
Lecture 2: NP-completeness

Mika Göös

School of Computer and Communication Sciences

Lecture 2, 19.09.2024

Recap: NP

Lecture 2, 29.09.2024

The class NP

Definition: A verifier for a language A is a TM V , where

A = {x | ∃C s.t. V accepts 〈x ,C〉} .

A polynomial time verifier runs in polynomial time in |x|.

Definition: NP is the class of languages with polynomial time verifiers

Lecture 2, 29.09.2024

P and NP
Is P ⊆ NP? Yes (obviously)

Is P = NP? Nobody knows . . .

Find the answer and win USD 1,000,000!

NP
SAT

INDSETGI?
P

GI?

P=NP

SAT

INDSET

GI

Cook-Levin Theorem (informal): SAT ∈ P iff P = NP.

(Also INDSET ∈ P iff P = NP.)
Lecture 2, 29.09.2024

Why is it called NP?

Lecture 2, 29.09.2024

Non-deterministic Turing Machines

Recall: In a Turing machine, δ : (Q × Γ) −→ Q × Γ× {L,R}.

In a Nondeterministic Turing Machine (NTM),

δ : (Q × Γ) −→ P(Q × Γ× {L,R})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x ∈ Σ∗, every computation of N on x halts, and
moreover,
I If x ∈ L, then some computation of N on x accepts.
I If x < L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time its longest
computation on x is polynomial in |x|.

Lecture 2, 29.09.2024

Nondeterministic deciders ⇐⇒ Verifiers

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Proof Sketch (⇐=):

Let V be the verifier. NTM N on input x does the following:

1 Write a certificate C nondeterministically.

2 Run V on 〈x ,C〉.

Proof Sketch (=⇒):

Let N be the nondeterministic decider. Verifier V on 〈x ,C〉 computes:
I Simulate N on x , choosing transitions given by C .

V accepts 〈x ,C〉 iff C is the accepting path of N on x .

Lecture 2, 29.09.2024

Non-deterministic Polynomial-time

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP =
∞⋃

k=1
NTIME(nk) .

∴ SAT, GI, INDSET are all in NP.

Lecture 2, 29.09.2024

Reductions and NP-completeness

Lecture 2, 29.09.2024

Reductions

Reducibility Use knowledge about complexity of one language to reason
about the complexity of other in an easy way

Reduction Way to show that to solve one problem (A), it is sufficient to
solve another problem (B)

A reduces to B. . .

I Reductions quantify relative hardness of problems
I If problem B is easy then problem A is easy too
I If problem A is hard then problem B is hard too

Lecture 2, 29.09.2024

Poly-time Reductions (1): Poly-time ComputabilityReductions Part 1: Computability

0 0 1 0 1 1 0 1 ⊔ 1 1 1 0 ⊔ ⊔ ⊔ ⊔ ⊔

𝑤
𝑇𝑀𝑓

𝑓(𝑤)

𝑓

Σ⋆ Σ⋆

𝑤1
𝑤2

𝑤3
𝑣1

𝑣2

𝑣3𝑤4 𝑣3𝑤4

Definition: A function 𝑓: Σ⋆ → Σ⋆ is a computable function if some
TM 𝑀, on every input 𝑤 halts with just 𝑓(𝑤) on its tape

Definition: A function f : Σ∗ → Σ∗ is polynomial time computable if
there is some poly-time TM that on every input w , outputs f (w)

Lecture 2, 29.09.2024

Poly-time Reductions (2): CorrectnessReductions Part 2: Correctness

Definition: Language 𝐴 is mapping reducible to language 𝐵, written
𝑨 ≤𝒎 𝑩, if there is a computable function 𝑓: Σ⋆ → Σ⋆, such that for
every 𝑤 ∈ Σ⋆:

𝒘 ∈ 𝑨⟺ 𝒇 𝒘 ∈ 𝑩

Σ⋆ Σ⋆

𝑓

𝑤1
𝑤2
𝑤3

𝑣1

𝑣2

𝑣3

𝐴

𝑤4ഥ𝐴

𝐵

ത𝐵𝑣4𝑤4

Reduction
Mapping may not be

Surjective

𝑣3

𝑣5

Definition: Language A is poly-time reducible to language B, written
A ≤P B, if there is a poly-time computable function f : Σ∗ → Σ∗, such
that for every w ∈ Σ∗:

w ∈ A⇔ f (w) ∈ B

Lecture 2, 29.09.2024

Theorem: If A ≤P B and B ∈ P, then A ∈ P

Proof:
I Let M be a is a poly-time algorithm for B and let f be a poly-time

reduction from A to B
I Define algorithm N as follows:

• Assume that 𝑴 is a decider for 𝑩 and 𝑓 is a reduction from 𝐴 to 𝐵

• Let 𝑁 be a TM as follows:

• 𝑁 =“On input 𝑤:
1. Compute 𝑓(𝑤)
2. Run 𝑀 on input 𝑓(𝑤) and output whatever 𝑀 outputs"

𝑤 𝑓(𝑤) 𝑀

𝑁

𝑓

Computability of 𝑓 ⇒
N is a decider

Correctness
of 𝑓 ⇒

N decides A

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable

Corollary: If 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable

Proof:

I N = “On input w :

1 Compute f (w)
2 Run M on input f (w) and output whatever M outputs”

• Assume that 𝑴 is a decider for 𝑩 and 𝑓 is a reduction from 𝐴 to 𝐵

• Let 𝑁 be a TM as follows:

• 𝑁 =“On input 𝑤:
1. Compute 𝑓(𝑤)
2. Run 𝑀 on input 𝑓(𝑤) and output whatever 𝑀 outputs"

𝑤 𝑓(𝑤) 𝑀

𝑁

𝑓

Computability of 𝑓 ⇒
N is a decider

Correctness
of 𝑓 ⇒

N decides A

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable

Corollary: If 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable

Proof:

Corollary: If A ≤P B and A < P, then B < P

Lecture 2, 29.09.2024

NP-completeness

Definition: A language L is said to be NP-complete if
I L is in NP.
I For every language L′ in NP, L′ ≤P L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook–Levin Theorem: SAT is NP-complete.

To show L is NP-complete:
I [NP membership] Give a poly-time verifier for L.
I [NP hardness] Show C ≤P L for some NP-complete language C

(not the other way around)

Lecture 2, 29.09.2024

Big picture

Lecture 2, 29.09.2024

Takehome message

Lecture 2, 29.09.2024

3SAT is NP-complete

kSAT = {〈ϕ〉 : ϕ is satisfiable and each clause of ϕ contains ≤ k literals}

Verifier for 3SAT: Just use the verifier for SAT.

Claim: SAT ≤P 3SAT

Reduction: Given ϕ,
I While ϕ contains a clause K = (`1 ∨ `2 ∨ `3 ∨ · · · ∨ `m) with > 3

literals

Replace K with the following two clauses
K1 = (`1 ∨ `2 ∨ z)

K2 = (z ∨ `3 ∨ · · · ∨ `m)


Preserves satisfiability

(check!)

What is the runtime?

Does SAT ≤P 2SAT analogously?

Lecture 2, 29.09.2024

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

and many more . . .

Lecture 2, 29.09.2024

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 2, 29.09.2024

INDSET is NP-complete

1

2

3

4

5

6

We have already seen that

INDSET = {〈G , k〉 : G has an independet set of size k}

is in NP and so it remains to give a poly-time reduction from
an NP-complete language

Lecture 2, 29.09.2024

INDSET is NP-complete
Claim: SAT ≤P INDSET

ϕ = x1︸︷︷︸
K1

∧ (x1 ∨ x2)︸ ︷︷ ︸
K2

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
K3

∧ (x1 ∨ x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
K4

x1

x1

x2

x1 x2 x3

x1 x2 x3 x4

K1

K2

K3

K4

Lecture 2, 29.09.2024

INDSET is NP-complete
Claim: SAT ≤P INDSET

Reduction f : On input ϕ,

1 Let G be the graph generated as follows.
1 Take a vertex for each literal of each clause.
2 Add edges for pairs of conflicting literals.
3 Add edges for pairs of literals from the same clause.

2 Let m be the number of clauses in ϕ.

3 Output (G ,m).

Claim: ϕ ∈ SAT =⇒ f (ϕ) ∈ INDSET

Proof: C : satisfying assignment of ϕ. Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f (ϕ) ∈ INDSET =⇒ ϕ ∈ SAT

Proof: C : independent set in G , |C | = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.

Lecture 2, 29.09.2024

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 2, 29.09.2024

CLIQUE

CLIQUE

Defn: A 𝑘-clique is a subset of 𝑘 pairwise connected vertices

𝐷

𝐴

𝐵

𝐶

𝐹

𝐺, 3 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸 ?

𝐺, 4 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸? No 4-clique

𝐴, 𝐵, 𝐹 is a 3-clique

𝐶𝐿𝐼𝑄𝑈𝐸 = 𝐺, 𝑘 𝐺 has a clique of size 𝑘}

𝐸

A,B,F is a 3-clique

Definition: A k-clique is a subset of k pairwise connected vertices

CLIQUE = {〈G , k〉 | G has a clique of size k}

〈G , 3〉 ∈ CLIQUE? Yes

〈G , 4〉 ∈ CLIQUE? No

Lecture 2, 29.09.2024

CLIQUE is NP-Complete

Theorem: INDSET ≤p CLIQUE

Corollary: CLIQUE is NP-complete

Goal find a poly-time reduction from INDSET to CLIQUE

Lecture 2, 29.09.2024

INDSET vs CLIQUE

For a graph G :

Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

INDSET vs CLIQUE
For a graph 𝐺:
Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

Observation: If 𝐺 is a graph and ҧ𝐺 is its complement, then a subset 𝑆 of the
vertices of 𝐺 is an independent set iff 𝑆 is a clique of ҧ𝐺

Definition (Complement): The complement of a graph 𝐺 = (𝑉, 𝐸) is a graph
ҧ𝐺 = (𝑉, ഥ𝑬) with the same vertex set and the edge set ത𝐸 s.t. 𝑢𝑣 ∈ ത𝐸 iff 𝑢𝑣 ∉ 𝐸

T𝐡𝐞𝐨𝐫𝐞𝐦: 𝐶𝐿𝐼𝑄𝑈𝐸 ≤𝑃 𝐼𝑁𝐷𝑆𝐸𝑇 and 𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝐶𝐿𝐼𝑄𝑈𝐸

Def (Complement): The complement of a graph G = (V ,E) is a graph
Ḡ = (V , Ē) with same vertex set and edge set Ē s.t. uv ∈ Ē iff uv < E

Observation: If G is a graph and Ḡ its complement, then a subset S of
the vertices of G is an independent set iff S is a clique of Ḡ

Lecture 2, 29.09.2024

INDSET ≤p CLIQUE

Reduction: f (〈G = (V ,E), k〉) := 〈Ḡ = (V , Ē), k〉

Efficiency: The reduction is polynomial time

Correctness: 〈G , k〉 ∈ INDSET⇔ 〈Ḡ , k〉 ∈ CLIQUE

Proof of correctness:

INDSET vs CLIQUE
𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝐶𝐿𝐼𝑄𝑈𝐸

1. Reduction: 𝑓 𝐺 = 𝑉, 𝐸 , 𝑘 ≔ ҧ𝐺 = (𝑉, ത𝐸), 𝑘
2. Efficiency: The reduction is polynomial time
3. Correctness: 𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇 ⇔ ഥ𝐺, 𝑘 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸

⇒⇔

Similarly: 𝐶𝐿𝐼𝑄𝑈𝐸 ≤𝑃 INDSET

Proof of correctness:

𝑎

𝑏

𝑐
𝑑

𝑒
𝑔

𝑎

𝑏

𝑐

𝑑

𝑒
𝑔

𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇, 𝑆 = 𝑘

𝑆

ҧ𝐺, 𝑘 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸

𝑆

Lecture 2, 29.09.2024

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 2, 29.09.2024

Vertex Cover
Definition: For a graph G = (V ,E), a vertex cover is a subset S of V
such that every edge of G is incident to at least one vertex in S

Example

Vertex Cover
Definition: For a graph 𝐺(𝑉, 𝐸), a vertex cover is a subset 𝑆 of 𝑉 such that
every edge of 𝐺 is incident with at least one vertex in 𝑆

Example:

Definition:
𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 = { 𝐺, 𝑘 : 𝐺 is a graph that has a vertex cover of size 𝑘}

𝐺

𝐺, 4 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅?

𝐺, 3 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅?

Definition:

VERTEX COVER = {〈G , k〉 : G is a graph that has a vertex cover of size k}

I 〈G , 4〉 ∈ VERTEX COVER? Yes
I 〈G , 3〉 ∈ VERTEX COVER? No

Lecture 2, 29.09.2024

VERTEX COVER is NP-Complete

STEP 1: VERTEX COVER ∈ NP

TM V : “On input 〈G , k,C〉

1 IF |C | , k, THEN REJECT

2 FOR every pair u , v of vertices DO
I IF uv is an edge AND u < C AND v < C THEN REJECT

3 ACCEPT”

STEP 2: INDSET ≤p VERTEX COVER

How to reduce INDSET to VERTEX COVER?

Lecture 2, 29.09.2024

INDSET vs VERTEX COVER
Lemma: For every graph G , a subset S of the vertices is a vertex cover if
and only if S̄ is an independent set where S̄ = V \ S

Vertex Covers vs Independent Sets

𝐺

𝑆

Vertex cover

Since 𝑆 is a vertex
cover, such an
edge cannot exist.

Theorem: For every graph 𝐺, a subset 𝑆 of the vertices is a vertex
cover if and only if ҧ𝑆 is an independent set where ҧ𝑆 = 𝑉\𝑆

Independent set

Corollary: For every graph 𝐺 and a positive integer 𝑘, 𝐺 has an independent
set of size 𝑘 iff 𝐺 has a vertex cover of size 𝑛 − 𝑘Corollary: For every graph G and a positive integer k, G has an
independent set of size k iff G has a vertex cover of size n − k

Lecture 2, 29.09.2024

INDSET ≤p VERTEX COVER

Reduction: f (〈G , k〉) := 〈G , n − k〉, where n is the number of vertices
of G

Efficiency: The reduction f is polynomial time

Correctness: Lemma/Corollary on previous slide!

VERTEX COVER is NP-Complete
STEP 1: VERTEX COVER ∈ NP

TM V: “On input 𝐺, 𝑘, 𝐶
1. IF 𝐶 ≠ 𝑘, THEN, REJECT
2. FOR every pair 𝑢 ≠ 𝑣 of vertices DO

1. IF 𝑢𝑣 is an edge AND 𝑢 ∉ 𝐶 AND 𝑣 ∉ 𝐶, THEN
REJECT

3. ACCEPT”
STEP 2: 𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅.

Reduction: 𝑓 𝐺, 𝑘 ≔ 〈𝐺, 𝑛 − 𝑘〉 where 𝑛 is the number of vertices
of 𝐺.

𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇 ⟺ ⟺ 𝐺, 𝑛 − 𝑘 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅

𝐺

Efficiency: 𝑓 is (obviously) polynomial time computable

Correctness: Theorem on previous slide!

Lecture 2, 29.09.2024

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 2, 29.09.2024

Set Cover
Definition: Let U = {1, . . . , n} and F = {T1, . . . ,Tm} be a family of
subsets ∀i ,Ti ⊆ U

A subset {Ti1 , . . . ,Tik} ⊆ F is called a set cover of size k if
⋃k

j=1 Tij = U

𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

3

1
2 4 7

5
6 9

8

Definition: Let 𝑈 = {1, … , 𝑛} and ℱ = 𝑇1,… , 𝑇𝑚 be a family of its subsets ∀𝑖, 𝑇𝑖 ⊆ 𝑈

A subset 𝑇𝑖1, … , 𝑇𝑖𝑘 ⊆ ℱ is called a set cover of size 𝑘 if ∪𝑗=1𝑘 𝑇𝑖𝑗 = 𝑈

𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅 ≔ { 𝑈,ℱ, 𝑘 ∶ ℱ contains a set cover of size 𝑘}

Example:

𝑈,ℱ, 3 ∈ 𝑆𝐸𝑇𝐶𝑂𝑉𝐸𝑅?

𝑈, ℱ, 2 ∈ 𝑆𝐸𝑇𝐶𝑂𝑉𝐸𝑅?

{ 1,2,4 , 3,6,5 , {4,7,8,9}}

𝑈

SET COVER = {〈U,F , k〉 | F contains a set cover of size k}

Example:
I 〈U,F , 3〉 ∈ SET COVER? Yes {{1, 2, 4}, {3, 6, 4}, {4, 7, 8, 9}}
I 〈U,F , 2〉 ∈ SET COVER? No

Lecture 2, 29.09.2024

SET COVER is NP-Complete

Theorem: VERTEX COVER ≤p SET COVER

Corollary: SET COVER is NP-complete

Lecture 2, 29.09.2024

VERTEX COVER ≤p SET COVER

Key idea: VERTEX COVER is a special case of SET COVER

Example:

V𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 ≤𝑃 𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

Reduction:
• Let 𝐺 = (𝑉, 𝐸), 𝑘 be an instance of 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅
• Set 𝑈 ≔ 𝐸
• For every vertex 𝑣 ∈ 𝑉 create a set 𝑆𝑣

𝑆𝑣 ≔ 𝑒 ∈ 𝐸: 𝑒 is incident to 𝑣
• Let ℱ ≔ 𝑆𝑣 ∶ 𝑣 ∈ 𝑉 and set 𝑘′ = 𝑘

𝑒1

𝑒2

𝑒3

𝑒4
𝑒5

𝑈 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5

ℱ = { 𝑒1, 𝑒4 , 𝑒1, 𝑒2, 𝑒5 ,
𝑒2, 𝑒3 , 𝑒3, 𝑒4, 𝑒5 }

𝑘′ = 𝑘 = 2𝑘 = 2

Example:

Key Idea: 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 is a special case of 𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

Efficiency: Obvious from the construction

Reduction:
I Let 〈G = (V , E), k〉 be an instance of VERTEX COVER
I Set U := E
I For every vertex v ∈ V create a set Sv

Sv := {e ∈ E | e is incident to v}

I Let F := {Sv | v ∈ V} and set k′ = k

Efficiency: Obvious from construction

Lecture 2, 29.09.2024

Correctness (⇒): If G has a vertex cover of cardinality k, then U can
be covered by k sets

Proof:
I Suppose C ⊆ V is a vertex cover of G and |C | = k
I Every edge ei is adjacent to at least one vertex in C⋃

v∈C

Sv = E

I Hence U can be covered by k sets

Correctness (⇐): If U can be covered by k sets, then G has a vertex
cover of cardinality k

Proof:
I Let Sv1 , Sv2 , . . . , Svk be a collection of sets which cover U = E
I We claim that C = {v1, v2, . . . , vk} is a vertex cover of G
I Indeed, every edge e in G belongs to Svi for some i ∈ {1, 2, . . . , k}
I Hence, every edge e in G is incident to some vertex vi ∈ C

Lecture 2, 29.09.2024

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 2, 29.09.2024

SUBSET-SUM
Let X denote a (multi) set of positive integers

Definition: SUBSET-SUM
= {〈X , s〉 : X contains a subset whose elements sum to s}

Example: X = {1, 3, 4, 6, 13, 13}
I 〈X , 8〉 ∈ SUBSET-SUM? Yes T = {1, 3, 4}
I 〈X , 12〉 ∈ SUBSET-SUM? No

Question: SUBSET-SUM ∈ P?

It depends on the input length

Lecture 2, 29.09.2024

SUBSET-SUM
• Let 𝑋 be a (multi) set of positive integers
• Definition: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 ≔ { 𝑋, 𝑠 : 𝑋 contains a subset whose elements sum to 𝑠}
• Example: 𝑋 = 1,3,4,6,13,13

• 𝑋, 8 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀?
• 𝑋, 12 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀?

• Question: Does 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 ∈ 𝑃?
• Input length

1 * 1 1 1 * 1 1 1 1 1 * 1 1 1 1 ⊔

𝑇 ≔ {1,3,4}

Unary vs Binary

1 * 1 1 * 1 0 1 * 1 0 0 ⊔

Input length: 𝑥1 + 𝑥2 +⋯+ 𝑥𝑚 + 𝑠 ≫ Input length: ⌈log(𝑥1)⌉ + ⋯+ ⌈log(𝑥𝑚)⌉ + ⌈log(𝑠)⌉

〈 1,3,5 , 4〉 〈 1,3,5 , 4〉
1 3 5 4 1 3 5 4

In 𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀
we use binary

encoding

Lecture 2, 29.09.2024

SUBSET-SUM: An Algorithm
𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀: An Algorithm

Running time: For the input {𝑥1,… , 𝑥𝑚}, 𝑠 , the above algorithm takes 𝑂 𝑚 ⋅ σ𝑖=1
𝑚 𝑥𝑖

steps to output whether or not 𝑋, 𝑠 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀

• Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑠𝑢𝑚 ≔ σ𝑗=1
𝑚 𝑥𝑗

• FOR 𝑖 = 1 . . 𝑚 DO
• FOR 𝑗 = 0 . . 𝑠𝑢𝑚 DO
• 𝐴 𝑖, 𝑗 : = 𝐹𝑎𝑙𝑠𝑒
• FOR 𝑖 = 0 to 𝑚 DO
• 𝐴 𝑖, 0 ≔ 𝑇𝑟𝑢𝑒
• FOR 𝑖 = 1 . . 𝑚 DO
• FOR 𝑗 = 1 . . 𝑠𝑢𝑚 DO
• IF 𝐴 𝑖 − 1, 𝑗 − 𝑥𝑖 = 𝑇𝑟𝑢𝑒 OR 𝐴 𝑖 − 1, 𝑗 = 𝑇𝑟𝑢𝑒 THEN 𝐴 𝑖, 𝑗 := 𝑇𝑟𝑢𝑒
• IF 𝑨 𝒎, 𝒔 = 𝑻𝒓𝒖𝒆, ACCEPT; ELSE, REJECT

Unary representation: The length of the input 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚 + 𝑠. In this case the
running time is polynomial in the input length

Binary representation: The length of the input ⌈log(𝑥1)⌉ + ⋯+ ⌈log(𝑥𝑚)⌉ + ⌈log(𝑠)⌉. In this
case, the running time is exponential in the input length

Lecture 2, 29.09.2024

SUBSET-SUM is NP-Complete

Theorem: SUBSET-SUM is NP-Complete

Proof: Later in the course

Lecture 2, 29.09.2024

