Introduction to P vs. NP

Mika Goos

E PF L School of Computer and Communication Sciences

Intro Lecture, 12.09.2024

What is NP-completeness?

52 responses

Cook-Levin theorem?

52 responses

6%

@ TFW you are stuffed with all-you-can-eat
sushi

@ I've heard it has something to do with
really hard computational problems

@ | can define the notion of an NP-
complete problem

@ Academic jargon for "home cooked livin"

@ | have seen the statement of the
theorem

@ I have seen the proof

Model of computation
(and why it doesn't matter)

Remember Turing machines?

Intuitive notion
of algorithms

Turing machine

equals algorithms

» All algorithms we know of can be executed on TMs
» Anything you write in C, Java, Scala, Python and so on

> The definition is also robust to variations: if we allow for many
tapes instead of one, then nothing changes

This course: Suffices to describe algorithms in a high level language

Time Complexity

Running time of a TM

Definition: Let M be a TM that halts on all inputs (decider). The
running time or time complexity of M is the function t : N — N where

t(n) = max_ number of steps M takes on w
we{0,1}"
£ 2 } 2
> M runs in time t(n) 0 9]
10
> n represents the input length 10
o0 21
01 30
t(0) =2 0 8 | *®
t(1) =10 11 33
t(2) = 45 000 73
£(3) = 85 oL
(3)= 010 & |ss
o1 80

Intro Lecture 12 09 2024

ti(n)=2""1+1 vs t,(n)=5n+3

Time

70
60
50
40
30
20
10

0
0 1 2 3 4 5

” Input length ﬁ
O X b

==

How to compare running time functions?

Big-O and Small-o notation

Definition (Big-O): Let f,g : N — R>q. We say f(n) = O(g(n)) if

3C > 0,np € N sit. Yn>ny f(n) < C-g(n)

Examples:
> 50+ 1=0(2") ? YES
> 5n° 4+ 1= 0(20n+5) ? NO

Definition (Small-0): Let f, g : N — Rxq. We say f(n) = o(g(n)) if

Ve > 0,3np € N sit. Yn>ng f(n) <c-g(n)

Examples:
» /n=o(n)? YES
> f(n) = o(f(n)) ? NO

Intro Lecture 12 09 2024

To summarize. . .

X

W WA N

Length O
Length 1
Length 2

Length 3

Length 4

Length 5

t(0) =2
t(1) =4
t(2)=3
t(3)=7
t(4) =15
t(5) =14

—)

500

400

300

200

100

2500

2000

1500

1000

500

123 456 7 8 9 101112
—t()

t(n) =0(2")

!

12 3 4 5 6 7 8 9 10 11 12

— L

Decision problems

Definition: Let ¥ be a finite input alphabet (typically ¥ = {0,1})
Denote by ¥* the set of all finite words over ¥

Example: {0,1}* = {e,0,1,00,01, 10, 10,...}

Definition: A language (or decision problem) is a subset L C X*.
> Input: x € ¥
> OQutput:

> 1/YES/True/Accept if x € L
> 0/NO/False/Reject if x ¢ L

Intro Lecture 12 09 2024

Time Complexity

Definition: Time complexity class

TIME(t(n)) = {L C £* | L is decided by a TM in time O(t(n))}

Example:
TIME(n) C TIME(n?) C --- C TIME(2V") C TIME(2") C TIME(2%") ...

Intro Lecture 12 09 2024

The complexity class P and efficiency

Definition: P is the class of languages that are decidable in polynomial
time on a (deterministic) Turing machine. In other words,

o0
P = TIME(n").
k=1

Some languages in P:
> {(A) : Ais a sorted array of integers}

» {(G,s,t) : s and t are vertices connected in graph G}
(Breadth-First Search)

» {(G) : G is a connected graph}

Intro Lecture 12 09 2024

NP: Verification vs. Search

Intro Lecture 12 09 2024

Conjunctive Normal Form (CNF) Formula:
1=XVYyVz2)AXVYVZ)AXVyYyV2a)A(xVyVz)

=X A1 VXR)A 1 VxaVX3)A(x1 VXV x3VXg)

p3=X A (x1VX2) A (x1V x)

» CNF Formula: AND of Clauses
» Clause: OR of Literals
> Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes
the formula TRUE.

Check: 1 has 32 satisfying assignments, ¢» as only one, @3 has zero.

A formula is satisfiable if it has at least one satisfying assignment.

SAT-verify and SAT

SAT-verify = {(¢, C) : C is a satisfying assignment of ¢}
Is SAT-verify in P? Yes!
Substitute for literals according to C.

Check that every clause has at least one TRUE literal.
SAT = {{(p) : ¢ is satisfiable}
{{¢) : 3C such that (¢, C) € SAT-verify}

Is SAT in P?
Decider for SAT:
For each assignment C:
> If (p, C) € SAT-verify, ACCEPT .
REJECT .

Intro Lecture 12 09 2024

Gl-verify and Gl

Graph Isomorphism: Bijection f: V(G;) — V/(Gy) which preserves
adjacency: {u,v} € E(G1) < {f(u),f(v)} € E(Gp)

Eg.a—>1b—>2c—>3d—>4e—5f— 06in the graphs above.

Two graphs are isomorphic if they have at least one graph isomorphism.

Intro Lecture 12 09 2024

Gl-verify and Gl

Gl-verify = {(G1, Gp, C) : C: V(G1) — V/(Gy) is a graph isomorphism}
Is Gl-verify in P? Yes!

Check that C is a bijection: For each u,v € V(G;):
> Check {u,v} € E(G1) & {C(u),C(v)} € E(Gp).

Gl = {{(G,Gy) : Gy and G, are isomorphic}
= {(G1,Gy) : 3C such that (Gy, Gy, C) € Gl-verify}
Is Gl in P?
Decider for Gl:
For each function C : V(G1) — V(Gp):
> If (G1, Gp, C) € Gl-verify, ACCEPT (Gi, Gp).
REJECT (Gy, Go).

Intro Lecture 12 09 2024

INDSET-verify and INDSET

Independent Set: Subset S C V/(G) such that no two vertices in S are
adjacent in G.

Eg. {1,3,5}, {2,4}, {6}, 0, etc. in the graph above.

Intro Lecture 12 09 2024

INDSET-verify and INDSET

INDSET-verify = {(G, k, C) : C is an independent set of size k in G}
Is INDSET-verify in P? Yes!
Check that |C| = k.

For each u,v € C:
» Check {u,v} ¢ E(G).

INDSET = {(G,k) : G has an independent of size k}
= {(G,k) : 3C such that (G, k, C) € INDSET-verify}
Is INDSET in P?
Decider for INDSET:
For each subset C C V(G):
> If (G, k, C) € INDSET-verify, ACCEPT (G, k).
REJECT (G, k).

Intro Lecture 12 09 2024

Recall: A decider for language L is a TM M such that for each x € ¥*
» If x € L, then M accepts x.
> If x ¢ L, then M rejects x.
Definition:
A verifier for language L is a TM M such that for each x € ©*
> If x € L, then there exists C such that M accepts (x, C).
» If x ¢ L, then for every C, M rejects (x, C).
(C is called a certificate or witness)
A verifier is a polynomial time verifier if its running time on any

(x, C) is polynomial in |x|. (Thus |C] is polynomial in |x|)

Definition: NP is the class of languages that have poly-time verifiers.

P and NP

Is P C NP? Yes (obviously)

Is P = NP? Nobody knows ...
Find the answer and win USD 1,000,000!

NP
SAT

- INDSET

P=NP

SAT
INDSET

Cook-Levin Theorem (informal): SAT € P iff P = NP.
(Also INDSET € P iff P = NP.)

Intro Lecture 12 09 2024

Why is it called NP?

Intro Lecture 12 09 2024

Recall: In a Turing machine, 6 : (@ x) — Q x I x {L, R}.
In a Nondeterministic Turing Machine (NTM),

§:(QxT)— P(QxT x{LR})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x € L*, every computation of N on x halts, and
moreover,

> If x € L, then some computation of N on x accepts.
> If x ¢ L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time of its longest
computation on x is polynomial in |x|.

Theorem: For any language L C ¥,

L has a nondeterministic poly-time decider <= L has a poly-time verifier.

Proof Sketch («<=):

Let M be the verifier. NTM N on input x does the following:
Write a certificate C nondeterministically.
Run M on (x, C).

Proof Sketch (=):

Let N be the nondeterministic decider. Verifier M on (x, C) computes:
> Simulate N on x, choosing transitions given by C.

M accepts (x, C) iff x € L and C is an accepting path of N on x.

on-deterministic olynomial-time

Theorem: For any language L C ¥*,

L has a nondeterministic poly-time decider <= L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}
Then

NP = | J NTIME(n*).
k=1

Intro Lecture 12 09 2024

