Enabling Real-Time Adaptivity in MOOCs with a
Personalized Next-Step Recommendation Framework

Zachary A. Pardos
UC Berkeley

Steven Tang
UC Berkeley

Berkeley, CA Berkeley, CA
zp@berkeley.edu steventang@berkeley.edu
ABSTRACT

In this paper, we demonstrate a first-of-its-kind adaptive
intervention in a MOOC utilizing real-time clickstream data and a
novel machine learned model of behavior. We detail how we
augmented the edX platform with the capabilities necessary to
support this type of intervention which required both tracking
learners’ behaviors in real-time and dynamically adapting content
based on each learner’s individual clickstream history. Our chosen
pilot intervention was in the category of adaptive pathways and
courseware and took the form of a navigational suggestion
appearing at the bottom of every non-forum content page in the
course. We designed our pilot intervention to help students more
efficiently navigate their way through a MOOC by predicting the
next page they were likely to spend significant time on and
allowing them to jump directly to that page. While interventions
which attempt to optimize for learner achievement are candidates
for this adaptive framework, behavior prediction has the benefit of
not requiring causal assumptions to be made in its suggestions.
We present a novel extension of a behavioral model that takes into
account students’ time spent on pages and forecasts the same.
Several approaches to representing time using Recurrent Neural
Networks are evaluated and compared to baselines without time,
including a basic n-gram model. Finally, we discuss design
considerations and handling of edge cases for real-time
deployment, including considerations for training a machine
learned model on a previous offering of a course for use in a
subsequent offering where courseware may have changed. This
work opens the door to broad experimentation with adaptivity and
serves as a first example of delivering a data-driven personalized
learning experience in a MOOC.

Author Keywords
Adaptivity; Personalization; Real-time intervention;
RNN; Behavioral modeling; Navigational efficiency; edX

INTRODUCTION

The path towards a more democratized learner success model for
MOOCs has been hampered by a lack of capabilities to provide a
personalized experienced to the varied demographics MOOCSs aim
to serve. Primary obstacles to this end have been insufficient
support of real-time learner data across platforms and a lack of
maturity of recommendation models that accommodate the
learning context and breadth and complexity of subject matter

MOOC,;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

L@S 2017, April 20-21, 2017, Cambridge, MA, USA

© 2017 ACM. ISBN 978-1-4503-4450-0/17/04...$15.00

DOI: http://dx.doi.org/10.1145/3051457.3051471

Daniel Davis
TU Delft
Delft, Netherlands
d.j.davis@tudelft.nl

Christopher Vu Le
UC Berkeley
Berkeley, CA

chrisvle@berkeley.edu

material in MOOC:s. In this paper, we address both shortfalls with
a framework for augmenting a MOOC platform with real-time
logging and dynamic content presentation capabilities as well as a
novel course-general recommendation model geared towards
increasing learner navigational efficiency. We piloted this
intervention in a portion of a live course as a proof-of-concept of
the framework. The necessary augmentation of platform
functionality was all made without changes to the open-edX
codebase, our target platform, and instead only requires access to
modify course content via an instructor role account.

The organization of the paper begins with related work, followed
by technical details on augmentation of the platform’s
functionality, a description of the recommendation model and its
back-tested prediction results, and finally an articulation of the
design decisions that went into deploying the recommendation
framework in a live course.

RELATED WORK

In searching for answers to the problem of dismal completion
rates in MOOCs, previous research has shown that MOOC
learners often feel lost or isolated in their learning experience [9].
So far, the attempts to address this problem have largely come in
the form of self-regulated learning (SRL) support interventions.
For example, [10] tested the effectiveness of recommending self-
regulating learning strategies to MOOC learners in the pre-course
survey, but did not observe any significant changes in behavior as
a result. As an example of a MOOC experiment integrated in the
course content, [5] ran experiments in two MOQCs evaluating the
effectiveness of providing learners with retrieval cues (to facilitate
the active retrieval of information from memory) and study
planning support (planning and reflecting on one’s learning
activities each week)—both foundational techniques in self-
regulation. However, in both studies the authors report null
results, with no evidence that providing this support to learners
was beneficial. Another approach to instructional interventions in
MOOCs is found in [17] where the authors manipulated the
course discussion forum. In one condition, the course instructor
was active in the discussion forum and provided support to the
learners in answering their questions; in the other, the instructor
was absent and the learners were on their own to discuss amongst
themselves. Just as in the previous two studies, this yielded no
significant change in behavior between the conditions.

To address the challenge of implementing a real-time, adaptive
intervention in a MOOC, we act on the need to find a way to
effectively support learners in improving their navigational
efficiency with the course materials. We here present a new form
of support for MOOC learners in our next step recommendation
system, as prior work has shown a strong relationship between the
success of a MOOC learner (measured by course completion) and
the characteristics of their learning path through the course [4, 6,
18]. While novel to the MOOC context specifically, such

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3051457.3051471

recommender systems have been applied to educational settings in
the past, namely in intelligent tutoring systems (ITS). Both [1] and
[10] provide an overview of the various approaches used to
recommend and adapt course content and resources to learners in
the context of ITS.

To highlight some example use cases of learning path adaptivity
in prior research, we begin with an early example of real-time
“task-loop adaptivity” (defined in [1] as the guiding of learners
from task to task) offered in [2]. The authors here present a
tutoring system which models a student’s learning path in terms of
correct and incorrect actions, and would adaptively intervene to
guide students back to the correct path of action with immediate
feedback.

The authors in [13, 12] provide real-time adaptive hints to coding
assignments in the context of computer programming MOOCs.
Both approaches are “step-loop” [1] in that they provide adaptive
hints regarding the learners’ problem solving process. However,
they take different approaches in doing so; [13] models the ideal
process of solving the problem in a “Problem Solving Policy,” as
defined by an expert, and guides learners towards this behavior.
[12], on the other hand, leverages the scale of MOOCs and
proposes algorithms which use the surrounding context of a code
snippet to identify the problem and recommend a solution to the
learner. The authors in [8] present a personalized navigation
support system in the context of a JavaScript programming
course. By monitoring the learner’s performance on previous
problems, the system presented learners with a next-step
suggestion to try problems of the appropriate, or “optimal,”
difficulty level. By addressing the issue of learners navigating
themselves to tasks that are too easy or too difficult, this system
increased learner achievement and engagement.

[15], [3], and [16] describe the design and deployment of an
adaptive hint generator in an ITS on the topic of logic. This
system uses past learner activity data as input for a Markov
decision process which, when prompted by the learner requesting
a hint, provides personalized support based on the current
progress through the problem. This step-loop adaptivity was
empirically tested in [16] where, compared to a tutor system
without adaptive hints, learners receiving the adaptive hint system
earned higher grades, tried more problems, and persisted deeper
into the course. While the next-step recommender system we
present here does not provide hints about how to solve a given
quiz or assessment problem, the suggestions we provide can be
thought of as hints on how to most efficiently navigate the course.

The next-step recommendation system proposed here is course
content-general and concerned solely with modeling learner
behavior from the navigational patterns of peers from previous
offerings of the course. This is in contrast to studies described
above which are based on modeling a learner’s mastery of the
course topic/domain or helping them through a given task. It also
differs in that the system does not acknowledge any “correct” or
“incorrect” learning path as described in [2]. The system could be
trained to bias towards the behaviors of certificate earners but this
would miss out on serving those who do not intend to complete
but nevertheless wish to make use of portions of the courseware.
While the objective of the recommender is not explicitly focused
on improving cognitive aspects, as was attempted to be modelled
in [28], it will facilitate this in so far as past behavior has been a
means to these ends, for example by recommending resources for
review before a quiz. These considerations are key when it comes
to the eventual evaluation of recommendation quality. A review of
the work in the area of recommender systems suggests that every

context in which a system operates has its own special aspects
against which both the system and its success metrics must be
evaluated [7] Although outside of the scope of this paper, future
evaluation of this intervention might include: increasing
navigational efficiency (clicks per performance), affective
experience (feeling supported), as well as common outcomes such
as grade and completion rate.

Thinking back to the challenge of addressing MOOC learners
feeling lost in the course, we propose next-step recommendations
as a service that could reach learners most in need of engagement.
Pointing to recent findings from HCI research, [14] found that
people are stimulated and respond positively to recommendations
when they are bored. The potentially-overwhelming selection of
possible next steps in a MOOC compounded with the complexity
of course content can, understandably, leave a learner frustrated.
A friendly next-step recommendation can be the support they
need to move forward and persist.

PLATFORM AUGMENTATION

Several technical hurdles had to be overcome in order to add base
functionality that would enable at-scale deployment of a real-time
recommendation system within the edX platform. All solutions
can be achieved without modification to open-edx and only
require standard instructional design team / instructor access to
edit course material.

[& courses.edr.org x = |

Lecture 7a - Propulsion introduction

i]

4

Figure 1. Annotated breakdown of ed X interface components.
Label (A) shows what is henceforth referred to as "*Chapters,"
(B) refers to ""Sequentials," (C) refers to navigation/goto
buttons, (D) refers to ""Verticals," and (E) is the page URL.

Enabling real-time logging

Our real-time recommendation requires knowledge of the
student’s most recent navigational events, some of which may
have occurred only seconds earlier. The edX platform provides a
daily event log delivery to its X consortium members but does not
have a real-time data API. In order to enable access to real-time
learner event logs, we set up a JavaScript logger within the xml of
every page in the course which communicated to the
recommendation server which events to store in the logging
database. This process is illustrated in Figure 2.

The client side logging, which we describe as the sensor code,
was written in JavaScript. The sensor code was responsible for
gathering four items of information from the client at every page:
(1) the learner’s userID (2) the page’s chapter (3) the page’s
sequential (4) the page’s vertical.

The learner’s anonymous ID can be queried simply enough from
Segment’s analytics library used by edX:

userid = analytics.user().anonymousld();

The anonymosld call has the shortcoming that it will change if the
user switches devices or browsers. A non-anonymized userID call
is also available, which will remain stationary throughout.

Next is the retrieval of chapter and sequential ID, both of which
can be parsed from the browser URL:

var url = window. location.href;
var split = url.split("/");

chap = split[6];

seq = split[7];

The vertical ID, also known as the position ID within a sequential,
is non-trivial to retrieve. While verticals can be accessed by
adding the vertical number to the sequential URL, this is rarely
how verticals are accessed in the course. They are most
commonly accessed via the “next” and “previous” arrow buttons
which are graphical navigational elements on either side of the
sequential accordion view. When these “seq” events are triggered,
the desired page’s content dynamically replaces the current page.
This dynamic loading keeps the browser URL the same (cf Figure
1) which means that the vertical position must be queried from a
different source. We find this vertical position information in the
edX document object model (DOM?Y).

var block = $(‘#sequence-list .nav-item.active').data('id");
vert = block.split("@").pop();

Arbitrarily clicking on a vertical in the accordion triggers a
“seq_goto” event which is much the same as the next and
previous events in how they load the page.

With all of these elements now stored, the full description of the
page a learner is on can be described:

origin = chap+"/"+seq+"/"+vert;

The userID and origin are sent to a local server for logging via a
cross domain aJax POST method.

Row Anon Origin Rec Folloned Previous Timestamp Time
ID Stu. ID ID Category
100 C103 5 6 0 99 1477142712 2
101 C103 35 45 1 100 1477142732 1
102 C548 89 101 0 82 1477142736 2

Table 1. Example of entries in local mongo database

Table 1 shows the columns stored in the logging database and a
few example entries. At the time of the event, only the following
columns are populated: row id (transaction id), stu_id, origin,
timestamp, and previous ID (the previous transaction id of the
user). The remainder of the columns are populated on the
subsequent event. Full client side javascript can be found here?.

!All DOM related function calls used in this work are
undocumented by edX and subject to change. After conducting
this pilot study of the framework, we contacted edX in regards
to the supportability of our approach, including providing
persistent anon IDs. This support is currently under review.

2 https://github.com/CAHLR/adaptive_mooc_LAS/

Enabling real-time recommendation

An html <div> container is inserted at the bottom of every page
which contains a template of the recommendation text. The
container is marked as hidden using “display: none” until a
recommendation is received successfully, upon which time the
template is populated with the actual page being recommended
and its title. By hiding the template until a recommendation is
received, we are able to fail gracefully and shield learners from
any error that may occur along the recommendation pipeline; in
the case of an unsuccessful recommendation request, the page
would appear to the user the same way as it would as if no
intervention was added.

Node
Server

Web
Service

Logging
Database (7}

Client

Platform

Figure 2. Diagram visualizing the entire process of delivering
a recommendation to the learner. The circled numbers
correspond to the numbered steps below.

The recommendation URL and title is populated by (i) sending an
aJax POST to the recommendation server, which in turn (ii) looks
up the learner’s event history from the logging server and then
(iii) passes that information to a web service which interfaces with
the machine learned model. The model returns a recommendation
which is passed back through to the web service. This is then sent
to the recommendation server and then to the requesting client. At
this point, the “Rec” column of Table 1 is filled in representing
the internal index of the recommended URL, and “Followed” is
set to 0. If the learner clicks on the recommended URL, a request
is sent to the recommendation server, the “Followed” is set to 1,
and the learner is redirected to the recommended URL. Upon
loading a subsequent page, either by following the
recommendation or clicking on a different navigational
component, the sensor code will look up the previous event of the
learner and update the time category of the past event. This is
necessary since it is unknown how long the learner will spend on
the page when it is first logged.

1. The learner requests a page in the course

2. The platform sends the page to the client. In the case of a
“seq” event, the page is loaded in dynamically.

3. Client sensor code sends a logging event to the server
The server writes the event to a Mongo database

5. If a previous event exists for this student, the time category
of that event is calculated and updated.

6. Client sends a request to the server for recommendation

B

7. The database is queried for all of the learner’s past events
and respective time categories.

8. The server relays this information to a Flask web service that
parses the information and passes it along to the machine
learned model written in python.

9. The machine learned model predicts forward until it finds a
page that the user is predicted to spend more than 10 seconds
on.

10. The recommended page is returned to the server.

11. The server sends this page to the client which parses a valid
“200” response into a proper hyperlink and populates the
<div> to display the recommendation.

12. The server will update the logging database for this learner
with the recommendation simultaneously

13. If user clicks on the recommendation, the server is contacted
and the database is updated to indicate that user followed the
recommendation.

The term "learner” is used when an event is triggered due to a
deliberate action on the part of a human, such as clicking on a
link. The term “client” is used when actions are initiated, invisible
to the learner (e.g. sending a logging request), by code processed
by their web browser.

Choice of Technology

In order to create this live intervention, we used a range of
different technologies. NodeJS and Express were used to create
the server API; Python Flask served as a light-weight web service;
Python Keras was used to create the machine learned model; and
Mongo was used for persistent database storage.

Server - NodeJS with Express

We decided to create our server using Node primarily because it is
fast and performs well under stress. It handles operations
asynchronously and facilitates a large number of simultaneous
connections very well. It integrates nicely with MongoDB and can
easily create routes with the Express framework.

Our API has several local lookup tables including a mapping of
url to index (used for the machine learned model), index to url, url
to edX path, and edX path to display name.

When the server receives a post request from the client it creates a
new event with a unique user_id, origin, and timestamp. It will
then check if the student has had a previous entry. If yes, the
server will update the previous the timeSeq column of the
previous entry and update the Recents database with this current
entry. If no previous entry exists, it will skip the update in the
Events database and go straight to updating the Recents database
for this student. It will create an entry in the Recents database if
this is the student’s very first event.

After successful logging and updating, the client will ask for a
recommendation for this particular student. The server will then
take the student’s unique user id and query the Events database
for the sequence of events and timeSegs connected with this
student. The output will then be sent to the Python web service for
a recommendation.

When the web service responds, the response is checked. A
lookup is then done to go from index to url as well as Edx path to
name and then sent back to the client. The final JSON response
will have the url, Sequential display name, and Vertical display
name of the recommendation.

Web Service - Python & Flask

We decided to create web service using Python and Flask because
our machine learning model was written using Python. It made it
easiest to get the input into the correct format and parse the output
into a simple response. Flask also allowed us to create multiple
processes for parallelizability.

The web service is called after the server requests for a
recommendation for a particular student. It takes in a list of the
student’s events and associated time categories, and then queries
the machine learned model. It will receive either a -1 or an index
from the machine learned model. If the response is a -1, then there
is no valid recommendation (i.e., no recommendations meet the
minimum time anticipated for the learner to spend on the page).

Machine Learned Model - Python Keras

Keras is a neural network machine learning framework providing
functions for fast model prototyping. It has the option of utilizing
Theano or tensorflow for the backend computations, both of
which can utilize GP Us for accelerated training.

Database - MongoDB

We decided to use Mongo as our database of persistent storage
because it is scalable and quickly handles simultaneous queries. It
also has fast in-place updates and has documents stored in JSON,
which makes it efficient to work with our client and server code.

Choice of Course

This framework is generally applicable to different backend
recommendation algorithms with different objectives. For our
purposes of navigational behavior recommendation, there were
several criteria that we anticipated as important in selecting a
reasonable pilot course.

Given our objective of increasing the navigational efficacy of
learners, courses with more numerous pages to navigate are better
candidates for demonstrating the utility of navigational
recommendation. In order to learn non-trivial navigational
patterns from past course events, we also wanted a course with a
high amount of variation in navigational pathways exhibited by its
learners. To measure this variation, we chose to treat student paths
through a particular course as a Markov chain and then computed
the entropy of the transition probability matrix for each course
[26]. There were 13 courses evaluated offered by our deployment
University partner, DelftX. Table 2 shows the entropy calculated
for a variety of courses where entropy was 20 or greater. A higher
amount of entropy indicates larger amounts of non-linear
navigation. Since the Intro to Aeronautical Engineering course
had both a high entropy and candidate assets to recommend, we
selected that course for deployment.

Course Entropy | Assets Normalized
Entropy+Assets

Intro to Aeronautical

Engineering (2014) 343 1175 1.782

Intro to Water &

Climate (2013) 149 1503 1.434

Intro to Drinking

Water treatment 86 745 0.806

(2015)

Economics of

Cybersecurity (2015) & 323 0.746

Table 2. Course suitability evaluation based on navigational
entropy and asset quantity

MODELING

Modeling Navigation Behavior

The literature on cognition and learning has several theories for
describing how knowledge acquisition develops over time. Far
fewer theories exist for behavior, however, as it is an amalgam of
many cognitive and affective factors. As such, the lack of existing
theory to adequately predict navigational behavior to a high
degree of accuracy means that there is also a lack of knowledge of
which manually engineered features may capture student
behavior. As such, we use a model that makes no assumption
about behavior and instead learns these features from the raw time
series data itself.

To model student navigation behavior, we chose to use the
Recurrent Neural Network (RNN) architecture. RNNs are able to
model time sensitive dependencies between events in arbitrarily
long sequences without the need for manual feature engineering.

To provide an example, an RNN can be given a sequence of
URLs a learner has already visited. The RNN maintains a hidden,
continuous state that represents the past behavior exhibited by the
learner. The RNN model can then output a probability distribution
over the next URL the student is likely to visit. Thus, we can then
take the output of the RNN as a potential recommendation to
serve to the learner. The output can be augmented to also be able
to predict the amount of time that a learner will spend on the
resource. With this augmentation, we can then choose to only
provide recommendations where there is expected to be a
significant amount of time spent on the URL. This helps expedite
the learner’s navigation through the course by skipping less useful
content.

To use an RNN model, the logs of student actions must be parsed
so that each student can be represented by a single list which
contains each unique course URL the student has visited.
Additionally, the timestamp associated with each course URL
visit is also tracked. These timestamps are used to create a proxy
for the amount of time spent on a resource. We investigate
whether adding time spent as an input to the RNN model
improves its predictive accuracy, and investigate two model
modifications to incorporate time spent as an input.

Understanding edX logging of navigational events

Parsing a data log of student actions is not trivial. In this work, the
ultimate goal of parsing through the data log is to obtain the
sequence of course URLSs that each student has visited, as well as
the timestamp associated with each visit. The data log contains
other student events, such as pausing videos and answering quiz
questions. For this work, such rows were dropped. Thus, only
navigation events were kept, where navigation is defined as
visiting a specific course URL. These navigation events were then
parsed to resolve to a specific course URL. Each URL contains a
chapter hash, a sequential hash (which refers to sections within a
chapter), and a vertical hash (which refers to a specific course
page within a section). For example, a URL represented by
‘abc123/zzz444/2° would have a chapter hash of ‘abcl23’, a
sequential hash of ‘zzz444’, and a vertical value of ‘2’. Thus, each
navigation event in the edX data log can be resolved to a specific
URL. However, each event in the raw log unfortunately does not
directly map to a URL without an extra step of processing.
Navigation events can be found in rows where either:

1. The row is a seq event. Seq events include seq_next,
seq_prev, or seq_goto. Next and prev refer to moving
directly forward or backwards one vertical. Goto is a
jump to any vertical within a single sequential.

OR

2. The row contains a direct course page URL. In the
URL, the vertical may be given directly, or the vertical
may be missing.

Both types of navigation events mentioned above have data
processing quirks. Seq_next and seq_prev events contain the
sequential hash and the vertical that is navigated to. Using the
sequential hash, the chapter hash can be inferred, since there is
only one sequential hash per section in the course, and each
section only belongs to one chapter. The vertical displayed by the
row, however, may need to be additionally processed when
seq_prev is invoked on the first vertical in a section or seq_next is
invoked on the last vertical in a section. For example, the row in
the data log may contain a seq_next to vertical 7 in a particular
section. However, that section might only contain 6 verticals. This
event should actually point to vertical 1 of the next section. Thus,
the processing code must be able to handle when navigating to the
previous and next sections when the current vertical is at the
beginning or the end of the section. Once the corresponding
sequential, chapter, and vertical hashes are resolved, a URL can
be constructed to represent the URL that the student is now at in
this row.

For the second type of navigation event, where the row contains a
direct course URL, when the vertical is included in the row, the
URL can be directly taken from the row itself. When the vertical
is not included in the row, which means that the row contains a
chapter hash and a sequential hash, but no vertical value, then the
vertical must be inferred from the student’s past actions. The
server stores the most recent vertical a student was at for each
section in the course. Thus, the processing code must keep track
of the most recent vertical accessed for each section in the course,
and when a row contains a direct course URL without a vertical,
the vertical must be inferred from the previously stored most
recent vertical for that section.

One other important note is that the rows of the original data file
may not actually be in sorted, ascending order by time. In our
processing, we found that while some rows seemed to be in
ascending order, some rows were actually sorted in descending
order.

Thus, each student is associated with a list of URLs they visited,
processed from the original data log. There are a fixed number of
possible course page URLs, which can be represented by the
possible combinations of chapter, sequential, and vertical hashes.
If there are 200 unique URLS in a course, then the indices from 1
to 200 can each correspond to one of the URLs. Once this
mapping between index and URL is established, each student’s set
of actions can be represented as a list of indices.

Recommendation model design

This sub-section provides context to how the RNN and LSTM
architectures function. RNNs maintain an ongoing latent hidden
state that persists between each input to the model. This latent
state can provide a representation of what has already been seen in
the input sequence. Long Short-Term Memory (LSTM) is a
modification of the RNN architecture, where the hidden latent
state is replaced with a more powerful memory component. We
chose to use LSTMs due to their stronger performance in
modeling longer range dependencies [19, 20].

RNNs maintain a latent, continuous state, represented by h; in the
equations below. This latent state persists in the model between
inputs, such that the prediction at x.1 is influenced by the latent
state h. The RNN model is parameterized by the input weight

matrix Wy, recurrent weight matrix Wy, initial state hy, and output
matrix Wy. b and by are biases for the latent and output units.

he = tanh(Wx; + Whhey + br,)
yi= a(Wyht + by)

LSTMs, a popular variant of the RNN, augment the latent,
continuous state with additional gating logic that helps the model
learn longer range dependencies. The gating logic learns when to
retain and when to forget information in the latent state. Each
hidden state h; is instead replaced by an LSTM cell unit with the
additional gating parameters. The update equations for an LSTM
are:

fi = a(Whixe + Winhyey + by)
it = a(WixXe + Winheg + y)
= tanh(Wexx + Wenhet + be)
Ci=fixCuy+itx C*
0t = 6(WouXt + Wonhy.1 + bg)
h; = o; x tanh(Cy)

fi, it, and o represent the gating mechanisms used by the LSTM to
determine when to forget, input, and output data from the cell
state, C;. C’; represents an intermediary candidate cell state that is
gated to update the next cell state.

LSTM Model Description and Training

LSTM models have several hyperparameters, which refer to
values that affect how the model performs on a given set of data.
Evaluating which hyperparameters work best for a given model
and dataset can be done in one of several ways, and is usually
resolved with some empirical experimentation. For this analysis,
we varied the following hyperparameters: number of LSTM layers
and number of hidden nodes per LSTM layer. Each model was
trained using either 1, 2, or 3 LSTM layers, as well as 64, 128,
and 256 nodes per LSTM layer. Thus, each LSTM model is
trained with 9 different hyperparameter sets.

To create a behavior prediction LSTM model, the model needs to
be trained to predict the next URL given a prior sequence of
URLs visited. This is our baseline LSTM model, where the inputs
and outputs are simply indices corresponding to unique URL
accesses. The model is trained in batches of 64 student sequences
at a time using back propagation through time [21]. Categorical
cross entropy is used to calculate loss and RMSprop is used as the
optimizer. Drop out layers were added between LSTM layers as a
method to curb overfitting [22]. An embedding layer with 160
dimensions is added to convert input indices to a continuous multi
dimensional space, a technique commonly used in language
modeling [23]. LSTM models were created using Keras [24], a
Python library built on top of Theano [25].

Figure 3 details an example pipeline where the first two timesteps
of a student sequence of URL accesses is shown. The two URLs
in the student’s sequence are converted to an index representation
of that URL, which is then fed to the LSTM model. The index is
implicitly converted to a one-hot vector representation by the
embedding layer used by the Keras LSTM model. The output of
the model uses the softmax function to normalize the outputs to
sum to 1, so that the values within the output vector could be
thought of as probabilities of that index being the predicted next
URL. If there are 300 unique course URLSs, for example, then the
output vector would be of length 300, where each value of the
vector corresponds to the probability that the next URL in the
sequence will be that index value. Thus, to find the most likely
next URL, one needs to find the index of the vector that has the

maximum probability, and then consult the one to one mapping
between indices and URLs to find which URL that index
corresponds to. Note that in the example figure, index 32 of the
softmax output in timestep 1 has the highest probability. Thus,
according to the model, the most likely next URL would be the
URL corresponding to index 32. In the example, this prediction
turns out to be correct, as it is shown that the actual input in the
next timestep is associated with that URL.

Incorporating time into the model

The previous subsection described a baseline LSTM model, where
only the sequence of URL visits was modeled. We hypothesize
that prediction accuracy of the next URL can go up if the model
were to incorporate the amount of time spent on each resource.
Unfortunately, there is no way to know exactly how much time
the student is truly paying attention to a particular URL. We can
approximate time spent, however, by calculating the time
difference between each URL visit. Thus, we approximate the
time spent on a URL by taking the time difference before
accessing the next URL.

Output of model is a probability
distribution over all possible
indicies in predicting the next URL

Index

Softmax
Output

Model

Embedding
Layer
Output

Index Mapping

URL (http://chapter/sequential/5) [http://chapter/sequential/8 J

Timestep 1

Timestep 2

Figure 3. Depiction of baseline LSTM architecture

The baseline LSTM model [20] can be augmented to be able to
incorporate time spent in addition to the standard input and output
of the current and next URL index.

We propose two methods for incorporating time spent into the
input of the model. These two methods are referred to as
bucketed-time-input and normalized-time-input. These two
methods of input are explained next.

Bucketed-time-input refers to an augmented input, where an
additional one-hot vector is concatenated with the original
baseline input. Figure 4 depicts this additional time input
processing step in a graphical format. This additional one-hot

vector indicates the amount of time spent on the resource relative
to four pre-determined buckets: between 0-10 seconds, 11-60
seconds, 61-1799 seconds, and finally 1800 and beyond seconds.
These buckets were chosen qualitatively, rather than with a data
driven approach, to be able to prescribe real world interpretation
to the time buckets.

Normalized-time-input refers to an augmented input where an
additional two-dimensional vector is concatenated with the
original baseline input. Figure 4 depicts how the normalized-time-
input is incorporated into the architecture. The first dimension of
this vector takes a value between 0 and 1, which is calculated by
dividing the time spent on the resource by 1800, or if the time
spent is greater than 1800, then the value is taken to simply be 1.
Thus, a time spent of 900 seconds would be converted to 0.5. This
is considered normalizing the time by 1800 seconds. The second
dimension of the vector is simply 1 if the time spent is over 1800
seconds, and 0 otherwise.

A 4

One-hot
Bucket Vector

Concatenation

Normalized
Time
Vector

Gt{p://chapter/sequenrial/EJ (140 seconds

640/7800 = .0388) (Time Bucket 2)

140 seconds

. Time Spent
Timestep 1

Time Spent

Figure 4. Depiction of two methods of adding dwell time to the
model; Normalized continuous (0-1) and time bucketed (1-4)

It is also possible to incorporate time into the output of the model.
The non-time version is referred to as non-concatenated-output,
while the time incorporated version is referred to as concatenated-
output.

Non-concatenated-output refers to the standard output, where the
object of prediction is simply an index, where each index has a
one-to-one mapping with a course URL. Concatenated-output
refers to an output space where the number of indices possible is
multiplied by four, so that one could think of a time bucket being
concatenated with each index. Each possible course URL now has
four associated indices with it, where each index represents a
course URL and the amount of time spent on that URL, where
time spent is bucketed in the same fashion as the bucketed-time-
input. We can compute the overall likelihood for a particular URL
by adding the probabilities among all four indices associated with
a particular URL. Since each output is also associated with a time,
one can look at only indices associated with a particular time
bucket. Thus, the output can now be queried to find the most
likely URL to visit among each possible time category.

With these methods of input and output defined, we propose the
following models:

Attributes:

(a) Input time treated as continuous
(b) Input time treated as categorical
(c) Input time concatenation with vertical after embedding
(d) Time category concatenated with vertical in the output

1. Baseline LSTM model: Inputs and outputs are indices, where
each index has a one to one mapping to a unique course URL.

2. Bucketed-time-input, non-concatenated-output (b,c)
3. Bucketed-time-input, concatenated-output (b,c,d)

4. Normalized-time-input, non-concatenated-output (a,c)
5. Normalized-time-input, concatenated-output (a,c,d)

Deployment Course Dataset and Prediction Results

The pilot course, DelftX Intro to Aeronautical Engineering 2015,
contained log data from 27024 unique learner ids. However, for
the purposes of behavior recommendation, we chose to filter the
data to only include learners who attempted at least one problem
check, resulting in data logs from 9,172 learners. From the data
logs, we again filter the data to only include data regarding course
page navigations, thus excluding events related to lecture video
pausing, problem viewing, and so on. We chose to also filter out
contiguous repeats of URL accesses. This means that if there are
multiple visits to the same URL in a row, we removed duplicates
such that there only remained one access to that URL for a student
sequence representation. For the time spent associated with sole
URL used in place of the duplicate contiguous URLS, we took the
maximum time spent among the duplicated URL accesses. Time
spent is calculated, in general, by taking the timestamp of a URL
access and calculating the future difference to the timestamp of
the next URL access in the sequence. There were 336127
navigation events in the 0-10 second bucket, 248918 in the 11-60
second bucket, 338144 events in the 61-1799 bucket, and 123287
events in the 1800 seconds and beyond bucket.

There was a total of 286 possible course URLSs, which means
there were 286 possible unique verticals to model, spread over 38
sequentials. The median number of verticals in a sequential was 6,
with a maximum of 19. The course was self-paced, which means
that assignment due dates were not fixed, and all of the course
content was released at the beginning of the course. Log data was
filtered to only include data from roughly the time period that the
course officially ran, from May 31, 2015 to June 3, 2016.

Hill-climbing Validation Early Stopping

The 5 LSTM models described in the previous section were each
trained under the 9 different hyperparameter settings described in
section 3.1.4. The data was split into two sets, a training set and a
held-out test set. The training set comprised sequences from a
randomly selected 70% of the users, while the test set contained
the remaining 30%. Within the training set, 10% of the sequences
were held out as a hill-climbing validation set. During training of
a particular model, if the loss calculated on the hill-climbing set
did not obtain a best result for 3 consecutive epochs, then training
was halted for that model and the best result was recorded. This
was our early stopping criterion.

Baselines

An n-gram model is included as another sequential model for
comparison. N-gram models capture the structure of sequences
through the statistics of n-sized sub-sequences. The model
predicts each sequence state x; using the estimated conditional
probability that x; follows the previous n-1 states in the training
set. We trained n-grams with values of n between 2 and 10, while

also instituting a “back-off” policy when there are too few
subsequences. For each n-gram, we instituted back-off policies of
between 0 and 10 occurrences, so that a particular sub-sequence
of size n must occur at least the number of times as the back-off
policy, or else that sub-sequence is not used. The back-off policy
prevents the n-gram model from using very sparse data, requiring
a minimum number of occurrences for that sub-sequence to be
used. If there are too few occurrences of a particular n-sized sub-
sequence, the model “backs off” and uses the values for the (n-1)-
gram model, and so on. The best performing n-gram model on the
validation set had an n-value of 7 and a back-off value of 8. A 2-
gram model is also included, representing a model predicting the
most common URL following a particular URL. We call this
model the “Next most common” model. The last baseline is
dubbed the “Next syllabus URL” model, which predicts the next
URL in the course structure; this is equivalent to the page learners
are taken to when they click on the "Next" button in the native
edX interface.

Back-tested Prediction Results

Validation accuracy and test set accuracy is shown in Table 2. For
each model, the hyperparameter set that reached the highest
validation accuracy was used. Thus, for each LSTM model listed
in the table, only the highest achieving hyperparameter set results
are shown, where training stopped according to the early stopping
rules described previously. Accuracy refers to average accuracy
per student sequence; thus a next URL prediction accuracy is
established per student sequence, and then the averages from all
students are averaged together. For baseline outputs, the models
produce an index which has a one to one mapping with a URL.
Thus, if the most likely index produced by the model matches the
actual next URL in the sequence, that is counted as a correct
prediction within a student sequence. For concatenated outputs,
the models produce an index which has a four to one mapping
with a URL, meaning there are four possible indices that all
correspond to the same URL, just with a different time spent
predicted. For the purpose of accuracy, as long as the URL
mapping of the index is correct, then the prediction is counted as
correct. Thus, accuracy for concatenated outputs drops the time
component from the output in calculating correctness.

Model Input / Output | Validation Acc. | Test Set Acc.

Bucket /Non-Concat. 63.5 64.0
Norm / Concat. 62.6 63.5
Bucket / Concat. 63.0 63.3
Norm / Non-Concat. 62.9 63.3
Baseline LSTM 62.0 62.5
Best n-gram (7) 61.6 61.7
Next most common 55.1 55.6
Next syllabus URL 51.5 52.0

Table 2. Prediction accuracy results

REAL-TIME DEPLOYMENT

Recommendation Interface

This section describes our rationale for how to best integrate the
recommendations into the learner’s course experience. We
primarily consider two key aspects of the interface: (i) the visual
appearance of the recommendations and (ii) the linguistic framing
of the accompanying text.

Visual Appearance

As the interface is housed within the edX platform and course
materials, it is important that the appearance of the
recommendations is seamless. This ensures both a sense of trust
from the user---in that it looks like it’s a natural part of the edX
course---and assuages the risk that the recommendations act as
distractions to the learners. Given the simplicity of the edX user
interface design, this was not hard to achieve. And to make
following the recommendations more intuitive, we also add a
“Go” button that learners can use as an alternative to clicking on
the plain text link. These appear at the bottom of every page in the
course---made directly available to the learner at all times.

Linguistic Framing

Just as we did not want the visual appearance of the
recommendation to be too overwhelming in the existing course
interface, we likewise aimed to present the accompanying text in a
way that clearly communicates the benefit of this resource while
not sounding overly authoritative. While definitely an avenue for
future experimentation (what is the most effective way to frame
such recommendation text to learners?), we eventually decided on
“Suggestion for you... Consider visiting: [Recommended next-
step].” This text accomplishes the task of communicating to the
learner that this recommendation is indeed personalized and
unique to him or her (without explaining how) and also making it
clear that following this recommendation is optional. Figure 5
shows the final design of the recommendation interface.

£ Previous B = & =] = a Next 3

Discussion lecture 4a

[Baokmark this page

Please use the discussion farum below to ask or answer any questions about pressure distributions

Discussion lecture 4a
Tople: Week 6 / Discussion lecture 4a

Suggestion for You Go —

COHS\UEV’VIS\UHE‘
Lecture 4: Pressure distributions & Flow separation: Exercises lecture 4b

Figure 5. Final design of the recommendation interface

We are able to show the text of sequential and vertical being
suggested through a lookup table we created from the course xml.

Model Usage Considerations

Training a model based on a previous offering of the course
Since the navigation behavior model proposed in this paper is
behavior and data driven, a requirement to deploy such a model in
a live course is that behavior from the course must already exist.
To perform our live case study, we selected a MOOC that had
multiple offerings over time so that we could use behavior from a
completed iteration of the course to train our behavior models.
Since the model is trained on a specific structure of course URLS,
the current iteration of the course should not deviate too much,
preferably at all, from the iteration that the model was trained on.

To deploy our behavior model in the 2016 offering of the
Aeronautics Engineering course, we trained on the behavior data
from the 2015 offering of the course.

Taking into Account Changes in The Courseware

In our case study, the majority of the course structure was held
exactly the same. However, the first chapter to the course was re-
ordered. Our behavior model implicitly incorporates the ordering
of the course in its predictions, so that any re-ordering of course
content would adversely affect its prediction. Therefore, we chose
to drop all events related to the first chapter of the course from
both the training and the live recommendation data sets. This was
deemed acceptable since the first chapter for this course was an
introduction to the course staff and logistics.

Additionally, one unique URL was added to the current version of
the course. Thus, the trained model has no knowledge or ability to
recommend that URL. However, the actual recommendation code
can be altered so that when it is detected that a student is near the
new URL, the recommendation code can choose to temporarily
suspend usage of the behavior model and either suggest going to
the new URL directly or simply not suggesting a URL
temporarily.

Any deviation in course structure from the training environment
needs consideration in handling. Special recommendation logic
must be put in place when the live version of the course differs in
ways that the original model cannot account for.

Description of the Recommendation Engine

The machine learned model is the contact point between the
underlying LSTM behavioral model and the code that serves a
clickable link on the learner’s browser. The LSTM model has
been trained to produce an output that contains a probability
distribution over all possible course pages. Our time-concatenated
output LSTM models additionally contain time information in
each of the output indices. With this time-concatenated
probability distribution, it is reasonable to simply take the most
likely page and serve that as the model’s recommendation. With
the time-augmented output, however, the recommendation engine
can instead be configured to recommend a URL that the learner is
likely to spend a significant amount of time on, for example
between 10 seconds and 30 minutes. The hypothesis behind this
logic is that if the model only expects the learner to spend fewer
than 10 seconds on a resource, then it may be the case that the
learner is trying to skip over it on her way to the eventual resource
of interest. The recommender gives the learner the skip directly to
that eventual resource of interest. It could be reasonable to
recommend pages where the learner is expected to spend more
than 30 minutes on; However, we chose not to include these as
part of our recommendation engine configuration, since it could
be possible that such a lengthy time spent on a page could really
be indicative of a time-out event, where the learner has actually
just left the page, potentially after consulting an ineffective page.

Another method for producing a recommendation could instead be
to repeatedly query the behavioral model until the most likely
page corresponds to a desirable time bucket, where each repeated
query has a “hypothetical action” appended as the most recent
event. For example, if a student is currently at a quiz page (Figure
6), then the behavioral model would be queried using that
student’s past behavior as well as the current quiz page. The time
spent on the current quiz page is not known yet since the learner
has not navigated away from that page at the time of the query.
Thus, time spent on the current page must be approximated in
some way; we use the modal time bucket as a place holder (11-60
seconds) and the real time spent is filled in after the next
navigation event. The model then produces a probability
distribution over time-concatenated indices, as usual. If the most
probable page is in a desirable time bucket range, then the engine

recommends that URL. However, if the most probable page is not
in a desirable time bucket range, then instead of recommending
this page, the engine temporarily appends it to the student’s
“hypothetical” path until a desirable time bucket recommendation
is reached. Thus, through repeated querying of the model,
eventually a page in the desirable time bucket range would be
reached, and the engine would use this as the recommendation.
The reasoning behind such a model would be, for example, to skip
through many URL accesses that are under ten seconds
(undesirably short time spent) and instead recommend a URL that
the student would likely have eventually dwelled on. We refer to
this as a forward-stepping process, where we create hypothetical
forward steps to the model. The page used in the case shown in
Figure 6 is Video 1, a recommendation which is inserted into the
page after the query completes and which the student followed in
this example. After the learner in the example visits Video 1, she
is suggested to return to the quiz but instead navigates to Text 3.

n
e

:n
e

; 2

8
‘H‘H

Quiz 4
Video 1

Recommendation: Video 1

Recommendation: Quiz 4
Recommendation: Quiz 4

Page Load Event #1 Page Load Event #2 Page Load Event #3
Il 1 l

Y

Timeline for sample learner

Figure 6. An example of the framework delivering three
recommendations at three consecutive page visits for a learner

We chose to use the time-bucketed-input with time-concatenated
output model discussed previously. For the live recommendation
pilot, we chose to retrain the LSTM model on the entire set of the
previous course offering’s data, as opposed to the original training
only using 70% of the data. We only used the validation set’s best
hyperparameters.

Our next step recommendation can be seen as predicting what
page a learner wants or will eventually want, and directly linking
them to that page in advance. When to consider if what learners
want is different from what they need to achieve their goals or the
goals of the course is a matter for consideration by future work as
well as the appropriate role of a platform, courseware, and
personalization in facilitating these goals.

CONTRIBUTIONS

In this paper, we made three contributions to adaptive
personalization in a MOOC. The first was to solve the issue of
real-time learner event logging required for data-driven
intervention with a client side JavaScript solution that records
learner navigational events. The second was to introduce a novel
behavioral model which predicted the next page a learner was
likely to spend significant time on which outperformed existing
prediction baselines. Lastly, we combined the first two
contributions to provide the first proof-of-concept realization of a
real-time data-driven recommendation framework in a live
MOOC along with the edge cases and design considerations that
needed to be handled in order to deploy.

ACKNOLWEDGEMENTS

We would like to acknowledge our use of the edX partner’s
Research Data Exchange (RDX) program and the support
contributed by the edX data team. We also acknowledge the
support from TU Delft’s Office of Online Learning, its director,
and the DelftX Aeronautics Engineering course team for their
cooperation.

REFERENCES

1.

10.

11.

12.

Aleven, V., McLaughlin, E., Glenn, R. A., and Koedinger, K.
(2016) Instruction based on adaptive learning technologies.
Handbook of research on learning and instruction.
Routledge.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and
Pelletier, R. Cognitive tutors: Lessons learned. The Journal
of the Learning Sciences 4, 2 (1995), 167-207.

Barnes, T., and Stamper, J. Toward automatic hint generation
for logic proof tutoring using historical student data. In
International Conference on Intelligent Tutoring Systems,
Springer (2008), 373-382.

Davis, D., Chen, G., Hauff, C., and Houben, G.-J. Gauging
mooc learners adherence to the designed learning path (2016)
In Proceedings of the 9th International Conference on
Educational Data Mining (EDM). 54-61.

Davis, D., Chen, G., van der Zee, T., Hauff, C., and Houben,
G. J. (2016) Retrieval practice and study planning in moocs:
Exploring classroom-based self-regulated learning strategies
at scale. In European Conference on Technology Enhanced
Learning, Springer. 57-71.

Guo, P. J., & Reinecke, K. (2014). Demographic differences
in how students navigate through MOOCs. In Proceedings of
the first ACM conference on Learning@ scale conference
(pp. 21-30). ACM.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J.
T. (2004). Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems (TOIS),
22(1), 5-53.

Hsiao, I.-H., Sosnovsky, S., and Brusilovsky, P. (2010)
Guiding students to the right questions: adaptive navigation
support in an e-learning system for java programming.
Journal of Computer Assisted Learning 26, 4, 270-283.
Khalil, H., and Ebner, M. (2014) Moocs completion rates and
possible methods to improve retention-a literature review. In
World Conference on Educational Multimedia, Hypermedia
and Telecommunications, no. 1, 1305-1313.

Kizilcec, R. F., Pérez-Sanagustin, M., & Maldonado, J. J.
(2016). Recommending self-regulated learning strategies
does not improve performance in a MOOC. In Proceedings
of the Third ACM Conference on Learning@ Scale (pp. 101-
104). ACM.

Kopeinik, S., Kowald, D., and Lex, E. (2016) Which
algorithms suit which learning environments? A comparative
study of recommender systems in tel. In European
Conference on Technology Enhanced Learning, Springer,
124-138.

Nguyen, A., Piech, C., Huang, J., and Guibas, L. (2014)
Codewebs: scalable homework search for massive open
online programming courses. In Proceedings of the 23rd
international conference on World wide web, ACM. 491
502.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Piech, C., Sahami, M., Huang, J., & Guibas, L. (2015).
Autonomously generating hints by inferring problem solving
policies. In Proceedings of the Second ACM Conference on
Learning@ Scale (pp. 195-204). ACM.

Pielot, M., Dingler, T., Pedro, J. S., and Oliver, N. When
attention is not scarce-detecting boredom from mobile phone
usage. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, ACM
(2015), 825-836.

Stamper, J., Barnes, T., Lehmann, L., and Croy, M. The hint
factory: Automatic generation of contextualized help for
existing computer aided instruction. In Proceedings of the
9th International Conference on Intelligent Tutoring Systems
Young Researchers Track (2008), 71-78.

Stamper, J., Eagle, M., Barnes, T. and Croy, M.
Experimental evaluation of automatic hint generation for a
logic tutor. International Journal of Artificial Intelligence in
Education 22, 1-2 (2013), 3-17.

Tomkin, J. H.,, & Charlevoix, D. (2014). Do professors
matter?: Using an a/b test to evaluate the impact of instructor
involvement on MOOC student outcomes. In Proceedings of
the first ACM conference on Learning@ scale conference
(pp. 71-78). ACM.

Wen, M., and Rosé, C. P. Identifying latent study habits by
mining learner behavior patterns in massive open online
courses. In CIKM °14 (2014), 1983-1986.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. Neural
Networks, IEEE Transactions on, 5(2):157-166, 1994.

Gers, F. A., Schmidhuber, J., and Cummins, F. Learning to
forget: Continual prediction with Istm. Neural computation,
12(10):2451-2471, 200.

Werbos, P. J. Generalization of backpropagation with
application to a recurrent gas market model. Neural
Networks, 1(4):339-356, 1988.

Pham, V., Bluche, T., Kermorvant, C., and Louradour, J.
Dropout improves recurrent neural networks for handwriting
recognition. In Frontiers in Handwriting Recognition
(ICFHR), 2014 14™ International Conference on, pages 285-
290. IEEE, 2014.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and
Khudanpur. Recurrent neural network based language model.
In INTERSPEECH, volume 2, page 3, 2010.

Chollet, F. Keras. https://github.com/fchollet/keras, 2015.
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio,
Y. Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing
Conference (SciPy), June 2010. Oral Presentation.

Reddy, S., Labutov, I., and Joachims, T. Latent skill
embedding for personalized lesson sequence
recommendation. CoRR, abs/1602.07029, 2016.

Tang, S., Peterson, J. C., & Pardos, Z. A. (2016). Modeling
Student Behavior using Granular Large Scale Action Data
from a MOOC. arXiv preprint arXiv:1608.04789.

Pardos, Z.A., Bergner, Y., Seaton, D., Pritchard, D.E. (2013)
Adapting Bayesian Knowledge Tracing to a Massive Open
Online College Course in edX. D’Mello, S. K., Calvo, R. A.,
and Olney, A. (eds.) Proceedings of the 6th International
Conference on Educational Data Mining (EDM). Memphis,
TN. Pages 137--144.

