Introduction to P vs. NP

Mika Göös

School of Computer and Communication Sciences

Intro Lecture, 12.09.2024

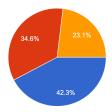
What is NP-completeness?

52 responses

- TFW you are stuffed with all-you-can-eat sushi
- I've heard it has something to do with really hard computational problems
- I can define the notion of an NPcomplete problem

Cook-Levin theorem?

52 responses

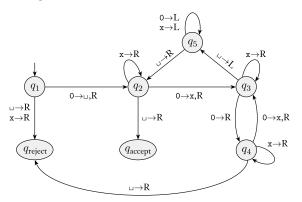


- Academic jargon for "home cooked livin"
- I have seen the statement of the theorem
- I have seen the proof

Model of computation

(and why it doesn't matter)

Remember Turing machines?



Intro Lecture, 12,09,202

Church-Turing Thesis

Intuitive notion	equals	Turing machine
of algorithms		algorithms

- All algorithms we know of can be executed on TMs
- Anything you write in C, Java, Scala, Python and so on
- ► The definition is also robust to variations: if we allow for many tapes instead of one, then nothing changes

This course: Suffices to describe algorithms in a high level language

Time Complexity

Running time of a TM

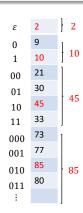
Definition: Let M be a TM that halts on all inputs (decider). The running time or time complexity of M is the function $t : \mathbb{N} \to \mathbb{N}$ where

$$t(n) = \max_{w \in \{0,1\}^n} \text{number of steps } M \text{ takes on } w$$

- ightharpoonup M runs in time t(n)
- n represents the input length

$$t(0) = 2$$

 $t(1) = 10$
 $t(2) = 45$
 $t(3) = 85$



$$t_1(n) = 2^{n+1} + 1$$
 vs $t_2(n) = 5n + 3$

Time $t_2(n) = 5n + 3$

How to compare running time functions?

Big-O and Small-o notation

Definition (Big-O): Let
$$f,g: \mathbb{N} \to \mathbb{R}_{\geq 0}$$
. We say $f(n) = O(g(n))$ if $\exists C > 0, n_0 \in \mathbb{N}$ s.t. $\forall n \geq n_0 \ f(n) \leq C \cdot g(n)$

Examples:

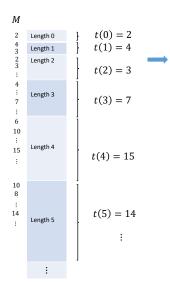
- \triangleright 5 $n^3 + 1 = O(2^n)$? YES
- \triangleright 5 $n^3 + 1 = O(20n + 5)$? NO

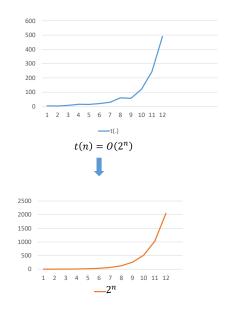
Definition (Small-o): Let
$$f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$$
. We say $f(n) = o(g(n))$ if $\forall c > 0, \exists n_0 \in \mathbb{N} \text{ s.t.}$ $\forall n > n_0 \quad f(n) < c \cdot g(n)$

Examples:

- $\sqrt{n} = o(n)$? YES
- ightharpoonup f(n) = o(f(n)) ? NO

To summarize...





Intro Lecture, 12,09,2024

Decision problems

Definition: Let Σ be a finite input alphabet (typically $\Sigma = \{0,1\})$

Denote by Σ^* the set of all finite words over Σ

Example: $\{0,1\}^* = \{\epsilon,0,1,00,01,10,10,\ldots\}$

Definition: A language (or decision problem) is a subset $L \subseteq \Sigma^*$.

- ▶ Input: $x \in \Sigma^*$
- Output:
 - ▶ 1/YES/True/Accept if $x \in L$
 - ▶ 0/NO/False/Reject if $x \notin L$

Time Complexity

Definition: Time complexity class

$$\mathit{TIME}(t(n)) = \{L \subseteq \Sigma^* \mid L \text{ is decided by a TM in time } O(t(n))\}$$

Example:

$$\textit{TIME}(\textit{n}) \subseteq \textit{TIME}(\textit{n}^2) \subseteq \cdots \subseteq \textit{TIME}(2^{\sqrt{\textit{n}}}) \subseteq \textit{TIME}(2^{\textit{n}}) \subseteq \textit{TIME}(2^{2^{\textit{n}}}) \ldots$$

The complexity class P and efficiency

Definition: P is the class of languages that are decidable in polynomial time on a (deterministic) Turing machine. In other words,

$$\mathbf{P} = \bigcup_{k=1}^{\infty} TIME(n^k).$$

Some languages in P:

- $\{\langle A \rangle : A \text{ is a sorted array of integers}\}$
- ► $\{\langle G, s, t \rangle : s \text{ and } t \text{ are vertices connected in graph } G\}$ (Breadth-First Search)
- $\{\langle G \rangle : G \text{ is a connected graph}\}$

NP: Verification vs. Search

SAT-verify and SAT

Conjunctive Normal Form (CNF) Formula:

$$\varphi_{1} = (\overline{x} \vee \overline{y} \vee z_{0}) \wedge (x \vee \overline{y} \vee z_{1}) \wedge (\overline{x} \vee y \vee z_{2}) \wedge (x \vee y \vee z_{3})$$

$$\varphi_{2} = \overline{x_{1}} \wedge (x_{1} \vee \overline{x_{2}}) \wedge (x_{1} \vee x_{2} \vee \overline{x_{3}}) \wedge (x_{1} \vee x_{2} \vee x_{3} \vee \overline{x_{4}})$$

$$\varphi_{3} = \overline{x_{1}} \wedge (x_{1} \vee \overline{x_{2}}) \wedge (x_{1} \vee x_{2})$$

- CNF Formula: AND of Clauses
- Clause: OR of Literals
- Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes the formula TRUE.

Check: φ_1 has 32 satisfying assignments, φ_2 as only one, φ_3 has zero.

A formula is **satisfiable** if it has at least one satisfying assignment.

SAT-verify and SAT

```
\mathsf{SAT-verify} = \{\langle \varphi, C \rangle \ : \ C \text{ is a satisfying assignment of } \varphi \} Is SAT-verify in P? Yes!
```

- \blacksquare Substitute for literals according to C.
- Check that every clause has at least one TRUE literal.

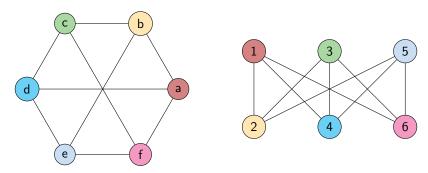
```
\begin{array}{lll} \mathsf{SAT} &=& \{\langle \varphi \rangle \ : \ \varphi \ \mathsf{is \ satisfiable} \} \\ &=& \{\langle \varphi \rangle \ : \ \exists \mathit{C} \ \mathsf{such \ that} \ \langle \varphi, \mathit{C} \rangle \in \mathsf{SAT-verify} \} \end{array}
```

Is SAT in P?

Decider for SAT:

- \blacksquare For each assignment C:
 - ▶ If $\langle \varphi, C \rangle \in \mathsf{SAT}\text{-verify}$, ACCEPT φ .
- 2 REJECT φ.

GI-verify and GI



Graph Isomorphism: Bijection $f: V(G_1) \longrightarrow V(G_2)$ which preserves adjacency: $\{u, v\} \in E(G_1) \Leftrightarrow \{f(u), f(v)\} \in E(G_2)$

Eg. $a \rightarrow 1$ $b \rightarrow 2$ $c \rightarrow 3$ $d \rightarrow 4$ $e \rightarrow 5$ $f \rightarrow 6$ in the graphs above.

Two graphs are **isomorphic** if they have at least one graph isomorphism.

GI-verify and GI

```
Gl-verify = \{\langle G_1, G_2, C \rangle : C : V(G_1) \longrightarrow V(G_2) \text{ is a graph isomorphism} \}
Is Gl-verify in P? Yes!
```

- **1** Check that C is a bijection: For each $u, v \in V(G_1)$:
 - ► Check $\{u,v\} \in E(G_1) \Leftrightarrow \{C(u),C(v)\} \in E(G_2)$.

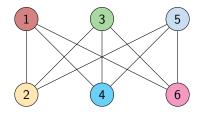
$$\begin{array}{lll} \mathsf{GI} & = & \{\langle G_1, G_2 \rangle \ : \ G_1 \ \mathsf{and} \ G_2 \ \mathsf{are} \ \mathsf{isomorphic} \} \\ & = & \{\langle G_1, G_2 \rangle \ : \ \exists \ C \ \mathsf{such} \ \mathsf{that} \ \langle G_1, G_2, \ C \rangle \in \mathsf{GI-verify} \} \end{array}$$

Is GI in P?

Decider for GI:

- 1 For each function $C:V(G_1)\longrightarrow V(G_2)$:
 - ▶ If $\langle G_1, G_2, C \rangle \in \mathsf{GI}\text{-verify}$, ACCEPT $\langle G_1, G_2 \rangle$.
- 2 REJECT $\langle G_1, G_2 \rangle$.

INDSET-verify and INDSET



Independent Set: Subset $S \subseteq V(G)$ such that no two vertices in S are adjacent in G.

Eg. $\{1, 3, 5\}$, $\{2, 4\}$, $\{6\}$, \emptyset , etc. in the graph above.

Intro Lecture, 12,09,2024

INDSET-verify and INDSET

```
INDSET-verify = \{\langle G, k, C \rangle : C \text{ is an independent set of size } k \text{ in } G\}
Is INDSET-verify in P? Yes!
  1 Check that |C| = k.
  2 For each u, v \in C:
          ► Check \{u, v\} \notin E(G).
   INDSET = \{\langle G, k \rangle : G \text{ has an independent of size } k\}
                  = \{ \langle G, k \rangle : \exists C \text{ such that } \langle G, k, C \rangle \in \mathsf{INDSET}\text{-verify} \}
Is INDSET in P?
Decider for INDSET:
  1 For each subset C \subseteq V(G):
          ▶ If \langle G, k, C \rangle \in \mathsf{INDSET}\text{-verify}, ACCEPT \langle G, k \rangle.
  2 REJECT \langle G, k \rangle.
```

Verifiers and the class NP

Recall: A **decider** for language L is a TM M such that for each $x \in \Sigma^*$

- ▶ If $x \in L$, then M accepts x.
- ▶ If $x \notin L$, then M rejects x.

Definition:

A **verifier** for language *L* is a TM *M* such that for each $x \in \Sigma^*$

- ▶ If $x \in L$, then there exists C such that M accepts $\langle x, C \rangle$.
- ▶ If $x \notin L$, then for every C, M rejects $\langle x, C \rangle$.

(C is called a certificate or witness)

A verifier is a **polynomial time** verifier if its running time on any $\langle x, C \rangle$ is **polynomial in** $|\mathbf{x}|$. (Thus |C| is polynomial in $|\mathbf{x}|$)

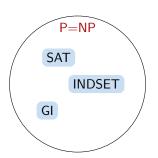
Definition: NP is the class of languages that have poly-time verifiers.

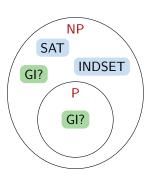
P and NP

Is $P \subseteq NP$? Yes (obviously)

Is P = NP? Nobody knows . . .

Find the answer and win USD 1,000,000!





Cook-Levin Theorem (informal): $SAT \in P$ iff P = NP.

(Also INDSET $\in P$ iff P = NP.)

Why is it called NP?

Detour: Non-deterministic Turing Machines

Recall: In a Turing machine, $\delta: (Q \times \Gamma) \longrightarrow Q \times \Gamma \times \{L, R\}$.

In a Nondeterministic Turing Machine (NTM),

$$\delta: (Q \times \Gamma) \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N such that for each $x \in \Sigma^*$, every computation of N on x halts, and moreover,

- ▶ If $x \in L$, then some computation of N on x accepts.
- ▶ If $x \notin L$, then every computation of N on x rejects.

An NTM is a **polynomial time** NTM if the running time of its longest computation on x is **polynomial in** $|\mathbf{x}|$.

Nondeterministic deciders \iff Verifiers

Theorem: For any language $L \subseteq \Sigma^*$,

L has a nondeterministic poly-time decider $\iff L$ has a poly-time verifier.

Proof Sketch (⇐=):

Let M be the verifier. NTM N on input x does the following:

- \blacksquare Write a certificate C nondeterministically.
- 2 Run M on $\langle x, C \rangle$.

Proof Sketch (\Longrightarrow) :

Let *N* be the nondeterministic decider. Verifier *M* on $\langle x, C \rangle$ computes:

 \triangleright Simulate N on x, choosing transitions given by C.

M accepts $\langle x, C \rangle$ iff $x \in L$ and C is an accepting path of N on x.

Non-deterministic Polynomial-time

Theorem: For any language $L \subseteq \Sigma^*$,

L has a nondeterministic poly-time decider $\iff L$ has a poly-time verifier.

Definition: **NP** is the class of languages which have poly-time nondeterministic deciders, or equivalently, have poly-time verifiers.

Definition:

$$\mathsf{NTIME}(t(n)) = \{L : L \text{ has a nondeterministic } O(t(n)) \text{ time decider} \}$$

Then

$$\mathsf{NP} = \bigcup_{k=1}^{\infty} \mathsf{NTIME}(n^k).$$