
Introduction to P vs. NP

Mika Göös

School of Computer and Communication Sciences

Intro Lecture, 12.09.2024

Intro Lecture, 12.09.2024

Model of computation
(and why it doesn’t matter)

Intro Lecture, 12.09.2024

Remember Turing machines?
172 CHAPTER 3 / THE CHURCH---TURING THESIS

FIGURE 3.8

State diagram for Turing machine M2

In this state diagram, the label 0→␣,R appears on the transition from q1 to q2.
This label signifies that when in state q1 with the head reading 0, the machine
goes to state q2, writes ␣, and moves the head to the right. In other words,
δ(q1,0) = (q2,␣,R). For clarity we use the shorthand 0→R in the transition from
q3 to q4, to mean that the machine moves to the right when reading 0 in state q3

but doesn’t alter the tape, so δ(q3,0) = (q4,0,R).
This machine begins by writing a blank symbol over the leftmost 0 on the

tape so that it can find the left-hand end of the tape in stage 4. Whereas we
would normally use a more suggestive symbol such as # for the left-hand end
delimiter, we use a blank here to keep the tape alphabet, and hence the state
diagram, small. Example 3.11 gives another method of finding the left-hand end
of the tape.

Next we give a sample run of this machine on input 0000. The starting con-
figuration is q10000. The sequence of configurations the machine enters appears
as follows; read down the columns and left to right.

q10000 ␣q5x0x␣ ␣xq5xx␣

␣q2000 q5␣x0x␣ ␣q5xxx␣

␣xq300 ␣q2x0x␣ q5␣xxx␣

␣x0q40 ␣xq20x␣ ␣q2xxx␣

␣x0xq3␣ ␣xxq3x␣ ␣xq2xx␣

␣x0q5x␣ ␣xxxq3␣ ␣xxq2x␣

␣xq50x␣ ␣xxq5x␣ ␣xxxq2␣

␣xxx␣qaccept

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Intro Lecture, 12.09.2024

Church-Turing Thesis

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and

6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z. For this discus-
sion, we consider only coefficients that are integers. A root of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at x = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”4 Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the λ-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church–Turing thesis.

The Church–Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic̆, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion Turing machine
of algorithms

equals
algorithms

FIGURE 3.22

The Church–Turing thesis

4Translated from the original German.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I All algorithms we know of can be executed on TMs
I Anything you write in C, Java, Scala, Python and so on
I The definition is also robust to variations: if we allow for many

tapes instead of one, then nothing changes

This course: Suffices to describe algorithms in a high level language

Intro Lecture, 12.09.2024

Time Complexity

Intro Lecture, 12.09.2024

Running time of a TM

Definition: Let M be a TM that halts on all inputs (decider). The
running time or time complexity of M is the function t : N→ N where

t(n) = max
w∈{0,1}n

number of steps M takes on w

I M runs in time t(n)
I n represents the input length

t(0) = 2
t(1) = 10
t(2) = 45
t(3) = 85

Running Time of a TM
Definition: Let 𝑀 be a TM that halts on all inputs (decider). The
running time or time complexity of 𝑀 is the function 𝑡: ℕ → ℕ
where

𝑡 𝑛 = max
𝑤∈Σ⋆; 𝑤 =𝑛

number of steps 𝑀 takes on 𝑤

- 𝑀 runs in time 𝑡 𝑛
- 𝑛 represents the input length

2

9

10

21

30

45

33

73

77

85

80

𝑡 0 = 2

𝑡 1 = 10

𝑡 2 = 45

𝑡 3 = 85
⋮

10

45

85

𝜀

0
1

01
10

00

11

⋮

001

010
011

000

2

Intro Lecture, 12.09.2024

0

10

20

30

40

50

60

70

0 1 2 3 4 5

𝑡1(𝑛) = 2𝑛+1 + 1 vs 𝑡2(𝑛) = 5𝑛 + 3

Time

Input length

How to compare running time functions?

𝒇𝟏 𝒏 = 𝟐𝒏, 𝒇𝟐 𝒏 = 𝟓𝒏𝟑 + 𝟏, 𝒇𝟑 𝒏 = 𝟐𝟎𝒏 + 𝟔
How to compare running time functions?

Intro Lecture, 12.09.2024

Big-O and Small-o notation

Definition (Big-O): Let f , g : N→ R≥0. We say f (n) = O(g(n)) if

∃C > 0, n0 ∈ N s.t. ∀n ≥ n0 f (n) ≤ C · g(n)

Examples:
I 5n3 + 1 = O(2n) ? YES
I 5n3 + 1 = O(20n + 5) ? NO

Definition (Small-o): Let f , g : N→ R≥0. We say f (n) = o(g(n)) if

∀c > 0,∃n0 ∈ N s.t. ∀n ≥ n0 f (n) < c · g(n)

Examples:
I
√
n = o(n) ? YES

I f (n) = o(f (n)) ? NO

Intro Lecture, 12.09.2024

Length 0

Length 1

Length 2

Length 3

Length 4

Length 5

⋮

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

t(.)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

.

𝑡 𝑛 = 𝑂 2𝑛

2𝑛

To Summarize ..

⋮

𝑡 1 = 4

𝑡 2 = 3

𝑡 3 = 7

𝑡 4 = 15

𝑡 5 = 14

𝑡 0 = 2

10

2

3
4

2

4

3
⋮

⋮
7
⋮
6

⋮
15
⋮

10
8
⋮
14
⋮

𝑀

To summarize. . .

Intro Lecture, 12.09.2024

Decision problems

Definition: Let Σ be a finite input alphabet (typically Σ = {0, 1})
Denote by Σ∗ the set of all finite words over Σ
Example: {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 10, . . .}

Definition: A language (or decision problem) is a subset L ⊆ Σ∗.
I Input: x ∈ Σ∗

I Output:
I 1/YES/True/Accept if x ∈ L
I 0/NO/False/Reject if x < L

Intro Lecture, 12.09.2024

Time Complexity

Definition: Time complexity class

TIME (t(n)) = {L ⊆ Σ∗ | L is decided by a TM in time O(t(n))}

Example:
TIME(n) ⊆ TIME(n2) ⊆ · · · ⊆ TIME(2

√
n) ⊆ TIME(2n) ⊆ TIME(22n) . . .

Intro Lecture, 12.09.2024

The complexity class P and efficiency

Definition: P is the class of languages that are decidable in polynomial
time on a (deterministic) Turing machine. In other words,

P =
∞⋃

k=1
TIME (nk) .

Some languages in P:
I {〈A〉 : A is a sorted array of integers}
I {〈G , s, t〉 : s and t are vertices connected in graph G}

(Breadth-First Search)
I {〈G〉 : G is a connected graph}

Intro Lecture, 12.09.2024

NP: Verification vs. Search

Intro Lecture, 12.09.2024

SAT-verify and SAT

Conjunctive Normal Form (CNF) Formula:

ϕ1 = (x ∨ y ∨ z0) ∧ (x ∨ y ∨ z1) ∧ (x ∨ y ∨ z2) ∧ (x ∨ y ∨ z3)

ϕ2 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

ϕ3 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

I CNF Formula: AND of Clauses
I Clause: OR of Literals
I Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes
the formula TRUE.

Check: ϕ1 has 32 satisfying assignments, ϕ2 as only one, ϕ3 has zero.

A formula is satisfiable if it has at least one satisfying assignment.

Intro Lecture, 12.09.2024

SAT-verify and SAT

SAT-verify = {〈ϕ,C〉 : C is a satisfying assignment of ϕ}

Is SAT-verify in P? Yes!

1 Substitute for literals according to C .

2 Check that every clause has at least one TRUE literal.

SAT = {〈ϕ〉 : ϕ is satisfiable}
= {〈ϕ〉 : ∃C such that 〈ϕ,C〉 ∈ SAT-verify}

Is SAT in P?

Decider for SAT:

1 For each assignment C :
I If 〈ϕ,C〉 ∈ SAT-verify, ACCEPT ϕ.

2 REJECT ϕ.

Intro Lecture, 12.09.2024

GI-verify and GI

a

bc

d

e f

1

2

3

4

5

6

Graph Isomorphism: Bijection f : V (G1) −→ V (G2) which preserves
adjacency: {u, v} ∈ E (G1)⇔ {f (u), f (v)} ∈ E (G2)

Eg. a→ 1 b → 2 c → 3 d → 4 e → 5 f → 6 in the graphs above.

Two graphs are isomorphic if they have at least one graph isomorphism.

Intro Lecture, 12.09.2024

GI-verify and GI

GI-verify = {〈G1,G2,C〉 : C : V (G1) −→ V (G2) is a graph isomorphism}

Is GI-verify in P? Yes!

1 Check that C is a bijection: For each u, v ∈ V (G1):
I Check {u, v} ∈ E (G1) ⇔ {C(u),C(v)} ∈ E (G2).

GI = {〈G1,G2〉 : G1 and G2 are isomorphic}
= {〈G1,G2〉 : ∃C such that 〈G1,G2,C〉 ∈ GI-verify}

Is GI in P?

Decider for GI:

1 For each function C : V (G1) −→ V (G2):
I If 〈G1,G2,C〉 ∈ GI-verify, ACCEPT 〈G1,G2〉.

2 REJECT 〈G1,G2〉.
Intro Lecture, 12.09.2024

INDSET-verify and INDSET

1

2

3

4

5

6

Independent Set: Subset S ⊆ V (G) such that no two vertices in S are
adjacent in G .

Eg. {1, 3, 5}, {2, 4}, {6}, ∅, etc. in the graph above.

Intro Lecture, 12.09.2024

INDSET-verify and INDSET

INDSET-verify = {〈G , k,C〉 : C is an independent set of size k in G}

Is INDSET-verify in P? Yes!
1 Check that |C | = k.

2 For each u, v ∈ C :
I Check {u, v} < E (G).

INDSET = {〈G , k〉 : G has an independent of size k}
= {〈G , k〉 : ∃C such that 〈G , k,C〉 ∈ INDSET-verify}

Is INDSET in P?

Decider for INDSET:

1 For each subset C ⊆ V (G):
I If 〈G , k,C〉 ∈ INDSET-verify, ACCEPT 〈G , k〉.

2 REJECT 〈G , k〉.
Intro Lecture, 12.09.2024

Verifiers and the class NP

Recall: A decider for language L is a TM M such that for each x ∈ Σ∗

I If x ∈ L, then M accepts x .
I If x < L, then M rejects x .

Definition:
A verifier for language L is a TM M such that for each x ∈ Σ∗

I If x ∈ L, then there exists C such that M accepts 〈x ,C〉.
I If x < L, then for every C , M rejects 〈x ,C〉.

(C is called a certificate or witness)

A verifier is a polynomial time verifier if its running time on any
〈x ,C〉 is polynomial in |x|. (Thus |C | is polynomial in |x |)

Definition: NP is the class of languages that have poly-time verifiers.

Intro Lecture, 12.09.2024

P and NP
Is P ⊆ NP? Yes (obviously)

Is P = NP? Nobody knows . . .

Find the answer and win USD 1,000,000!

NP
SAT

INDSETGI?
P

GI?

P=NP

SAT

INDSET

GI

Cook-Levin Theorem (informal): SAT ∈ P iff P = NP.

(Also INDSET ∈ P iff P = NP.)
Intro Lecture, 12.09.2024

Why is it called NP?

Intro Lecture, 12.09.2024

Detour: Non-deterministic Turing Machines

Recall: In a Turing machine, δ : (Q × Γ) −→ Q × Γ× {L,R}.

In a Nondeterministic Turing Machine (NTM),

δ : (Q × Γ) −→ P(Q × Γ× {L,R})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x ∈ Σ∗, every computation of N on x halts, and
moreover,
I If x ∈ L, then some computation of N on x accepts.
I If x < L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time of its longest
computation on x is polynomial in |x|.

Intro Lecture, 12.09.2024

Nondeterministic deciders ⇐⇒ Verifiers

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Proof Sketch (⇐=):

Let M be the verifier. NTM N on input x does the following:

1 Write a certificate C nondeterministically.

2 Run M on 〈x ,C〉.

Proof Sketch (=⇒):

Let N be the nondeterministic decider. Verifier M on 〈x ,C〉 computes:
I Simulate N on x , choosing transitions given by C .

M accepts 〈x ,C〉 iff x ∈ L and C is an accepting path of N on x .

Intro Lecture, 12.09.2024

Non-deterministic Polynomial-time

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP =
∞⋃

k=1
NTIME(nk) .

Intro Lecture, 12.09.2024

