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Starting point

No stores/

No store buffer
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How to go faster?
Increase number of useful cycles per program

1. On branch misprediction (seen last lecture)

2. On load miss

3. When stalling for dependencies

Improve program

Speed up clock
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Time =
 Instructions/Program * 

Cycles/Instruction * 
 Time/Cycle
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Branch Mispredictions

Mitigations:

◼ Improve branch predictor (last lecture)

 BHT, BTB, RAS, etc.

◼ Faster recovery
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All at a price
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Instruction Miss
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Mitigations:

◼ Prefetch

◼ Increase cache size/replacement policy
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Data Cache Miss
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Mitigations:

◼ Store buffer for stores (prioritize loads)

◼ Nonblocking cache* (e.g., hit under miss)

◼ Pipeline cache

◼ Increase cache size/replacement policy

◼ Data prefetch?
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Data Dependency Stall
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Mitigations:

◼ Add bypassing

◼ Register renaming for false dependencies (not covered)
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If we fix them all: best case scenario
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Alternative idea
We have a single new instruction/cycle (IPC < 1)

◼ Can we find more work to do? 

Idea:

◼ Do two instructions simultaneously!

Very rich idea: superscalar machines

March 7, 2024 L09-10



6.192

High-level picture

We will need to decode multiple times

We will need to write multiple registers

(and some more)
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Outline

Let’s consider all the stages

◼ Fetch

◼ Decode

◼ Execute

◼ Writeback

What changes to the processor will be required 
for each stage?
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Brainstorming superscalar
Fetch 

Fetch 2 instructions:

◼ Easy if instructions consecutive within one cache 

line of ICache
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Fetch – Problem at the boundary
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pc+4 not in the same cache line,

(maybe not even in cache)
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Revised solution

Idea:

◼ Always do two instructions simultaneously!

◼ Try to do two instructions simultaneously, 

sometimes do only one if it is too hard (e.g. cache 

boundary)
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Not always useful – that’s ok
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Summary ICache

Implementation:

When enqueuing into hitQ, enqueue pair 

of 2 words if you can

typedef struct 

  {Word ins1; Maybe#(Word) ins2;} OneOrTwoWords deriving (…);

interface Cache;
  method Action req(MemReq req);
  method ActionValue#(    Word           ) resp();
  method ActionValue#(LReq) lineReq;
  method Action lineResp(Line r);
endinterface 

OneOrTwoWords
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Fetch

// OLD

let req = Mem {byte_en : 0, addr : pcf[1], data : 0};

toImem.enq(req); 

f2d.enq(F2D{pc: pcf[1], ppc : pcf[1] + 4, epoch: epoch[1]});

// NEW

let req = Mem {byte_en : 0, addr : pcf, data : 0};

toImem.enq(req); // Triggers a response with 1 or 2 inst

f2d.enq1(F2D{pc: pcf, ppc : pcf+4, epoch: epoch});

if (notLineBoundary(pcf)) begin

f2d.enq2(F2D{pc: pcf+4, ppc : pcf+8, epoch: epoch});

pcf <= pcf+8;

end else pcf <= pcf+4;

We need a queue 
where we can enqueue 
multiple times per rule 

(An aside: you may want two predictor

 ports, or keep using just one)
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Everyone’s favorite kind of interface
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Regular single FIFO Superscalar FIFO
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Superscalar FIFO- example
f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Cycle 1 “f.enq1(24), f.deq1()”

f==[42;24]

Cycle 2 “f.enq1(76), f.enq2(84), f.deq1(), f.deq2”

f==[76;84]
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Interface for Superscalar FIFO
interface SuperFIFO#(type t);

    method Action enq1(t x);

    method Action enq2(t x); // implies enq1 called too

    method Action deq1;

    method Action deq2; // implies deq1 called too

    method t first1;

    method t first2; //…

endinterface
How to implement this interface?
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Sketch – Rotating FIFOs
2 internal queues

Track which queue holds the oldest value: 1 bit reg currentDeq

Track which queue should be enqueued into next: currentEnq

The two enqueue push into FIFO (currentEnq, currentEnq+1)

The two dequeue pull from FIFO (currentDeq, currentDeq + 1)
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f == []
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Rotating Superscalar FIFO
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f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Rotating Superscalar FIFO
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f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Cycle 1 “f.enq1(24), f.deq1()”

f==[42;24]
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Rotating Superscalar FIFO
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f == []

Cycle 0 “f.enq1(13), f.enq2(42)”

f==[13;42]

Cycle 1 “f.enq1(24), f.deq1()”

f==[42;24]

Cycle 2 “f.enq1(76), f.enq2(84), f.deq1(), f.deq2”

f==[76;84]

Code in appendix “SuperFIFO.bsv”
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Rotating Superscalar FIFO
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FIFO with single enq, deq for two tokens vs.

FIFO with two enq, deq for one token each

March 7, 2024 L09-27

Subtle FIFO difference

Wrap OneOrTwoToken iMem FIFO with SuperFIFO
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Fetch only
Useful?
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Decode

Requirements:

◼ Dequeue two elements from f2d (ins1,ins2)

◼ Push multiple times into d2e

◼ Duplicate decoding logic

◼ Needs more register file and scoreboard reads/write

◼ Handle ins1 write a register read by ins2

◼ Decode (ins1, ins2), outstanding dependency on ins2, 

ins1 ok. Stall?
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if (noDependency(ins1,sb) && noDependency(ins2,sb) &&

    noDependencyBetween(ins1, ins2)) begin

 d2e.enq1(“ins1”);

 d2e.enq2(“ins2”);

 f2d.deq1;

 f2d.deq2;

end

Is the second case for
correctness or performance?

Partial stalling in Decode

March 7, 2024 L09-30

else if (noDependency(ins1,sb)) begin    
d2e.enq1(“ins1”); 

 f2d.deq1; 

end // otherwise stall
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+ Decode (Not the full picture)

March 7, 2024 L09-31



6.192

Check your Decode
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Some bugs might not show up in every program!

Think about how things may break

Write or find RISC-V unit tests

◼ Check for each of the cases we discussed

 I1 not in SB, I2 not in SB, I2 independent from I1

 I1 not in SB, I2 not in SB, but I2 depends on I1

 etc.

Key is thinking about dependencies
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Execute 

Execute 2 instructions:

◼ Duplicate ALU? Possible – some area tradeoff

◼ Duplicate memory? Much harder/impossible

◼ New kind of structural hazards:

 ins1 and ins2 are memory instructions

More generally, any ins1 and ins2 using the same resource

◼ (multiplier, floating point unit, etc.)
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Execute – ALU, Memory, Control
Many combinations in the sequence (ins1,ins2):

◼ Misprediction and both incorrect?

◼ Misprediction then correct instruction?

 Easiest approximation:

◼ Do control (br/jmp) one-by-one

◼ Do memory one-by-one

◼ Do arithmetic two-by-two

◼ Check squashing two-by-two, then try again
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Simple Execute
let ins1 = d2e.first1(); let ins2 = d2e.first2();

d2e.deq1(); // at least process ins1

if (ins1.epoch != epoch[0] && ins2.epoch != epoch[0]) begin

  d2e.deq2(); // invalid ins1 and ins2

  squash ins1 AND ins2D

end else if (ins1.epoch != epoch[0]) begin 

  squash ins1, don’t touch ins2, try again next cycle

end 

else if (isALU(ins1) && isALU(ins2) && ins2.epoch == epoch[0]) begin 

   d2e.deq2();

   execute both ins1 and ins2 (duplicate ALU circuit)

end else begin

   be modest and only process ins1 (as in original design)

end

March 7, 2024 L09-35



6.192

+ Execute (Also not the full picture)
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Check your Execute

March 7, 2024 L09-37

Some bugs might not show up in every program!

Think about how things may break

◼ dMem and e2w mismatch

Write or find RISC-V unit tests

◼ Check for each of the cases we discussed

 Some things are tricky with control and memory

Draw a 3x3 matrix
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Brainstorming superscalar
Writeback 

Writeback 2 instructions:

◼ More ports for the register file

◼ More ports for the scoreboard

Structural hazard for memory/MMIO instructions

What if the two instructions write the same register?

◼ Is it a problem?

◼ Easy safe solution: EHR with extra ports (RF and SB)

In reality, register file 
ports can become 
expensive, and so 
can cache ports
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All together

March 7, 2024 L09-39

Use the logs! Use them!
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Teaser - next week and next lab

So far, processor runs one program

Why not making it run two programs?

◼ pc_x, rf_x[_]

◼ pc_y, rf_y[_]

◼ (but shared memory, shared other stuff)

The two programs are independent, unlikely to 
miss/branch/stall simultaneously.

We call this Simultaneous Multithreading (SMT)
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