A
“"Constructive Computer Architecture

Introduction to
(simultaneous) multithread

INg

4

Spring 2023 - 4/6/23 L15-6.1920-1

How to go faster?

N

#Lost opportunities, sometimes the
processor is mostly dead:
1. On load miss
2. When stalling for dependencies
3. On branch misprediction

L15-6.1920-
Spring 2023 - 4/6/23 2

Previously in 6.1920

‘@ Processor does 2 insts per cycle
#Cost ®:

s Increased complexity in control logic
(hard to debug/verify)

» Increased area/energy if unused:
+* More ports in RF ...

#®Noncost ©:

= No changes to the programs!
= Size of cache/size of Rf

N

L15-6.1920-
Spring 2023 - 4/6/23 3

Yet another idea

N

S0 far, processor runs 1 program

®Why not making it run 2 (or k)
programs?
= pC_X, rf_x[_] Multithreading
m pc_y, rf_y[_]

#Run one instruction of each program
each cycle?

= Not necessarily, almost never in the
rest-of-this lecture o

Spring 2023 - 4/6/23 4

Preliminary diagram

Spring 2023 - 4/6/23

Multithreading (MT)

N

#Noncost ©:
s Lower complexity in control logic

®Cost ®:

» Changes to the programs!
= Increases number of Rf
= Potentially requires bigger caches

L15-6.1920-
Spring 2023 - 4/6/23 6

Tradeoffs in the RF

N

#RF is on the cost side for different
reasons.

RF for multithreading Tuesday’s RF for superscalar

BIAYED
T
i "l

[|
,,,,,
wele |

ouk. def \

L) 5])
e
e "l

S S (S

.....

sk, dib wete |

L15-6.1920-
Spring 2023 - 4/6/23 7

Tradeoffs in the RF

N

Relative costs of

= N registers of size B, R read ports, W
write ports, rfcost(N,B,R,W)?

s Ifcost is (critical path, area, energy)

#®#Increasing the number of ports is
typically quite expensive

L15-6.1920-
Spring 2023 - 4/6/23 8

Wait — Back to
superscalar’s lecture

4

Spring 2023 - 4/6/23 L15-6.1920-9

Side-notes — Superscalar
throwback

j@SpIit the 32 registers in 2 subRF of
16 registers

= Each subRF has 2 read ports, 1 write
port

= Take 1 cycle if the two instructions
don’t collide

» Take 2 cycles if collision

#® Ask the compiler to be nice and
generate collision-free instructions

N

L15-6.1920-
Spring 2023 - 4/6/23 10

NI

Return to today’s lecture

4

Spring 2023 - 4/6/23 115-6.1920-11

Refining the idea

N

#Running 2 programs? Ok, but how?
1. " Fine-grain multithreading”
2. "Coarse-grain multithreading”
3. Simultaneous multithreading”

Let’s discuss at a high-level first,
then details

L15-6.1920-
Spring 2023 - 4/6/23 12

1.Fine-grained MT

@Cycle 0: Fetch from pcl
#&Cvcle 1 Fetch from nc?

Reduce stalling due to
dependencies between registers!

TR ’\\‘\ &\J \
67 670,6

L15-6.1920-
Spring 2023 - 4/6/23 13

2.Coarse-grained MT

Y

#Cycle 0: Fetch from pcl
#®Cwvcle 1 Fetch from nc1

Does not help with
dependencies between registers.
Only target load misses!

L15-6.1920-
Spring 2023 - 4/6/23 14

3. SMT (Simultaneous)

#® Fetch instructions from both
threads simultaneously ("combined
with superscalar”)

L15-6.1920-
Spring 2023 - 4/6/23 15

NI

Great, does it work?

4

L15-6.1920-
Spring 2023 - 4/6/23 16

Yes (part one of lab) but
‘No (part two of lab)

u<+>FunctionaIIy yes.

® It does not wo 0 ﬁ
backpressure!

(

_ig\ © 33
\d wiss

| n h'UL“W\
Stuck

L15-6.1920-
Spring 2023 - 4/6/23 17

Not a solution

U
N

\ \d wiss
‘u\;hud\‘om

Stuck
We are stuck behind the blue truck

Latency Load miss ~40/60 cycles — gigantic structure T
Spring 2023 - 4/6/23 18

Solution

N

#®#Use two 1-element queues for
e2w, one for each thread

#®[s it "necessary” to also use two
queues for f2d and d2e?

1. In any case, this is only about
performance

2. For perf, it depends: no for Coarse-
grain, yes for the others.

Spring 2023 - 4/6/23 19

More accurate diagram

s) ey
H %ﬁ H chb ‘ | H
N —1 » I

dLe ‘Z“’,\,

6“’:\, .

L15-6.1920-
Spring 2023 - 4/6/23 20

Morer accurate diagram

L15-6.1920-
Spring 2023 - 4/6/23 21

Drawing more

; | § } | D} /
ol ﬂd_ﬁ
'o/j“®: O

\j]/

N
¥

l,u

\ 5?3

Spring 2023 - 4/6/23

1. Are there potential
choices for scheduling?

2. Wait, did we just
duplicate everything?

L15-6.1920-
22

Round-robin scheduling

N

#High-level:

= [ry to be fair and run both threads
» It is good to avoid dependencies!
+“Don't put all your eggs in one basket”

= If one thread is stuck, make progress
on the other one

L15-6.1920-
Spring 2023 - 4/6/23 23

Round-robin in Execute

N

// Original code:

rule execute if (!starting);
d2e.deq();
let current inst = d2e.first();

if (current_inst.epoch == epoch[@]) begin

end else begin

end
endrule

L15-6.1920-
Spring 2023 - 4/6/23 24

Round-robin in Execute

N

rule execute if (!starting);
let current instb = d2e b.first();
let current _instr = d2e r.first();
// choose which one to run, dequeue from that queue

endrule

Does not work, execute gets stuck
if I don’t have both red and blue insts available

L15-6.1920-
Spring 2023 - 4/6/23 25

Round-robin in Execute

p
~“Reg#(Bool) priority <- mkReg(True);
rule execute if (!starting);

if (priority) begin
if (d2e b.notEmpty) begin
d2e b.deq();
let current _inst = d2e b.first();

e2w_b

end else begin
d2e r.deq();
let current _inst d2e-r-tirstl);

e2w r

end
end else begin
/][]
end
priority <= l!priority;

endrule
L15-6.1920-
Spring 2023 - 4/6/23 26

Round-robin in Execute

“// The ellipsis: [..]
else begin
if (d2e_r.notEmpty) begin
d2e r.deq();
let current_inst = d2e r.first();
e2w_r

N

end else begin
d2e b.deq();
let current _inst

d2e b.first();
e2w_b

end
end
priority <= !priority;
endrule

L15-6.1920-
Spring 2023 - 4/6/23 27

andle control instructions

A

A

#If instruction comes from

®How to correct from misprediction?
s TWO epochs: one per thread

s Execute rule use the appropriate
epoch (depending on the source
d2e b or d2e_r) to filter out the
Instruction

= Modify the appropriate pc

L15-6.1920-
Spring 2023 - 4/6/23 28

Exploiting choices
https://dl.acm.org/doi/pdf/10.1145/232973.232993

L

N

#®Every cycle, which thread should
we fetch from? Execute from?
Etc...

#There is a scheduling choice:
o Greedy (1 except if one stuck, then 2)
- Alternate?
- Random?
- Anything smarter?

L15-6.1920-
Spring 2023 - 4/6/23 29

More choices

J@Interesting policies:

- #in-flight branches on each thread.
Pick thread with minimal number of
branches (if possible) Why is it

N

good?
> #in-flig
o #in-flig
minima

Nt misses on each thread
Nt instructions (priority to

in-flight instructions)

Those ideas even more important when we have a
superscalar machine

Spring 2023 - 4/6/23

L15-6.1920-
30

Extra difficulties with SMT

N

#® Fetching two different lines from
the I$ the same cycle?
= Requires a 2-ported BRAM/SRAM

#What if we don’t have those for
our I$? ®

= We can play a little trick!

L15-6.1920-
Spring 2023 - 4/6/23 31

L1 superscalar

11111111111
Spring 2023 - 4/6/23

L1 for SMT - 2-port I$

11111111111

pring 2023 - 4/6/23

L1 for SMT - 1-port I$

| IS ‘-'D:EB\J

% gUPFIEO

!

=
® B

11111111111

Spring 2023 - 4/6/23

Scope, gains, losses?

N

1. We showed 2-way multithreading,
does it works for k-way (k=3,4...)7?
Modern intel: k=2
Alpha Ev8 (Arana): k=4
GPU ?
2. How much performance is there to
win?
Let’s read Wikipedia together!

L15-6.1920-
Spring 2023 - 4/6/23 35

NI

The elephant in the room:

What is a thread?

4

Spring 2023 - 4/6/23 L15-6.1920-36

HW thread vs SW thread

#Scenario, two programs, one pcC
register:
= SwthO runs for 1ms

N

shel\ are necessary to run multiple threads

» TIME " 0Only a few extra registers
+ OS ©n a single hardware thread turn

to current pc, or to another pc, maybe pc
of swth1l

s swthl runs for 1ms

#Multiple SW thread can be run with
s 20:0E HW thread

What we did not talk about

@ With current setup.:

= The two programs share the same
memory

s They can mess with each other
memory

= BAD the 2 programs run by our HW
threads are conceptually completely
different

#Side-Quest: Could we provide an
abstraction?

Spring 2023 - 4/6/23 38

N

Virtual memory idea

@Addresses of the program are
“virtual”

s [he hardware add one level of
indirection to actually find the real
address

= The translation depends on the
thread

#®SW Thread VS Process:

= TWo threads of the same process,
have the same translation
L15-6.1920-

Spring 2023 - 4/6/23 39

N

N

Code

Processes and threads

Sl

Codse

April 4, 2024

[::::::] Proces:s

%% Thread

PCB: Process
Control Block

(PC, stack pointer,
o)

L12-40

	Default Section
	Slide 1
	Slide 2: How to go faster?
	Slide 3: Previously in 6.1920
	Slide 4: Yet another idea
	Slide 5: Preliminary diagram
	Slide 6: Multithreading (MT)
	Slide 7: Tradeoffs in the RF
	Slide 8: Tradeoffs in the RF

	Untitled Section
	Slide 9: Wait – Back to superscalar’s lecture
	Slide 10: Side-notes – Superscalar throwback
	Slide 11: Return to today’s lecture
	Slide 12: Refining the idea
	Slide 13: 1.Fine-grained MT
	Slide 14: 2.Coarse-grained MT
	Slide 15: 3. SMT (Simultaneous)
	Slide 16: Great, does it work?
	Slide 17: Yes (part one of lab) but No (part two of lab)
	Slide 18: Not a solution
	Slide 19: Solution
	Slide 20: More accurate diagram
	Slide 21: Morer accurate diagram
	Slide 22: Drawing more
	Slide 23: Round-robin scheduling
	Slide 24: Round-robin in Execute
	Slide 25: Round-robin in Execute
	Slide 26: Round-robin in Execute
	Slide 27: Round-robin in Execute
	Slide 28: Handle control instructions
	Slide 29: Exploiting choices https://dl.acm.org/doi/pdf/10.1145/232973.232993
	Slide 30: More choices
	Slide 31: Extra difficulties with SMT
	Slide 32: L1 superscalar
	Slide 33: L1 for SMT - 2-port I$
	Slide 34: L1 for SMT – 1-port I$
	Slide 35: Scope, gains, losses?
	Slide 36: The elephant in the room:
	Slide 37: HW thread vs SW thread
	Slide 38: What we did not talk about
	Slide 39: Virtual memory idea
	Slide 40: Processes and threads

