Lecture 2: NP-completeness
Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 2, 19.09.2024

Recap: NP

Lecture 2 29 00 2024

The class NP

Definition: A verifier for a language Ais a TM V, where
A={x|3Cst. V accepts (x,C)}.

A polynomial time verifier runs in polynomial time in [x|.

Definition: NP is the class of languages with polynomial time verifiers

Lecture 2 29 00 2024

P and NP

Is P C NP? Yes (obviously)

Is P = NP? Nobody knows ...
Find the answer and win USD 1,000,000!

NP
SAT

- INDSET

P=NP

SAT
INDSET

Cook-Levin Theorem (informal): SAT € P iff P = NP.
(Also INDSET € P iff P = NP.)

Lecture 2 29 00 2024

Why is it called NP?

Lecture 2 29 00 2024

Recall: In a Turing machine, 6 : (@ x) — Q x I x {L, R}.
In a Nondeterministic Turing Machine (NTM),

§:(QxT)— P(QxT x{LR})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x € L*, every computation of N on x halts, and
moreover,

> If x € L, then some computation of N on x accepts.
> If x ¢ L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time its longest
computation on x is polynomial in |x|.

Theorem: For any language L C ¥,

L has a nondeterministic poly-time decider <= L has a poly-time verifier.

Proof Sketch («<=):

Let V be the verifier. NTM N on input x does the following:
Write a certificate C nondeterministically.
Run V on (x, C).

Proof Sketch (=):

Let N be the nondeterministic decider. Verifier V on (x, C) computes:
» Simulate N on x, choosing transitions given by C.

V accepts (x, C) iff C is the accepting path of N on x.

Theorem: For any language L C ¥ *,

L has a nondeterministic poly-time decider <=- L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:
NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP = | J NTIME(n*).
k=1
.. SAT, GI, INDSET are all in NP.

Reductions and NP-completeness

Lecture 2 29 00 2024

Reducibility Use knowledge about complexity of one language to reason
about the complexity of other in an easy way

Reduction Way to show that to solve one problem (A), it is sufficient to
solve another problem (B)
A reduces to B...

> Reductions quantify relative hardness of problems

> If problem B is easy then problem A is easy too
> If problem A is hard then problem B is hard too

Poly-time Reductions (1):

Computability

f
/_\
2* Z*

w f(w)
CORCEECEY — | | — EEEEE

Definition: A function f : ¥* — Y* is polynomial time computable if
there is some poly-time TM that on every input w, outputs f(w)

Lecture 2 29 00 2024

Poly-time Reductions (2): Correctness

Mapping may not be
Surjective

A " vz"s B
wy _'41]1
WBN‘N\ ””

/”’ \‘s\b
n Wy > Vs B
Vs
I >

Definition: Language A is poly-time reducible to language B, written
A <p B, if there is a poly-time computable function f : ¥* — ¥*, such
that for every w € ¥*:

weAsf(w)eB

Lecture 2 29 00 2024

Theorem: If A<p B and B € P, then Ac P

Proof:

> Let M be ais a poly-time algorithm for B and let f be a poly-time
reduction from A to B

> Define algorithm N as follows:
Correctness

of f =
N decides A

w f fw)

» N = "On input w :

Compute f(w)
Run M on input f(w) and output whatever M outputs”

Corollary: If A<p Band A¢ P, then B¢ P

Definition: A language L is said to be NP-complete if
» Lisin NP.

> For every language L’ in NP, L' <p L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook-Levin Theorem: SAT is NP-complete.
To show L is NP-complete:

» [NP membership] Give a poly-time verifier for L.

> [NP hardness] Show C <p L for some NP-complete language C
(not the other way around)

Lecture 2 29 00 2024

TN LL L L

e @,/(%

““1 can’t find an efficient algorithm, but neither can all these famous people.”

3SAT is NP-complete

kSAT = {{¢) : ¢ is satisfiable and each clause of ¢ contains < k literals}

Verifier for 3SAT: Just use the verifier for SAT.
Claim: SAT <p 3SAT
Reduction: Given ¢,
> While ¢ contains a clause K = ({4 VoV €3V -+ V £p) with > 3

literals

Replace K with the following two clauses
Kl = (61 \/62 \/Z)
Ko=(ZV I3V ---Vip)

Preserves satisfiability
(check!)

What is the runtime?

Does SAT <p 2SAT analogously?

Lecture 2 29 00 2024

INDSET

| VERTEX COVER] CLIQUE
SET COVER
SUBSET SUM

and many more ...

INDSET

| VERTEX COVER]

SET COVER

SUBSET SUM

INDSET is NP-complete

We have already seen that
INDSET = {(G, k) : G has an independet set of size k}
is in NP and so it remains to give a poly-time reduction from

an NP-complete language

Lecture 2 29 00 2024

INDSET is NP-complete

Claim: SAT <p INDSET
= x1 AN (aVxa) A (x1VxeVx3) A (x1VxVx3VXs)
~

Kl Kz K3 K4

K1

\
©)

K3
[@ -
Ka

Lecture 2 29 00 2024

Claim: SAT <p INDSET
Reduction f: On input ¢,

Let G be the graph generated as follows.

Take a vertex for each literal of each clause.
Add edges for pairs of conflicting literals.
Add edges for pairs of literals from the same clause.

Let m be the number of clauses in (.
Output (G, m).
Claim: ¢ € SAT = f(p) € INDSET

Proof: C: satisfying assignment of . Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f(¢) € INDSET = ¢ € SAT

Proof: C: independent set in G, |C| = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.

INDSET

| VERTEX COVER]

SET COVER

SUBSET SUM

CLIQUE

A,B,F is a 3-clique

Definition: A k-clique is a subset of k pairwise connected vertices
CLIQUE = {(G, k) | G has a clique of size k}

(G,3) € CLIQUE? Yes
(G,4) € CLIQUE? No

Lecture 2 29 00 2024

CLIQUE is NP-Complete

Theorem: INDSET <, CLIQUE
Corollary: CLIQUE is NP-complete

Goal find a poly-time reduction from INDSET to CLIQUE

Lecture 2 29 00 2024

For a graph G:
Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

Def (Complement): The complement of a graph G = (V, E) is a graph
G = (V, E) with same vertex set and edge set E s.t. uv € E iff uv ¢ E

Observation: If G is a graph and G its complement, then a subset S of
the vertices of G is an independent set iff S is a clique of G

INDSET <, CLIQUE

Reduction: f({G = (V,E), k)) := (G = (V,E), k)
Efficiency: The reduction is polynomial time

Correctness: (G, k) € INDSET « (G, k) € CLIQUE

Proof of correctness:

(G, k) € INDSET, |S| = k (G, k) € CLIQUE

| VERTEX COVER]

SET COVER

SUBSET SUM

Definition: For a graph G = (V/, E), a vertex cover is a subset S of V
such that every edge of G is incident to at least one vertex in S

G

Example

Definition:

VERTEX COVER = {(G, k) : G is a graph that has a vertex cover of size k}

> (G,4) € VERTEX COVER? Yes
> (G,3) € VERTEX COVER? No

VERTEX COVER is NP-Complete

STEP 1: VERTEX COVER € NP
TM V: “On input (G, k, C)
IF |C| # k, THEN REJECT

FOR every pair u # v of vertices DO
> IF uvis an edge AND u ¢ C AND v ¢ C THEN REJECT
ACCEPT"

STEP 2: INDSET <, VERTEX COVER

How to reduce INDSET to VERTEX COVER?

Lecture 2 29 00 2024

INDSET vs VERTEX COVER

Lemma: For every graph G, a subset S of the vertices is a vertex cover if
and only if S is an independent set where S = V' \ S

Since S is a vertex
cover, such an
edge cannot exist.

Independent set

Vertex cover

Corollary: For every graph G and a positive integer k, G has an
independent set of size k iff G has a vertex cover of size n — k

Lecture 2 29 00 2024

INDSET <, VERTEX COVER

Reduction: f({G, k)) := (G, n — k), where n is the number of vertices
of G

Efficiency: The reduction f is polynomial time

Correctness: Lemma/Corollary on previous slide!

& (G,n—k) € VERTEX COVER

(G,k) € INDSET & °

INDSET

| VERTEX COVER]

v

SET COVER

SUBSET SUM

Definition: Let U={1,...,n} and F ={Ty,..., T} be a family of
subsets Vi, T; C U

A subset {T;,..., T, } C Fis called a set cover of size k if UJ/.;1 T,=U

SET COVER = {(U, F, k) | F contains a set cover of size k}
Example:
» (U, F,3) € SET COVER? Yes {{1,2,4},{3,6,4},{4,7,8,9}}
» (U, F,2) € SET COVER? No

SET COVER is NP-Complete

Theorem: VERTEX COVER <, SET COVER

Corollary: SET COVER is NP-complete

Lecture 2 29 00 2024

VERTEX COVER <, SET COVER

Key idea: VERTEX COVER is a special case of SET COVER

€1

Example: U ={e e e3 €465}
€s
€y e, —) F = {{eg,e4},{eq, 5,65},
{6‘2,6‘3}, {63'64-' 65}}
€3
k=2 kK=k=2

Reduction:

> Let (G = (V,E), k) be an instance of VERTEX COVER
> Set U:=E

> For every vertex v € V create a set S,
S, :={e € E | eis incident to v}

> Let F:={S,|v € V} and set k' =

Efficiency: Obvious from construction

Correctness (=-): If G has a vertex cover of cardinality k, then U can
be covered by k sets

Proof:

> Suppose C C V is a vertex cover of G and |C| = k

> Every edge €; is adjacent to at least one vertex in C

USV:E

veC

> Hence U can be covered by k sets

Correctness («<=): If U can be covered by k sets, then G has a vertex
cover of cardinality k

Proof:
> Let Sy, Sy,,...,Sy, be a collection of sets which cover U = E
> We claim that C = {vi, v2,..., v} is a vertex cover of G

> Indeed, every edge e in G belongs to S, for some i € {1,2,...,k}

> Hence, every edge e in G is incident to some vertex v; € C

INDSET

| VERTEX COVER]

SET COVER

SUBSET SUM

SUBSET-SUM

Let X denote a (multi) set of positive integers

Definition: SUBSET-SUM
= {(X,s) : X contains a subset whose elements sum to s}

Example: X ={1,3,4,6,13,13}
> (X,8) € SUBSET-SUM? Yes T = {1,3,4}
> (X,12) € SUBSET-SUM? No

Question: SUBSET-SUM € P?

It depends on the input length

Lecture 2 29 00 2024

In SUBSET-SUM
we use binary

encoding

Unary S Binary

1*¥11*101*100LU

~ — — -~ S ——
1 3 5 4 1 3 5 4
({1,3,5},4) ({1,3,5} 4)
Input length: xq + x5 + -+ X + 5 > Input length: [log(x;)] + -+ + [log(x;,,)] + [log(s)]

L ecture 2 29 00 2024

SUBSET-SUM: An Algorithm

© LetX ={x;, %5, X}, sum =YL x;
. FORi=1..mDO

. FORj =0..sum DO

. Ali, jl: = False

* FORi=0tomDO

. Ali, 0] == True

. FORi=1..mDO

. FORj =1..sum DO

. IFA[i —1,j — x;] = True OR A[i — 1,j] = True THEN A[i, j]: = True

* IFA[m,s] = True, ACCEPT; ELSE, REJECT

Lecture 2 29 00 2024

SUBSET-SUM is NP-Complete

Theorem: SUBSET-SUM is NP-Complete

Proof: Later in the course

Lecture 2 29 00 2024

