adaptive hint generator in an ITS on the topic of logic. This
system uses past learner activity data as input for a Markov

decision process which, when prompted by the learner requesting

a hint, provides personalized support based on the current
progress through the problem. This step-loop adaptivity was

empirically tested in [16] where, compared to a tutor system
without adaptive hints, learners receiving the adaptive hint system

earned higher grades, tried more problems, and persisted deeper

into the course. While the next-step recommender system we
present here does not provide hints about how to solve a given

quiz or assessment problem, the suggestions we provide can be
thought of as hints on how to most efficiently navigate the course.

The next-step recommendation system proposed here is course
content-general and concerned solely with modeling learner

behavior from the navigational patterns of peers from previous
offerings of the course. This is in contrast to studies described

above which are based on modeling a learner’s mastery of the

course topic/domain or helping them through a given task. It also
differs in that the system does not acknowledge any “correct” or

“incorrect” learning path as described in [2]. The system could be
trained to bias towards the behaviors of certificate earners but this

would miss out on serving those who do not intend to complete

but nevertheless wish to make use of portions of the courseware.
While the objective of the recommender is not explicitly focused

on improving cognitive aspects, as was attempted to be modelled
in [28], it will facilitate this in so far as past behavior has been a

means to these ends, for example by recommending resources for

review before a quiz. These considerations are key when it comes
to the eventual evaluation of recommendation quality. A review of

the work in the area of recommender systems suggests that every

context in which a system operates has its own special aspects
against which both the system and its success metrics must be

evaluated [7] Although outside of the scope of this paper, future
evaluation of this intervention might include: increasing

navigational efficiency (clicks per performance), affective

experience (feeling supported), as well as common outcomes such
as grade and completion rate.

Thinking back to the challenge of addressing MOOC learners

feeling lost in the course, we propose next-step recommendations

as a service that could reach learners most in need of engagement.
Pointing to recent findings from HCI research, [14] found that

people are stimulated and respond positively to recommendations
when they are bored. The potentially-overwhelming selection of

possible next steps in a MOOC compounded with the complexity

of course content can, understandably, leave a learner frustrated.
A friendly next-step recommendation can be the support they
need to move forward and persist.

PLATFORM AUGMENTATION
Several technical hurdles had to be overcome in order to add base
functionality that would enable at-scale deployment of a real-time

recommendation system within the edX platform. All solutions
can be achieved without modification to open-edx and only

require standard instructional design team / instructor access to
edit course material.

Figure 1. Annotated breakdown of edX interface components.

Label (A) shows what is henceforth referred to as "Chapters,"

(B) refers to "Sequentials," (C) refers to navigation/goto

buttons, (D) refers to "Verticals," and (E) is the page URL.

Enabling real-time logging
Our real-time recommendation requires knowledge of the

student’s most recent navigational events, some of which may
have occurred only seconds earlier. The edX platform provides a

daily event log delivery to its X consortium members but does not
have a real-time data API. In order to enable access to real-time

learner event logs, we set up a JavaScript logger within the xml of

every page in the course which communicated to the
recommendation server which events to store in the logging
database. This process is illustrated in Figure 2.

The client side logging, which we describe as the sensor code,

was written in JavaScript. The sensor code was responsible for
gathering four items of information from the client at every page:

(1) the learner’s userID (2) the page’s chapter (3) the page’s
sequential (4) the page’s vertical.

The learner’s anonymous ID can be queried simply enough from
Segment’s analytics library used by edX:

 userid = analytics.user().anonymousId();

The anonymosId call has the shortcoming that it will change if the
user switches devices or browsers. A non-anonymized userID call
is also available, which will remain stationary throughout.

Next is the retrieval of chapter and sequential ID, both of which
can be parsed from the browser URL:

 var url = window.location.href;

 var split = url.split("/");

 chap = split[6];

 seq = split[7];

The vertical ID, also known as the position ID within a sequential,

is non-trivial to retrieve. While verticals can be accessed by
adding the vertical number to the sequential URL, this is rarely

how verticals are accessed in the course. They are most
commonly accessed via the “next” and “previous” arrow buttons

which are graphical navigational elements on either side of the

sequential accordion view. When these “seq” events are triggered,
the desired page’s content dynamically replaces the current page.

This dynamic loading keeps the browser URL the same (cf Figure
1) which means that the vertical position must be queried from a

different source. We find this vertical position information in the
edX document object model (DOM1).

 var block = $('#sequence-list .nav-item.active').data('id');

 vert = block.split("@").pop();

Arbitrarily clicking on a vertical in the accordion triggers a

“seq_goto” event which is much the same as the next and
previous events in how they load the page.

With all of these elements now stored, the full description of the
page a learner is on can be described:

 origin = chap+"/"+seq+"/"+vert;

The userID and origin are sent to a local server for logging via a
cross domain aJax POST method.

Row

ID

Anon

Stu. ID
Origin Rec Followed Previous

ID

Timestamp Time

Category

100 C103 5 6 0 99 1477142712 2

101 C103 35 45 1 100 1477142732 1

102 C548 89 101 0 82 1477142736 2

Table 1. Example of entries in local mongo database

Table 1 shows the columns stored in the logging database and a

few example entries. At the time of the event, only the following
columns are populated: row id (transaction id), stu_id, origin,

timestamp, and previous ID (the previous transaction id of the
user). The remainder of the columns are populated on the
subsequent event. Full client side javascript can be found here2.

1All DOM related function calls used in this work are

undocumented by edX and subject to change. After conducting
this pilot study of the framework, we contacted edX in regards

to the supportability of our approach, including providing
persistent anon IDs. This support is currently under review.

2 https://github.com/CAHLR/adaptive_mooc_LAS/

Enabling real-time recommendation
An html <div> container is inserted at the bottom of every page

which contains a template of the recommendation text. The
container is marked as hidden using “display: none” until a

recommendation is received successfully, upon which time the

template is populated with the actual page being recommended
and its title. By hiding the template until a recommendation is

received, we are able to fail gracefully and shield learners from
any error that may occur along the recommendation pipeline; in

the case of an unsuccessful recommendation request, the page

would appear to the user the same way as it would as if no
intervention was added.

Figure 2. Diagram visualizing the entire process of delivering

a recommendation to the learner. The circled numbers

correspond to the numbered steps below.

The recommendation URL and title is populated by (i) sending an

aJax POST to the recommendation server, which in turn (ii) looks
up the learner’s event history from the logging server and then

(iii) passes that information to a web service which interfaces with

the machine learned model. The model returns a recommendation
which is passed back through to the web service. This is then sent

to the recommendation server and then to the requesting client. At
this point, the “Rec” column of Table 1 is filled in representing

the internal index of the recommended URL, and “Followed” is

set to 0. If the learner clicks on the recommended URL, a request
is sent to the recommendation server, the “Followed” is set to 1,

and the learner is redirected to the recommended URL. Upon
loading a subsequent page, either by following the

recommendation or clicking on a different navigational

component, the sensor code will look up the previous event of the
learner and update the time category of the past event. This is

necessary since it is unknown how long the learner will spend on
the page when it is first logged.

1. The learner requests a page in the course

2. The platform sends the page to the client. In the case of a

“seq” event, the page is loaded in dynamically.

3. Client sensor code sends a logging event to the server

4. The server writes the event to a Mongo database

5. If a previous event exists for this student, the time category

of that event is calculated and updated.

6. Client sends a request to the server for recommendation

7. The database is queried for all of the learner’s past events

and respective time categories.

8. The server relays this information to a Flask web service that

parses the information and passes it along to the machine

learned model written in python.

9. The machine learned model predicts forward until it finds a

page that the user is predicted to spend more than 10 seconds

on.

10. The recommended page is returned to the server.

11. The server sends this page to the client which parses a valid

“200” response into a proper hyperlink and populates the

<div> to display the recommendation.

12. The server will update the logging database for this learner

with the recommendation simultaneously

13. If user clicks on the recommendation, the server is contacted

and the database is updated to indicate that user followed the

recommendation.

The term "learner" is used when an event is triggered due to a

deliberate action on the part of a human, such as clicking on a
link. The term “client” is used when actions are initiated, invisible

to the learner (e.g. sending a logging request), by code processed

by their web browser.

Choice of Technology
In order to create this live intervention, we used a range of
different technologies. NodeJS and Express were used to create

the server API; Python Flask served as a light-weight web service;
Python Keras was used to create the machine learned model; and

Mongo was used for persistent database storage.

Server - NodeJS with Express
We decided to create our server using Node primarily because it is

fast and performs well under stress. It handles operations
asynchronously and facilitates a large number of simultaneous

connections very well. It integrates nicely with MongoDB and can

easily create routes with the Express framework.

Our API has several local lookup tables including a mapping of

url to index (used for the machine learned model), index to url, url

to edX path, and edX path to display name.

When the server receives a post request from the client it creates a

new event with a unique user_id, origin, and timestamp. It will
then check if the student has had a previous entry. If yes, the

server will update the previous the timeSeq column of the
previous entry and update the Recents database with this current

entry. If no previous entry exists, it will skip the update in the

Events database and go straight to updating the Recents database
for this student. It will create an entry in the Recents database if

this is the student’s very first event.

After successful logging and updating, the client will ask for a

recommendation for this particular student. The server will then

take the student’s unique user_id and query the Events database
for the sequence of events and timeSeqs connected with this

student. The output will then be sent to the Python web service for

a recommendation.

When the web service responds, the response is checked. A

lookup is then done to go from index to url as well as Edx path to
name and then sent back to the client. The final JSON response

will have the url, Sequential display name, and Vertical display

name of the recommendation.

Web Service - Python & Flask
We decided to create web service using Python and Flask because

our machine learning model was written using Python. It made it
easiest to get the input into the correct format and parse the output

into a simple response. Flask also allowed us to create multiple

processes for parallelizability.

The web service is called after the server requests for a

recommendation for a particular student. It takes in a list of the
student’s events and associated time categories, and then queries

the machine learned model. It will receive either a -1 or an index

from the machine learned model. If the response is a -1, then there
is no valid recommendation (i.e., no recommendations meet the

minimum time anticipated for the learner to spend on the page).

Machine Learned Model - Python Keras
Keras is a neural network machine learning framework providing

functions for fast model prototyping. It has the option of utilizing
Theano or tensorflow for the backend computations, both of
which can utilize GPUs for accelerated training.

Database - MongoDB
We decided to use Mongo as our database of persistent storage

because it is scalable and quickly handles simultaneous queries. It
also has fast in-place updates and has documents stored in JSON,

which makes it efficient to work with our client and server code.

Choice of Course
This framework is generally applicable to different backend

recommendation algorithms with different objectives. For our
purposes of navigational behavior recommendation, there were

several criteria that we anticipated as important in selecting a

reasonable pilot course.

Given our objective of increasing the navigational efficacy of

learners, courses with more numerous pages to navigate are better
candidates for demonstrating the utility of navigational

recommendation. In order to learn non-trivial navigational
patterns from past course events, we also wanted a course with a

high amount of variation in navigational pathways exhibited by its

learners. To measure this variation, we chose to treat student paths
through a particular course as a Markov chain and then computed

the entropy of the transition probability matrix for each course
[26]. There were 13 courses evaluated offered by our deployment

University partner, DelftX. Table 2 shows the entropy calculated

for a variety of courses where entropy was 20 or greater. A higher
amount of entropy indicates larger amounts of non-linear

navigation. Since the Intro to Aeronautical Engineering course
had both a high entropy and candidate assets to recommend, we
selected that course for deployment.

Course Entropy Assets Normalized

Entropy+Assets

Intro to Aeronautical

Engineering (2014)
343 1175 1.782

Intro to Water &

Climate (2013)
149 1503 1.434

Intro to Drinking

Water treatment

(2015)

86 745 0.806

Economics of

Cybersecurity (2015)
78 323 0.746

Table 2. Course suitability evaluation based on navigational

entropy and asset quantity

MODELING

Modeling Navigation Behavior
The literature on cognition and learning has several theories for
describing how knowledge acquisition develops over time. Far

fewer theories exist for behavior, however, as it is an amalgam of

many cognitive and affective factors. As such, the lack of existing
theory to adequately predict navigational behavior to a high

degree of accuracy means that there is also a lack of knowledge of
which manually engineered features may capture student

behavior. As such, we use a model that makes no assumption

about behavior and instead learns these features from the raw time
series data itself.

To model student navigation behavior, we chose to use the

Recurrent Neural Network (RNN) architecture. RNNs are able to

model time sensitive dependencies between events in arbitrarily
long sequences without the need for manual feature engineering.

To provide an example, an RNN can be given a sequence of

URLs a learner has already visited. The RNN maintains a hidden,

continuous state that represents the past behavior exhibited by the
learner. The RNN model can then output a probability distribution

over the next URL the student is likely to visit. Thus, we can then
take the output of the RNN as a potential recommendation to

serve to the learner. The output can be augmented to also be able

to predict the amount of time that a learner will spend on the
resource. With this augmentation, we can then choose to only

provide recommendations where there is expected to be a
significant amount of time spent on the URL. This helps expedite

the learner’s navigation through the course by skipping less useful
content.

To use an RNN model, the logs of student actions must be parsed

so that each student can be represented by a single list which
contains each unique course URL the student has visited.

Additionally, the timestamp associated with each course URL
visit is also tracked. These timestamps are used to create a proxy

for the amount of time spent on a resource. We investigate

whether adding time spent as an input to the RNN model
improves its predictive accuracy, and investigate two model
modifications to incorporate time spent as an input.

Understanding edX logging of navigational events
Parsing a data log of student actions is not trivial. In this work, the

ultimate goal of parsing through the data log is to obtain the
sequence of course URLs that each student has visited, as well as

the timestamp associated with each visit. The data log contains
other student events, such as pausing videos and answering quiz

questions. For this work, such rows were dropped. Thus, only
navigation events were kept, where navigation is defined as

visiting a specific course URL. These navigation events were then

parsed to resolve to a specific course URL. Each URL contains a
chapter hash, a sequential hash (which refers to sections within a

chapter), and a vertical hash (which refers to a specific course
page within a section). For example, a URL represented by

‘abc123/zzz444/2’ would have a chapter hash of ‘abc123’, a

sequential hash of ‘zzz444’, and a vertical value of ‘2’. Thus, each
navigation event in the edX data log can be resolved to a specific

URL. However, each event in the raw log unfortunately does not
directly map to a URL without an extra step of processing.
Navigation events can be found in rows where either:

1. The row is a seq event. Seq events include seq_next,

seq_prev, or seq_goto. Next and prev refer to moving

directly forward or backwards one vertical. Goto is a
jump to any vertical within a single sequential.

OR

2. The row contains a direct course page URL. In the
URL, the vertical may be given directly, or the vertical
may be missing.

Both types of navigation events mentioned above have data

processing quirks. Seq_next and seq_prev events contain the

sequential hash and the vertical that is navigated to. Using the
sequential hash, the chapter hash can be inferred, since there is

only one sequential hash per section in the course, and each
section only belongs to one chapter. The vertical displayed by the

row, however, may need to be additionally processed when

seq_prev is invoked on the first vertical in a section or seq_next is
invoked on the last vertical in a section. For example, the row in

the data log may contain a seq_next to vertical 7 in a particular
section. However, that section might only contain 6 verticals. This

event should actually point to vertical 1 of the next section. Thus,
the processing code must be able to handle when navigating to the

previous and next sections when the current vertical is at the

beginning or the end of the section. Once the corresponding
sequential, chapter, and vertical hashes are resolved, a URL can

be constructed to represent the URL that the student is now at in
this row.

For the second type of navigation event, where the row contains a
direct course URL, when the vertical is included in the row, the

URL can be directly taken from the row itself. When the vertical

is not included in the row, which means that the row contains a
chapter hash and a sequential hash, but no vertical value, then the

vertical must be inferred from the student’s past actions. The
server stores the most recent vertical a student was at for each

section in the course. Thus, the processing code must keep track

of the most recent vertical accessed for each section in the course,
and when a row contains a direct course URL without a vertical,

the vertical must be inferred from the previously stored most
recent vertical for that section.

One other important note is that the rows of the original data file
may not actually be in sorted, ascending order by time. In our

processing, we found that while some rows seemed to be in
ascending order, some rows were actually sorted in descending
order.

Thus, each student is associated with a list of URLs they visited,

processed from the original data log. There are a fixed number of
possible course page URLs, which can be represented by the

possible combinations of chapter, sequential, and vertical hashes.

If there are 200 unique URLs in a course, then the indices from 1
to 200 can each correspond to one of the URLs. Once this

mapping between index and URL is established, each student’s set
of actions can be represented as a list of indices.

Recommendation model design

This sub-section provides context to how the RNN and LSTM
architectures function. RNNs maintain an ongoing latent hidden

state that persists between each input to the model. This latent
state can provide a representation of what has already been seen in

the input sequence. Long Short-Term Memory (LSTM) is a

modification of the RNN architecture, where the hidden latent
state is replaced with a more powerful memory component. We

chose to use LSTMs due to their stronger performance in
modeling longer range dependencies [19, 20].

RNNs maintain a latent, continuous state, represented by ht in the
equations below. This latent state persists in the model between

inputs, such that the prediction at xt+1 is influenced by the latent
state ht. The RNN model is parameterized by the input weight

matrix Wx, recurrent weight matrix Wh, initial state h0, and output
matrix Wy. bh and by are biases for the latent and output units.

ht = tanh(Wxxt + Whht-1 + bh)

yt = σ(Wyht + by)

LSTMs, a popular variant of the RNN, augment the latent,

continuous state with additional gating logic that helps the model
learn longer range dependencies. The gating logic learns when to

retain and when to forget information in the latent state. Each
hidden state ht is instead replaced by an LSTM cell unit with the

additional gating parameters. The update equations for an LSTM
are:

ft = σ(Wfxxt + Wfhht-1 + bf)

it = σ(Wixxt + Wihht-1 + bi)

 C’t = tanh(WCxxt + WChht-1 + bC)

Ct = ft × Ct-1 + it × C’t

ot = σ(Woxxt + Wohht-1 + bo)

ht = ot × tanh(Ct)

fi, it, and ot represent the gating mechanisms used by the LSTM to
determine when to forget, input, and output data from the cell

state, Ct. C’t represents an intermediary candidate cell state that is
gated to update the next cell state.

LSTM Model Description and Training
LSTM models have several hyperparameters, which refer to
values that affect how the model performs on a given set of data.

Evaluating which hyperparameters work best for a given model
and dataset can be done in one of several ways, and is usually

resolved with some empirical experimentation. For this analysis,

we varied the following hyperparameters: number of LSTM layers
and number of hidden nodes per LSTM layer. Each model was

trained using either 1, 2, or 3 LSTM layers, as well as 64, 128,
and 256 nodes per LSTM layer. Thus, each LSTM model is
trained with 9 different hyperparameter sets.

To create a behavior prediction LSTM model, the model needs to

be trained to predict the next URL given a prior sequence of
URLs visited. This is our baseline LSTM model, where the inputs

and outputs are simply indices corresponding to unique URL

accesses. The model is trained in batches of 64 student sequences
at a time using back propagation through time [21]. Categorical

cross entropy is used to calculate loss and RMSprop is used as the
optimizer. Drop out layers were added between LSTM layers as a

method to curb overfitting [22]. An embedding layer with 160

dimensions is added to convert input indices to a continuous multi
dimensional space, a technique commonly used in language

modeling [23]. LSTM models were created using Keras [24], a
Python library built on top of Theano [25].

Figure 3 details an example pipeline where the first two timesteps
of a student sequence of URL accesses is shown. The two URLs

in the student’s sequence are converted to an index representation
of that URL, which is then fed to the LSTM model. The index is

implicitly converted to a one-hot vector representation by the

embedding layer used by the Keras LSTM model. The output of
the model uses the softmax function to normalize the outputs to

sum to 1, so that the values within the output vector could be
thought of as probabilities of that index being the predicted next

URL. If there are 300 unique course URLs, for example, then the

output vector would be of length 300, where each value of the
vector corresponds to the probability that the next URL in the

sequence will be that index value. Thus, to find the most likely
next URL, one needs to find the index of the vector that has the

maximum probability, and then consult the one to one mapping
between indices and URLs to find which URL that index

corresponds to. Note that in the example figure, index 32 of the
softmax output in timestep 1 has the highest probability. Thus,

according to the model, the most likely next URL would be the

URL corresponding to index 32. In the example, this prediction
turns out to be correct, as it is shown that the actual input in the
next timestep is associated with that URL.

Incorporating time into the model
The previous subsection described a baseline LSTM model, where

only the sequence of URL visits was modeled. We hypothesize
that prediction accuracy of the next URL can go up if the model

were to incorporate the amount of time spent on each resource.
Unfortunately, there is no way to know exactly how much time

the student is truly paying attention to a particular URL. We can

approximate time spent, however, by calculating the time
difference between each URL visit. Thus, we approximate the

time spent on a URL by taking the time difference before
accessing the next URL.

Figure 3. Depiction of baseline LSTM architecture

The baseline LSTM model [20] can be augmented to be able to

incorporate time spent in addition to the standard input and output
of the current and next URL index.

We propose two methods for incorporating time spent into the
input of the model. These two methods are referred to as

bucketed-time-input and normalized-time-input. These two
methods of input are explained next.

Bucketed-time-input refers to an augmented input, where an
additional one-hot vector is concatenated with the original

baseline input. Figure 4 depicts this additional time input
processing step in a graphical format. This additional one-hot

vector indicates the amount of time spent on the resource relative
to four pre-determined buckets: between 0-10 seconds, 11-60

seconds, 61-1799 seconds, and finally 1800 and beyond seconds.
These buckets were chosen qualitatively, rather than with a data

driven approach, to be able to prescribe real world interpretation
to the time buckets.

Normalized-time-input refers to an augmented input where an
additional two-dimensional vector is concatenated with the

original baseline input. Figure 4 depicts how the normalized-time-

input is incorporated into the architecture. The first dimension of
this vector takes a value between 0 and 1, which is calculated by

dividing the time spent on the resource by 1800, or if the time
spent is greater than 1800, then the value is taken to simply be 1.

Thus, a time spent of 900 seconds would be converted to 0.5. This

is considered normalizing the time by 1800 seconds. The second
dimension of the vector is simply 1 if the time spent is over 1800
seconds, and 0 otherwise.

Figure 4. Depiction of two methods of adding dwell time to the

model; Normalized continuous (0-1) and time bucketed (1-4)

It is also possible to incorporate time into the output of the model.
The non-time version is referred to as non-concatenated-output,

while the time incorporated version is referred to as concatenated-
output.

Non-concatenated-output refers to the standard output, where the
object of prediction is simply an index, where each index has a

one-to-one mapping with a course URL. Concatenated-output

refers to an output space where the number of indices possible is
multiplied by four, so that one could think of a time bucket being

concatenated with each index. Each possible course URL now has
four associated indices with it, where each index represents a

course URL and the amount of time spent on that URL, where

time spent is bucketed in the same fashion as the bucketed-time-
input. We can compute the overall likelihood for a particular URL

by adding the probabilities among all four indices associated with
a particular URL. Since each output is also associated with a time,

one can look at only indices associated with a particular time

bucket. Thus, the output can now be queried to find the most
likely URL to visit among each possible time category.

With these methods of input and output defined, we propose the
following models:

Attributes:

(a) Input time treated as continuous
(b) Input time treated as categorical

(c) Input time concatenation with vertical after embedding
(d) Time category concatenated with vertical in the output

1. Baseline LSTM model: Inputs and outputs are indices, where
each index has a one to one mapping to a unique course URL.

2. Bucketed-time-input, non-concatenated-output (b,c)

3. Bucketed-time-input, concatenated-output (b,c,d)

4. Normalized-time-input, non-concatenated-output (a,c)

5. Normalized-time-input, concatenated-output (a,c,d)

Deployment Course Dataset and Prediction Results
The pilot course, DelftX Intro to Aeronautical Engineering 2015,
contained log data from 27024 unique learner ids. However, for

the purposes of behavior recommendation, we chose to filter the

data to only include learners who attempted at least one problem
check, resulting in data logs from 9,172 learners. From the data

logs, we again filter the data to only include data regarding course
page navigations, thus excluding events related to lecture video

pausing, problem viewing, and so on. We chose to also filter out

contiguous repeats of URL accesses. This means that if there are
multiple visits to the same URL in a row, we removed duplicates

such that there only remained one access to that URL for a student
sequence representation. For the time spent associated with sole

URL used in place of the duplicate contiguous URLs, we took the

maximum time spent among the duplicated URL accesses. Time
spent is calculated, in general, by taking the timestamp of a URL

access and calculating the future difference to the timestamp of
the next URL access in the sequence. There were 336127

navigation events in the 0-10 second bucket, 248918 in the 11-60

second bucket, 338144 events in the 61-1799 bucket, and 123287
events in the 1800 seconds and beyond bucket.

There was a total of 286 possible course URLs, which means

there were 286 possible unique verticals to model, spread over 38

sequentials. The median number of verticals in a sequential was 6,
with a maximum of 19. The course was self-paced, which means

that assignment due dates were not fixed, and all of the course
content was released at the beginning of the course. Log data was

filtered to only include data from roughly the time period that the
course officially ran, from May 31, 2015 to June 3, 2016.

Hill-climbing Validation Early Stopping
The 5 LSTM models described in the previous section were each
trained under the 9 different hyperparameter settings described in

section 3.1.4. The data was split into two sets, a training set and a

held-out test set. The training set comprised sequences from a
randomly selected 70% of the users, while the test set contained

the remaining 30%. Within the training set, 10% of the sequences
were held out as a hill-climbing validation set. During training of

a particular model, if the loss calculated on the hill-climbing set

did not obtain a best result for 3 consecutive epochs, then training
was halted for that model and the best result was recorded. This
was our early stopping criterion.

Baselines
An n-gram model is included as another sequential model for

comparison. N-gram models capture the structure of sequences
through the statistics of n-sized sub-sequences. The model

predicts each sequence state xi using the estimated conditional
probability that xi follows the previous n-1 states in the training

set. We trained n-grams with values of n between 2 and 10, while

also instituting a “back-off” policy when there are too few
subsequences. For each n-gram, we instituted back-off policies of

between 0 and 10 occurrences, so that a particular sub-sequence
of size n must occur at least the number of times as the back-off

policy, or else that sub-sequence is not used. The back-off policy

prevents the n-gram model from using very sparse data, requiring
a minimum number of occurrences for that sub-sequence to be

used. If there are too few occurrences of a particular n-sized sub-
sequence, the model “backs off” and uses the values for the (n-1)-

gram model, and so on. The best performing n-gram model on the

validation set had an n-value of 7 and a back-off value of 8. A 2-
gram model is also included, representing a model predicting the

most common URL following a particular URL. We call this
model the “Next most common” model. The last baseline is

dubbed the “Next syllabus URL” model, which predicts the next

URL in the course structure; this is equivalent to the page learners
are taken to when they click on the "Next" button in the native
edX interface.

Back-tested Prediction Results
Validation accuracy and test set accuracy is shown in Table 2. For

each model, the hyperparameter set that reached the highest
validation accuracy was used. Thus, for each LSTM model listed

in the table, only the highest achieving hyperparameter set results
are shown, where training stopped according to the early stopping

rules described previously. Accuracy refers to average accuracy

per student sequence; thus a next URL prediction accuracy is
established per student sequence, and then the averages from all

students are averaged together. For baseline outputs, the models
produce an index which has a one to one mapping with a URL.

Thus, if the most likely index produced by the model matches the

actual next URL in the sequence, that is counted as a correct
prediction within a student sequence. For concatenated outputs,

the models produce an index which has a four to one mapping
with a URL, meaning there are four possible indices that all

correspond to the same URL, just with a different time spent

predicted. For the purpose of accuracy, as long as the URL
mapping of the index is correct, then the prediction is counted as

correct. Thus, accuracy for concatenated outputs drops the time
component from the output in calculating correctness.

Model Input / Output Validation Acc. Test Set Acc.

Bucket /Non-Concat. 63.5 64.0

Norm / Concat. 62.6 63.5

Bucket / Concat. 63.0 63.3

Norm / Non-Concat. 62.9 63.3

Baseline LSTM 62.0 62.5

Best n-gram (7) 61.6 61.7

Next most common 55.1 55.6

Next syllabus URL 51.5 52.0

Table 2. Prediction accuracy results

REAL-TIME DEPLOYMENT

Recommendation Interface
This section describes our rationale for how to best integrate the

recommendations into the learner’s course experience. We

primarily consider two key aspects of the interface: (i) the visual
appearance of the recommendations and (ii) the linguistic framing
of the accompanying text.

Visual Appearance
As the interface is housed within the edX platform and course

materials, it is important that the appearance of the
recommendations is seamless. This ensures both a sense of trust

from the user---in that it looks like it’s a natural part of the edX

course---and assuages the risk that the recommendations act as
distractions to the learners. Given the simplicity of the edX user

interface design, this was not hard to achieve. And to make
following the recommendations more intuitive, we also add a

“Go” button that learners can use as an alternative to clicking on

the plain text link. These appear at the bottom of every page in the
course---made directly available to the learner at all times.

Linguistic Framing
Just as we did not want the visual appearance of the

recommendation to be too overwhelming in the existing course

interface, we likewise aimed to present the accompanying text in a
way that clearly communicates the benefit of this resource while

not sounding overly authoritative. While definitely an avenue for
future experimentation (what is the most effective way to frame

such recommendation text to learners?), we eventually decided on

“Suggestion for you… Consider visiting: [Recommended next-
step].” This text accomplishes the task of communicating to the

learner that this recommendation is indeed personalized and
unique to him or her (without explaining how) and also making it

clear that following this recommendation is optional. Figure 5
shows the final design of the recommendation interface.

Figure 5. Final design of the recommendation interface

We are able to show the text of sequential and vertical being
suggested through a lookup table we created from the course xml.

Model Usage Considerations

Training a model based on a previous offering of the course
Since the navigation behavior model proposed in this paper is

behavior and data driven, a requirement to deploy such a model in
a live course is that behavior from the course must already exist.

To perform our live case study, we selected a MOOC that had

multiple offerings over time so that we could use behavior from a
completed iteration of the course to train our behavior models.

Since the model is trained on a specific structure of course URLs,
the current iteration of the course should not deviate too much,
preferably at all, from the iteration that the model was trained on.

To deploy our behavior model in the 2016 offering of the

Aeronautics Engineering course, we trained on the behavior data
from the 2015 offering of the course.

Taking into Account Changes in The Courseware
In our case study, the majority of the course structure was held

exactly the same. However, the first chapter to the course was re-
ordered. Our behavior model implicitly incorporates the ordering

of the course in its predictions, so that any re-ordering of course

content would adversely affect its prediction. Therefore, we chose
to drop all events related to the first chapter of the course from

both the training and the live recommendation data sets. This was
deemed acceptable since the first chapter for this course was an
introduction to the course staff and logistics.

Additionally, one unique URL was added to the current version of

the course. Thus, the trained model has no knowledge or ability to
recommend that URL. However, the actual recommendation code

can be altered so that when it is detected that a student is near the

new URL, the recommendation code can choose to temporarily
suspend usage of the behavior model and either suggest going to

the new URL directly or simply not suggesting a URL
temporarily.

Any deviation in course structure from the training environment
needs consideration in handling. Special recommendation logic

must be put in place when the live version of the course differs in
ways that the original model cannot account for.

Description of the Recommendation Engine
The machine learned model is the contact point between the
underlying LSTM behavioral model and the code that serves a

clickable link on the learner’s browser. The LSTM model has
been trained to produce an output that contains a probability

distribution over all possible course pages. Our time-concatenated

output LSTM models additionally contain time information in
each of the output indices. With this time-concatenated

probability distribution, it is reasonable to simply take the most
likely page and serve that as the model’s recommendation. With

the time-augmented output, however, the recommendation engine

can instead be configured to recommend a URL that the learner is
likely to spend a significant amount of time on, for example

between 10 seconds and 30 minutes. The hypothesis behind this
logic is that if the model only expects the learner to spend fewer

than 10 seconds on a resource, then it may be the case that the

learner is trying to skip over it on her way to the eventual resource
of interest. The recommender gives the learner the skip directly to

that eventual resource of interest. It could be reasonable to
recommend pages where the learner is expected to spend more

than 30 minutes on; However, we chose not to include these as

part of our recommendation engine configuration, since it could
be possible that such a lengthy time spent on a page could really

be indicative of a time-out event, where the learner has actually
just left the page, potentially after consulting an ineffective page.

Another method for producing a recommendation could instead be
to repeatedly query the behavioral model until the most likely

page corresponds to a desirable time bucket, where each repeated
query has a “hypothetical action” appended as the most recent

event. For example, if a student is currently at a quiz page (Figure

6), then the behavioral model would be queried using that
student’s past behavior as well as the current quiz page. The time

spent on the current quiz page is not known yet since the learner
has not navigated away from that page at the time of the query.

Thus, time spent on the current page must be approximated in

some way; we use the modal time bucket as a place holder (11-60
seconds) and the real time spent is filled in after the next

navigation event. The model then produces a probability
distribution over time-concatenated indices, as usual. If the most

probable page is in a desirable time bucket range, then the engine

recommends that URL. However, if the most probable page is not
in a desirable time bucket range, then instead of recommending

this page, the engine temporarily appends it to the student’s
“hypothetical” path until a desirable time bucket recommendation

is reached. Thus, through repeated querying of the model,

eventually a page in the desirable time bucket range would be
reached, and the engine would use this as the recommendation.

The reasoning behind such a model would be, for example, to skip
through many URL accesses that are under ten seconds

(undesirably short time spent) and instead recommend a URL that

the student would likely have eventually dwelled on. We refer to
this as a forward-stepping process, where we create hypothetical

forward steps to the model. The page used in the case shown in
Figure 6 is Video 1, a recommendation which is inserted into the

page after the query completes and which the student followed in

this example. After the learner in the example visits Video 1, she
is suggested to return to the quiz but instead navigates to Text 3.

Figure 6. An example of the framework delivering three

recommendations at three consecutive page visits for a learner

We chose to use the time-bucketed-input with time-concatenated

output model discussed previously. For the live recommendation
pilot, we chose to retrain the LSTM model on the entire set of the

previous course offering’s data, as opposed to the original training

only using 70% of the data. We only used the validation set’s best
hyperparameters.

Our next step recommendation can be seen as predicting what
page a learner wants or will eventually want, and directly linking

them to that page in advance. When to consider if what learners
want is different from what they need to achieve their goals or the

goals of the course is a matter for consideration by future work as

well as the appropriate role of a platform, courseware, and
personalization in facilitating these goals.

CONTRIBUTIONS
In this paper, we made three contributions to adaptive

personalization in a MOOC. The first was to solve the issue of
real-time learner event logging required for data-driven

intervention with a client side JavaScript solution that records
learner navigational events. The second was to introduce a novel

behavioral model which predicted the next page a learner was

likely to spend significant time on which outperformed existing
prediction baselines. Lastly, we combined the first two

contributions to provide the first proof-of-concept realization of a
real-time data-driven recommendation framework in a live

MOOC along with the edge cases and design considerations that
needed to be handled in order to deploy.

ACKNOLWEDGEMENTS
We would like to acknowledge our use of the edX partner’s

Research Data Exchange (RDX) program and the support
contributed by the edX data team. We also acknowledge the

support from TU Delft’s Office of Online Learning, its director,

and the DelftX Aeronautics Engineering course team for their
cooperation.

REFERENCES
1. Aleven, V., McLaughlin, E., Glenn, R. A., and Koedinger, K.

(2016) Instruction based on adaptive learning technologies.

Handbook of research on learning and instruction.
Routledge.

2. Anderson, J. R., Corbett, A. T., Koedinger, K. R., and

Pelletier, R. Cognitive tutors: Lessons learned. The Journal
of the Learning Sciences 4, 2 (1995), 167–207.

3. Barnes, T., and Stamper, J. Toward automatic hint generation
for logic proof tutoring using historical student data. In

International Conference on Intelligent Tutoring Systems,

Springer (2008), 373–382.
4. Davis, D., Chen, G., Hauff, C., and Houben, G.-J. Gauging

mooc learners adherence to the designed learning path (2016)
In Proceedings of the 9th International Conference on

Educational Data Mining (EDM). 54–61.

5. Davis, D., Chen, G., van der Zee, T., Hauff, C., and Houben,
G. J. (2016) Retrieval practice and study planning in moocs:

Exploring classroom-based self-regulated learning strategies
at scale. In European Conference on Technology Enhanced

Learning, Springer. 57–71.

6. Guo, P. J., & Reinecke, K. (2014). Demographic differences
in how students navigate through MOOCs. In Proceedings of

the first ACM conference on Learning@ scale conference
(pp. 21-30). ACM.

7. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J.

T. (2004). Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems (TOIS),

22(1), 5-53.
8. Hsiao, I.-H., Sosnovsky, S., and Brusilovsky, P. (2010)

Guiding students to the right questions: adaptive navigation

support in an e-learning system for java programming.
Journal of Computer Assisted Learning 26, 4, 270–283.

9. Khalil, H., and Ebner, M. (2014) Moocs completion rates and
possible methods to improve retention-a literature review. In

World Conference on Educational Multimedia, Hypermedia

and Telecommunications, no. 1, 1305–1313.
10. Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J.

(2016). Recommending self-regulated learning strategies
does not improve performance in a MOOC. In Proceedings

of the Third ACM Conference on Learning@ Scale (pp. 101-

104). ACM.
11. Kopeinik, S., Kowald, D., and Lex, E. (2016) Which

algorithms suit which learning environments? A comparative
study of recommender systems in tel. In European

Conference on Technology Enhanced Learning, Springer,

124–138.
12. Nguyen, A., Piech, C., Huang, J., and Guibas, L. (2014)

Codewebs: scalable homework search for massive open
online programming courses. In Proceedings of the 23rd

international conference on World wide web, ACM. 491–

502.

13. Piech, C., Sahami, M., Huang, J., & Guibas, L. (2015).
Autonomously generating hints by inferring problem solving

policies. In Proceedings of the Second ACM Conference on
Learning@ Scale (pp. 195-204). ACM.

14. Pielot, M., Dingler, T., Pedro, J. S., and Oliver, N. When

attention is not scarce-detecting boredom from mobile phone
usage. In Proceedings of the 2015 ACM International Joint

Conference on Pervasive and Ubiquitous Computing, ACM
(2015), 825–836.

15. Stamper, J., Barnes, T., Lehmann, L., and Croy, M. The hint

factory: Automatic generation of contextualized help for
existing computer aided instruction. In Proceedings of the

9th International Conference on Intelligent Tutoring Systems
Young Researchers Track (2008), 71–78.

16. Stamper, J., Eagle, M., Barnes, T., and Croy, M.

Experimental evaluation of automatic hint generation for a
logic tutor. International Journal of Artificial Intelligence in

Education 22, 1-2 (2013), 3–17.
17. Tomkin, J. H., & Charlevoix, D. (2014). Do professors

matter?: Using an a/b test to evaluate the impact of instructor

involvement on MOOC student outcomes. In Proceedings of
the first ACM conference on Learning@ scale conference

(pp. 71-78). ACM.
18. Wen, M., and Rosé, C. P. Identifying latent study habits by

mining learner behavior patterns in massive open online

courses. In CIKM ’14 (2014), 1983–1986.
19. Bengio, Y., Simard, P., and Frasconi, P. Learning long-term

dependencies with gradient descent is difficult. Neural
Networks, IEEE Transactions on, 5(2):157-166, 1994.

20. Gers, F. A., Schmidhuber, J., and Cummins, F. Learning to

forget: Continual prediction with lstm. Neural computation,
12(10):2451-2471, 200.

21. Werbos, P. J. Generalization of backpropagation with
application to a recurrent gas market model. Neural

Networks, 1(4):339-356, 1988.

22. Pham, V., Bluche, T., Kermorvant, C., and Louradour, J.
Dropout improves recurrent neural networks for handwriting

recognition. In Frontiers in Handwriting Recognition
(ICFHR), 2014 14th International Conference on, pages 285-

290. IEEE, 2014.

23. Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and
Khudanpur. Recurrent neural network based language model.

In INTERSPEECH, volume 2, page 3, 2010.
24. Chollet, F. Keras. https://github.com/fchollet/keras, 2015.

25. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio,

Y. Theano: a CPU and GPU math expression compiler. In

Proceedings of the Python for Scientific Computing
Conference (SciPy), June 2010. Oral Presentation.

26. Reddy, S., Labutov, I., and Joachims, T. Latent skill
embedding for personalized lesson sequence

recommendation. CoRR, abs/1602.07029, 2016.

27. Tang, S., Peterson, J. C., & Pardos, Z. A. (2016). Modeling
Student Behavior using Granular Large Scale Action Data

from a MOOC. arXiv preprint arXiv:1608.04789.
28. Pardos, Z.A., Bergner, Y., Seaton, D., Pritchard, D.E. (2013)

Adapting Bayesian Knowledge Tracing to a Massive Open

Online College Course in edX. D’Mello, S. K., Calvo, R. A.,
and Olney, A. (eds.) Proceedings of the 6th International

Conference on Educational Data Mining (EDM). Memphis,
TN. Pages 137-­144.

