
Final Exam, Topics in TCS 2016

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear, well motivated, and proofs should be complete.

• The solutions to the questions of the exam are rather short. If you end up writing a
solution requiring a lot of pages then there is probably an easier solution.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4

/ 25 points / 25 points / 25 points / 25 points

Total / 100
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1 (25 pts) Basics. In this problem, you should answer whether the following 10 statements are
true or false.

• We have a proof that BPP ⊆ NP. True or False? False

• We have a proof that BPP ⊆ BQP. True or False? True

• We have a proof that BPP ⊆ P/poly. True or False? True

• We have a proof that NP ⊆ BQP. True or False? False

• We have a proof that P/poly ⊆ NP. True or False? False

• We have a proof that IP ⊆ EXP. True or False? True

• We have a proof that PH ⊆ PSPACE. True or False? True

• We have a proof that PCP(O(1), poly(n)) = P. True or False? False

• We have a proof that PCP(log n,O(1)) = NP. True or False? True

• If NP 6= coNP, then PNP 6= NP. True or False? True

The correction is as follows: 10 correct answers give 25 points, 9 correct answers give 22 points, 8 correct
answers give 17 points, 7 correct answers give 10 points, 6 correct answers give 5 points, 5 or less correct
answers give 0 points.
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2 (25 pts) The Polynomial Hierarchy. Show that if PH = PSPACE then the polynomial
hierarchy collapses to some level.

In this problem you are allowed to use (if you wish) the following statement proved in class:
for every i ≥ 1, if Σp

i = Πp
i then PH = Σp

i . All other statements should be proved.
(Hint: use the fact that PSPACE has complete languages.)

Solution:

• Suppose that PH = PSPACE.

• Let L be a PSPACE complete problem (here we use the hint).

• Then, with our assumption, L is also complete for PH.

• Now let i be such that L ∈ Σp
i (such an i exists since L ∈ PH). In other words there exists

a polytime TM M such that

x ∈ L⇔ ∃u1∀u2 . . . QiuiM(x, u1, u2, . . . , ui) = 1.

We now prove that in this case PH ⊆ Σp
i , i.e., the polynomial hierarchy collapses to its i:th level.

• Consider any L′ ∈ PH.

• As L is a complete problem for PH we have that any L′ ∈ PH has a polynomial time
reduction to L. Let M ′ be the TM representing this reduction, i.e., x′ ∈ L′ ⇔ M ′(x′) =
x ∈ L.

• Using this reduction together with that L ∈ Σp
i , we have

x′ ∈ L′ ⇔ ∃u1∀u2 . . . QiuiM(M ′(x′), u1, u2, . . . , ui) = 1.

• Notice that this implies that L′ ∈ Σp
i since both M and M ′ run in polynomial time the

TM on the RHS runs in polytime.
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3 (25 pts) Circuits. Prove the following statement:

Let ε > 0 and d(n) = (1 − ε) · n. Then for n large enough there exists an n-ary function
f : {0, 1}n → {0, 1} not computable by circuits of depth at most d(n).

In this problem, we only allow gates of fan-in 2 (or 1 if it is a NOT gate).
(Hint: recall that most functions f require circuits of large size. In particular, you are allowed

to use the statement proved in class about the circuit size of most functions.)

Solution:

• We know from class that there exists a function f : {0, 1}n → {0, 1} that requires Ω(2n/n)
gates.

• Now how many gates can a circuit of depth d(n) have?

• Well there is one gate that produces this input. The fan-in to this gate is at most two. So
there are at most 2 gates connecting to the output gate. Continuing this argument there
is at most 4 gates connecting to these 2 gates and so on.

• In total a circuit of depth d(n) can have at most

d(n)∑
i=0

2i = 2d(n)+1 − 1 gates.

• As 2(1−ε)n+1 is much smaller than 2n/n2 for large enough n the statement of the exercise
follows.
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4 (25 pts) Hardness and PCPs. Recall that in the Vertex Cover problem, you are given a graph
G = (V,E), and the goal is to find the minimum subset S ⊆ V of vertices such that each edge
e ∈ E has at least one endpoint in S. We saw in problem set IV that, using Håstad’s 3-bit
PCP verifier, we can prove that it is NP-hard to approximate the Vertex Cover problem within
a factor of 7/6− ε for any ε > 0. In particular, Håstad’s PCP verifier queries 3 bits of the proof
and checks whether a certain predicate is satisfied, while having a completeness of 1 − ε and
soundness 1/2 + ε.

In this problem, you are asked to prove that it is NP-hard to approximate vertex cover within
2− ε for any ε > 0, assuming1 the following PCP verifier Ṽ exists for SAT:

For every ε > 0, there exists a large enough constant k such that Ṽ uses O(log n) random
bits to compute k positions in the proof π, say i1, . . . , ik, and accepts iff C(π(i1), . . . , π(ik)) =
1, where C is a fixed predicate of the verifier Ṽ that has exactly two satisfying assign-
ments. Formally, C is a predicate C : {0, 1}k 7→ {0, 1} such that there exist only two par-
tial assignments z1, z2 ∈ {0, 1}k (out of the 2k possible ones) such that C(z1) = C(z2) = 1
and C(z) = 0 for all z ∈ {0, 1}k\{z1, z2}. The verifier Ṽ has completeness 1 − ε and
soundness ε. In other words:

– if ϕ is a satisfiable SAT instance then there is a proof π that makes the verifier accept
with probability at least 1− ε.

– if ϕ is not a satisfiable SAT instance then for any proof π, the verifier accepts with
probability at most ε.

Your task in this problem is to use the above described verifier Ṽ to prove that it is NP-hard to
approximate Vertex Cover within a factor of 2− ε, for any ε > 0.

Solution:

• Suppose the number of random bits queried by Ṽ is c log n.

• We know construct the FGLSS graph with a vertex for each accepting configuration. That
is for each random string r we will have exactly two vertices corresponding to the two
accepting configurations. The total number of vertices is thus N := 2c logn = 2 · nc.

• The edges are the same as in the homework: two vertices are adjacent if they have con-
flicting opinions/assignments to the same bit in the proof.

• Now in the YES/Completeness case there is a proof π that makes Ṽ accept with probability
at least 1− ε. If we take all the vertices corresponding to that proof we get a set of size at
least nc(1− ε) and its complement is a vertex cover of size at most (1 + ε)nc.

• Now in the NO/Soundness case any proof makes Ṽ accept with probability at most ε. By
the same analysis as in class, this implies that the FGLSS graph has an independent set of
size at most εnc. In other words, any vertex cover has size at least (2− ε)nc.

• The inapproximability of 2−ε
1+ε ≥ 2− ε′ for any ε′ > 0 follows.

1This verifier is only known to exist under a stronger complexity theoretic assumption, known as the Unique
Games Conjecture.
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