
Constructive Computer Architecture

Superscalar in-order
machines

6.192

Constructive Computer Architecture

Superscalar in-order
machines

March 7, 2024 L09-2

Or, going wider

Thomas Bourgeat and Martin Chan

6.192

Starting point

No stores/

No store buffer

March 7, 2024 L09-3

6.192

How to go faster?
Increase number of useful cycles per program

1. On branch misprediction (seen last lecture)

2. On load miss

3. When stalling for dependencies

Improve program

Speed up clock

March 7, 2024 L09-4

Time =
 Instructions/Program *

Cycles/Instruction *
 Time/Cycle

6.192

Branch Mispredictions

Mitigations:

◼ Improve branch predictor (last lecture)

 BHT, BTB, RAS, etc.

◼ Faster recovery

March 7, 2024 L09-5

All at a price

6.192

Instruction Miss

March 7, 2024 L09-6

Mitigations:

◼ Prefetch

◼ Increase cache size/replacement policy

6.192

Data Cache Miss

March 7, 2024 L09-7

Mitigations:

◼ Store buffer for stores (prioritize loads)

◼ Nonblocking cache* (e.g., hit under miss)

◼ Pipeline cache

◼ Increase cache size/replacement policy

◼ Data prefetch?

6.192

Data Dependency Stall

March 7, 2024 L09-8

Mitigations:

◼ Add bypassing

◼ Register renaming for false dependencies (not covered)

6.192

If we fix them all: best case scenario

March 7, 2024 L09-9

6.192

Alternative idea
We have a single new instruction/cycle (IPC < 1)

◼ Can we find more work to do?

Idea:

◼ Do two instructions simultaneously!

Very rich idea: superscalar machines

March 7, 2024 L09-10

6.192

High-level picture

We will need to decode multiple times

We will need to write multiple registers

(and some more)

March 7, 2024 L09-11

6.192

Outline

Let’s consider all the stages

◼ Fetch

◼ Decode

◼ Execute

◼ Writeback

What changes to the processor will be required
for each stage?

March 7, 2024 L09-12

6.192

Brainstorming superscalar
Fetch

Fetch 2 instructions:

◼ Easy if instructions consecutive within one cache

line of ICache

March 7, 2024 L09-13

6.192

Fetch – Problem at the boundary

March 7, 2024 L09-14

pc+4 not in the same cache line,

(maybe not even in cache)

6.192

Revised solution

Idea:

◼ Always do two instructions simultaneously!

◼ Try to do two instructions simultaneously,

sometimes do only one if it is too hard (e.g. cache

boundary)

March 7, 2024 L09-15

6.192

Not always useful – that’s ok

March 7, 2024 L09-16

6.192

Summary ICache

Implementation:

When enqueuing into hitQ, enqueue pair

of 2 words if you can

typedef struct

 {Word ins1; Maybe#(Word) ins2;} OneOrTwoWords deriving (…);

interface Cache;
 method Action req(MemReq req);
 method ActionValue#(Word) resp();
 method ActionValue#(LReq) lineReq;
 method Action lineResp(Line r);
endinterface

OneOrTwoWords

March 7, 2024 L09-17

6.192

Fetch

// OLD

let req = Mem {byte_en : 0, addr : pcf[1], data : 0};

toImem.enq(req);

f2d.enq(F2D{pc: pcf[1], ppc : pcf[1] + 4, epoch: epoch[1]});

// NEW

let req = Mem {byte_en : 0, addr : pcf, data : 0};

toImem.enq(req); // Triggers a response with 1 or 2 inst

f2d.enq1(F2D{pc: pcf, ppc : pcf+4, epoch: epoch});

if (notLineBoundary(pcf)) begin

f2d.enq2(F2D{pc: pcf+4, ppc : pcf+8, epoch: epoch});

pcf <= pcf+8;

end else pcf <= pcf+4;

We need a queue
where we can enqueue
multiple times per rule

(An aside: you may want two predictor

 ports, or keep using just one)

March 7, 2024 L09-18

6.192

Everyone’s favorite kind of interface

March 7, 2024 L09-19

Regular single FIFO Superscalar FIFO

6.192

Superscalar FIFO- example
f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Cycle 1 “f.enq1(24), f.deq1()”

f==[42;24]

Cycle 2 “f.enq1(76), f.enq2(84), f.deq1(), f.deq2”

f==[76;84]

March 7, 2024 L09-20

6.192

Interface for Superscalar FIFO
interface SuperFIFO#(type t);

 method Action enq1(t x);

 method Action enq2(t x); // implies enq1 called too

 method Action deq1;

 method Action deq2; // implies deq1 called too

 method t first1;

 method t first2; //…

endinterface
How to implement this interface?

March 7, 2024 L09-21

6.192

Sketch – Rotating FIFOs
2 internal queues

Track which queue holds the oldest value: 1 bit reg currentDeq

Track which queue should be enqueued into next: currentEnq

The two enqueue push into FIFO (currentEnq, currentEnq+1)

The two dequeue pull from FIFO (currentDeq, currentDeq + 1)

March 7, 2024 L09-22

6.192

f == []

March 7, 2024 L09-23

Rotating Superscalar FIFO

6.192

f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Rotating Superscalar FIFO

March 7, 2024 L09-24

6.192

f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Cycle 1 “f.enq1(24), f.deq1()”

f==[42;24]

March 7, 2024 L09-25

Rotating Superscalar FIFO

6.192

f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Cycle 1 “f.enq1(24), f.deq1()”

f==[42;24]

Cycle 2 “f.enq1(76), f.enq2(84), f.deq1(), f.deq2”

f==[76;84]

Code in appendix “SuperFIFO.bsv”

March 7, 2024 L09-26

Rotating Superscalar FIFO

6.192

FIFO with single enq, deq for two tokens vs.

FIFO with two enq, deq for one token each

March 7, 2024 L09-27

Subtle FIFO difference

Wrap OneOrTwoToken iMem FIFO with SuperFIFO

6.192

Fetch only
Useful?

March 7, 2024 L09-28

6.192

Decode

Requirements:

◼ Dequeue two elements from f2d (ins1,ins2)

◼ Push multiple times into d2e

◼ Duplicate decoding logic

◼ Needs more register file and scoreboard reads/write

◼ Handle ins1 write a register read by ins2

◼ Decode (ins1, ins2), outstanding dependency on ins2,

ins1 ok. Stall?

March 7, 2024 L09-29

6.192

if (noDependency(ins1,sb) && noDependency(ins2,sb) &&

 noDependencyBetween(ins1, ins2)) begin

 d2e.enq1(“ins1”);

 d2e.enq2(“ins2”);

 f2d.deq1;

 f2d.deq2;

end

Is the second case for
correctness or performance?

Partial stalling in Decode

March 7, 2024 L09-30

else if (noDependency(ins1,sb)) begin
d2e.enq1(“ins1”);

 f2d.deq1;

end // otherwise stall

6.192

+ Decode (Not the full picture)

March 7, 2024 L09-31

6.192

Check your Decode

March 7, 2024 L09-32

Some bugs might not show up in every program!

Think about how things may break

Write or find RISC-V unit tests

◼ Check for each of the cases we discussed

 I1 not in SB, I2 not in SB, I2 independent from I1

 I1 not in SB, I2 not in SB, but I2 depends on I1

 etc.

Key is thinking about dependencies

6.192

Execute

Execute 2 instructions:

◼ Duplicate ALU? Possible – some area tradeoff

◼ Duplicate memory? Much harder/impossible

◼ New kind of structural hazards:

 ins1 and ins2 are memory instructions

More generally, any ins1 and ins2 using the same resource

◼ (multiplier, floating point unit, etc.)

March 7, 2024 L09-33

6.192

Execute – ALU, Memory, Control
Many combinations in the sequence (ins1,ins2):

◼ Misprediction and both incorrect?

◼ Misprediction then correct instruction?

 Easiest approximation:

◼ Do control (br/jmp) one-by-one

◼ Do memory one-by-one

◼ Do arithmetic two-by-two

◼ Check squashing two-by-two, then try again

March 7, 2024 L09-34

6.192

Simple Execute
let ins1 = d2e.first1(); let ins2 = d2e.first2();

d2e.deq1(); // at least process ins1

if (ins1.epoch != epoch[0] && ins2.epoch != epoch[0]) begin

 d2e.deq2(); // invalid ins1 and ins2

 squash ins1 AND ins2D

end else if (ins1.epoch != epoch[0]) begin

 squash ins1, don’t touch ins2, try again next cycle

end

else if (isALU(ins1) && isALU(ins2) && ins2.epoch == epoch[0]) begin

 d2e.deq2();

 execute both ins1 and ins2 (duplicate ALU circuit)

end else begin

 be modest and only process ins1 (as in original design)

end

March 7, 2024 L09-35

6.192

+ Execute (Also not the full picture)

March 7, 2024 L09-36

6.192

Check your Execute

March 7, 2024 L09-37

Some bugs might not show up in every program!

Think about how things may break

◼ dMem and e2w mismatch

Write or find RISC-V unit tests

◼ Check for each of the cases we discussed

 Some things are tricky with control and memory

Draw a 3x3 matrix

6.192

Brainstorming superscalar
Writeback

Writeback 2 instructions:

◼ More ports for the register file

◼ More ports for the scoreboard

Structural hazard for memory/MMIO instructions

What if the two instructions write the same register?

◼ Is it a problem?

◼ Easy safe solution: EHR with extra ports (RF and SB)

In reality, register file
ports can become
expensive, and so
can cache ports

6.192

All together

March 7, 2024 L09-39

Use the logs! Use them!

6.192

Teaser - next week and next lab

So far, processor runs one program

Why not making it run two programs?

◼ pc_x, rf_x[_]

◼ pc_y, rf_y[_]

◼ (but shared memory, shared other stuff)

The two programs are independent, unlikely to
miss/branch/stall simultaneously.

We call this Simultaneous Multithreading (SMT)

March 7, 2024 L09-40

	Slide 1
	Slide 2
	Slide 3: Starting point
	Slide 4: How to go faster?
	Slide 5: Branch Mispredictions
	Slide 6: Instruction Miss
	Slide 7: Data Cache Miss
	Slide 8: Data Dependency Stall
	Slide 9: If we fix them all: best case scenario
	Slide 10: Alternative idea
	Slide 11: High-level picture
	Slide 12: Outline
	Slide 13: Brainstorming superscalar Fetch
	Slide 14: Fetch – Problem at the boundary
	Slide 15: Revised solution
	Slide 16: Not always useful – that’s ok
	Slide 17: Summary ICache
	Slide 18: Fetch
	Slide 19: Everyone’s favorite kind of interface
	Slide 20: Superscalar FIFO- example
	Slide 21: Interface for Superscalar FIFO
	Slide 22: Sketch – Rotating FIFOs
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Fetch only
	Slide 29: Decode
	Slide 30: Partial stalling in Decode
	Slide 31: + Decode
	Slide 32: Check your Decode
	Slide 33: Execute
	Slide 34: Execute – ALU, Memory, Control
	Slide 35: Simple Execute
	Slide 36: + Execute
	Slide 37: Check your Execute
	Slide 38: Brainstorming superscalar Writeback
	Slide 39: All together
	Slide 40: Teaser - next week and next lab

