
Constructive Computer Architecture

Introduction to
(simultaneous) multithread
ing

L15-6.1920-1Spring 2023 - 4/6/23

How to go faster?

Lost opportunities, sometimes the
processor is mostly dead:

1. On load miss

2. When stalling for dependencies

3. On branch misprediction

L15-6.1920-
2Spring 2023 - 4/6/23

Previously in 6.1920
Processor does 2 insts per cycle

Cost :

◼ Increased complexity in control logic
(hard to debug/verify)

◼ Increased area/energy if unused:

More ports in RF …

Noncost ☺:

◼ No changes to the programs!

◼ Size of cache/size of Rf

L15-6.1920-
3Spring 2023 - 4/6/23

Yet another idea

So far, processor runs 1 program

Why not making it run 2 (or k)
programs?

◼ pc_x, rf_x[_]

◼ pc_y, rf_y[_]

Run one instruction of each program
each cycle?

◼ Not necessarily, almost never in the

rest of this lecture

Multithreading

L15-6.1920-
4Spring 2023 - 4/6/23

Preliminary diagram

Spring 2023 - 4/6/23
L15-6.1920-

5

Multithreading (MT)

Noncost ☺:

◼ Lower complexity in control logic

Cost :

◼ Changes to the programs!

◼ Increases number of Rf

◼ Potentially requires bigger caches

L15-6.1920-
6Spring 2023 - 4/6/23

Tradeoffs in the RF

RF is on the cost side for different
reasons.
 RF for multithreading  Tuesday’s RF for superscalar

L15-6.1920-
7Spring 2023 - 4/6/23

Tradeoffs in the RF

Relative costs of

◼ N registers of size B, R read ports, W

write ports, rfcost(N,B,R,W)?

◼ rfcost is (critical path, area, energy)

Increasing the number of ports is
typically quite expensive

L15-6.1920-
8Spring 2023 - 4/6/23

Wait – Back to
superscalar’s lecture

L15-6.1920-9Spring 2023 - 4/6/23

Side-notes – Superscalar
throwback

Split the 32 registers in 2 subRF of
16 registers

◼ Each subRF has 2 read ports, 1 write

port

◼ Take 1 cycle if the two instructions

don’t collide

◼ Take 2 cycles if collision

Ask the compiler to be nice and
generate collision-free instructions

L15-6.1920-
10Spring 2023 - 4/6/23

Return to today’s lecture

L15-6.1920-11Spring 2023 - 4/6/23

Refining the idea

Running 2 programs? Ok, but how?

1. “Fine-grain multithreading”

2. “Coarse-grain multithreading”

3. “Simultaneous multithreading”

Let’s discuss at a high-level first,
then details

L15-6.1920-
12Spring 2023 - 4/6/23

1.Fine-grained MT
Cycle 0: Fetch from pc1

Cycle 1: Fetch from pc2

Cycle 2: Fetch from pc1

“Barrel processor”

L15-6.1920-
13Spring 2023 - 4/6/23

Reduce stalling due to

dependencies between registers!

2.Coarse-grained MT

Cycle 0: Fetch from pc1

Cycle 1: Fetch from pc1

… (cycle i-1) ins from pc1 is Load miss

Cycle i: Fetch from pc2

L15-6.1920-
14Spring 2023 - 4/6/23

Does not help with

dependencies between registers.

Only target load misses!

3. SMT (Simultaneous)

Fetch instructions from both
threads simultaneously (“combined
with superscalar”)

L15-6.1920-
15Spring 2023 - 4/6/23

Great, does it work?

Spring 2023 - 4/6/23
L15-6.1920-

16

Yes (part one of lab) but
No (part two of lab)

Functionally yes.

It does not work because of
backpressure!

L15-6.1920-
17Spring 2023 - 4/6/23

Not a solution

L15-6.1920-
18Spring 2023 - 4/6/23

We are stuck behind the blue truck

Latency Load miss ~40/60 cycles – gigantic structure

Solution

Use two 1-element queues for
e2w, one for each thread

Is it “necessary” to also use two
queues for f2d and d2e?

1. In any case, this is only about
performance

2. For perf, it depends: no for Coarse-

grain, yes for the others.
Spring 2023 - 4/6/23

L15-6.1920-
19

More accurate diagram

Spring 2023 - 4/6/23
L15-6.1920-

20

Morer accurate diagram

Spring 2023 - 4/6/23
L15-6.1920-

21

Drawing more

Spring 2023 - 4/6/23
L15-6.1920-

22

1. Are there potential

choices for scheduling?

2. Wait, did we just

duplicate everything?

Round-robin scheduling

High-level:

◼ Try to be fair and run both threads

 It is good to avoid dependencies!

 “Don't put all your eggs in one basket”

◼ If one thread is stuck, make progress

on the other one

Spring 2023 - 4/6/23
L15-6.1920-

23

Round-robin in Execute

// Original code:

rule execute if (!starting);

 d2e.deq();

 let current_inst = d2e.first();

 if (current_inst.epoch == epoch[0]) begin

 do the current_inst

 if ppc != nextpc(current_inst), redirect and toggle
epoch

 end else begin

 squash current_inst

 end

endrule

Spring 2023 - 4/6/23
L15-6.1920-

24

Round-robin in Execute

rule execute if (!starting);

 let current_instb = d2e_b.first();

 let current_instr = d2e_r.first();

 // choose which one to run, dequeue from that queue

 …

endrule

Spring 2023 - 4/6/23
L15-6.1920-

25

Does not work, execute gets stuck

if I don’t have both red and blue insts available

Round-robin in Execute
Reg#(Bool) priority <- mkReg(True);

rule execute if (!starting);

 if (priority) begin

 if (d2e_b.notEmpty) begin

 d2e_b.deq();

 let current_inst = d2e_b.first();

 Execute current_ins and push in e2w_b

 end else begin

 d2e_r.deq();

 let current_inst = d2e_r.first();

 Execute current_ins and push in e2w_r

 end

 end else begin

 // […]

 end

 priority <= !priority;

endrule

Spring 2023 - 4/6/23
L15-6.1920-

26

Round-robin in Execute
// The ellipsis: […]

else begin

 if (d2e_r.notEmpty) begin

 d2e_r.deq();

 let current_inst = d2e_r.first();

 Execute current_ins and push in e2w_r

 end else begin

 d2e_b.deq();

 let current_inst = d2e_b.first();

 Execute current_ins and push in e2w_b

 end

 end

 priority <= !priority;

endrule

Spring 2023 - 4/6/23
L15-6.1920-

27

Handle control instructions

If instruction comes from

How to correct from misprediction?

◼ Two epochs: one per thread

◼ Execute rule use the appropriate

epoch (depending on the source

d2e_b or d2e_r) to filter out the

instruction

◼ Modify the appropriate pc

Spring 2023 - 4/6/23
L15-6.1920-

28

Exploiting choices
https://dl.acm.org/doi/pdf/10.1145/232973.232993

Every cycle, which thread should
we fetch from? Execute from?
Etc...

There is a scheduling choice:

o Greedy (1 except if one stuck, then 2)

o Alternate?

o Random?

o Anything smarter?

Spring 2023 - 4/6/23
L15-6.1920-

29

More choices
Interesting policies:

o #in-flight branches on each thread.

Pick thread with minimal number of

branches (if possible) Why is it

good?

o #in-flight misses on each thread

o #in-flight instructions (priority to

minimal in-flight instructions)
Those ideas even more important when we have a
superscalar machine

Spring 2023 - 4/6/23
L15-6.1920-

30

Extra difficulties with SMT

Fetching two different lines from
the I$ the same cycle?

◼ Requires a 2-ported BRAM/SRAM

What if we don’t have those for
our I$? 

◼ We can play a little trick!

L15-6.1920-
31Spring 2023 - 4/6/23

L1 superscalar

Spring 2023 - 4/6/23
L15-6.1920-

32

L1 for SMT - 2-port I$

Spring 2023 - 4/6/23
L15-6.1920-

33

L1 for SMT – 1-port I$

Spring 2023 - 4/6/23
L15-6.1920-

34

Scope, gains, losses?

1.We showed 2-way multithreading,
does it works for k-way (k=3,4…)?

 Modern intel: k=2

 Alpha Ev8 (Araña): k=4

 GPU ?

2.How much performance is there to
win?

Let’s read Wikipedia together!

Spring 2023 - 4/6/23
L15-6.1920-

35

The elephant in the room:

What is a thread?

L15-6.1920-36Spring 2023 - 4/6/23

HW thread vs SW thread

Scenario, two programs, one pc
register:

◼ swth0 runs for 1ms

◼ Timer interrupt – current pc get

shelved

OS code runs, decide if it wants to return

to current pc, or to another pc, maybe pc
of swth1

◼ swth1 runs for 1ms

Multiple SW thread can be run with
one HW thread

Spring 2023 - 4/6/23
L15-6.1920-

37

Only a few extra registers

 are necessary to run multiple threads

on a single hardware thread

What we did not talk about

With current setup:

◼ The two programs share the same

memory

◼ They can mess with each other

memory

◼ BAD the 2 programs run by our HW

threads are conceptually completely

different

Side-Quest: Could we provide an
abstraction?

L15-6.1920-
38Spring 2023 - 4/6/23

Virtual memory idea

Addresses of the program are
“virtual”

◼ The hardware add one level of

indirection to actually find the real

address

◼ The translation depends on the

thread

SW Thread VS Process:

◼ Two threads of the same process,

have the same translation
L15-6.1920-

39Spring 2023 - 4/6/23

Processes and threads

April 4, 2024 L12-40

Code

Data

Code

Data

Code

Data

Code

Data

PCB PCB PCB PCB

Thread

Process

PCB: Process
Control Block

(PC, stack pointer,
..)

	Default Section
	Slide 1
	Slide 2: How to go faster?
	Slide 3: Previously in 6.1920
	Slide 4: Yet another idea
	Slide 5: Preliminary diagram
	Slide 6: Multithreading (MT)
	Slide 7: Tradeoffs in the RF
	Slide 8: Tradeoffs in the RF

	Untitled Section
	Slide 9: Wait – Back to superscalar’s lecture
	Slide 10: Side-notes – Superscalar throwback
	Slide 11: Return to today’s lecture
	Slide 12: Refining the idea
	Slide 13: 1.Fine-grained MT
	Slide 14: 2.Coarse-grained MT
	Slide 15: 3. SMT (Simultaneous)
	Slide 16: Great, does it work?
	Slide 17: Yes (part one of lab) but No (part two of lab)
	Slide 18: Not a solution
	Slide 19: Solution
	Slide 20: More accurate diagram
	Slide 21: Morer accurate diagram
	Slide 22: Drawing more
	Slide 23: Round-robin scheduling
	Slide 24: Round-robin in Execute
	Slide 25: Round-robin in Execute
	Slide 26: Round-robin in Execute
	Slide 27: Round-robin in Execute
	Slide 28: Handle control instructions
	Slide 29: Exploiting choices https://dl.acm.org/doi/pdf/10.1145/232973.232993
	Slide 30: More choices
	Slide 31: Extra difficulties with SMT
	Slide 32: L1 superscalar
	Slide 33: L1 for SMT - 2-port I$
	Slide 34: L1 for SMT – 1-port I$
	Slide 35: Scope, gains, losses?
	Slide 36: The elephant in the room:
	Slide 37: HW thread vs SW thread
	Slide 38: What we did not talk about
	Slide 39: Virtual memory idea
	Slide 40: Processes and threads

