
Homework 2, Computational Complexity 2024

The deadline is 23:59 on Wednesday 6 November. Please submit your solutions on Moodle. Typing
your solutions using LATEX is strongly encouraged. The problems are meant to be worked on in groups
of 2–3 students. Please submit only one writeup per team. You are strongly encouraged to solve these
problems by yourself. If you must, you may use books or online resources to help solve homework problems,
but you must credit all such sources in your writeup and you must never copy material verbatim.

1 Prove that NPSAT = Σ2P.

Solution: We first prove the easier direction that Σ2P ⊆ NPSAT. Fix any L ∈ Σ2P. By
definition, there exist a polynomial time deterministic Turing machine M(x, y, z) such that
x ∈ L⇔ ∃y,∀z,M(x, y, z) = 1. Now we devise a oracle Turing machine M̂SAT as follows:

1. Given x, y, construct a formula ϕx,y such that ϕx,y(z) = ¬M(x, y, z) for all z.
2. Return ¬SAT(ϕx,y) by calling the oracle.

It is not hard to see the above process can be implemented in polynomial time. Moreover,

x ∈ L⇔ ∃y,∀z,M(x, y, z) = 1⇔ ∃y,∀z, ϕx,y(z) = 0⇔ ∃y, M̂SAT(x, y) = 1.

Thus L ∈ NPSAT, which implies that L ∈ Σ2P.
Now we turn our attention to the direction NPSAT ⊆ Σ2P. Fix any L ∈ NPSAT. By definition,

L can be efficiently computed by a nondeterministic oracle Turing machine. Equivalently,
there exists a polynomial-time deterministic oracle Turing machine MSAT such that x ∈ L iff.
MSAT(x,w) = 1 for some w of polynomial length.

To get rid of the SAT oracle, we use the power of nondeterminisim to guess the query outcomes.
Specifically, let a = (a1, . . . , aT) ∈ {0, 1}T , where T = T (n) is the maximum running time of T
on any n-bit string. We simulate MSAT without calling the oracle by assuming that the i-th call
returns ai. The next step is to verify that a1, . . . , aT are indeed the query outcomes, in words,
SAT(ϕi) = ai for all i ∈ [T], where ϕi is the i-th instance fed into the oracle assuming that the
previous outcomes are a1, . . . , ai−1. To this end, we create two certificates yi, zi ∈ {0, 1}ni for each
i ∈ [T], where ni is the number of input bits to ϕi. Then we verify that ∃yi ∈ {0, 1}ni , ϕi(yi) = 1
for all ai = 1 and ∀zi ∈ {0, 1}ni , ϕi(zi) = 0 for all ai = 0.

Let M̂ denote the above deterministic Turing machine which simulates MSAT with treating a
as query outcomes and then verifies that a is indeed the true outcomes. It is clear that M̂ runs
in polynomial-time. Moreover, it follows that

x ∈ L⇔ ∃w,MSAT(x,w) = 1⇔ ∃w, a, y, ∀z, M̂(x,w, a, y, z) = 1,

where y = (y1, . . . , yT), z = (z1, . . . , zT). Thus L ∈ Σ2P. We conclude that NPSAT ⊆ Σ2P.

Page 1 (of 5)

CS-524 Computational Complexity • Fall 2024

2 Construct an oracle A such that RPA ̸= coRPA. Namely, consider the class of oracles

A :=
{
A ⊆ {0, 1}∗ : ∀n, |A ∩ {0, 1}n|/2n ∈ {12 , 0}

}
and the associated language LA =

{
1n : |A ∩ {0, 1}n|/2n = 1

2

}
. Show that

(i) LA ∈ RPA for every A ∈ A.
(ii) LA /∈ coRPA for some A ∈ A.

Solution: To show LA ∈ RPA, we devise the following simple algorithm B: Given input
x ∈ {0, 1}n, if x ̸= 0n, simply reject. Otherwise, sample y uniformly from {0, 1}n and return
A(y).

The running time of B is clearly linear in n. The correctness follows from the observation that

• If 1n ∈ LA, then Pr[B(1n) = 1] = Prx∼{0,1}n [A(x) = 1] = 1/2.
• If 1n /∈ LA, then Pr[B(1n) = 0] = Prx∼{0,1}n [A(x) = 0] = 1.

For (ii), we use diagonalisation method. Let M denote the set of all polynomial-time
probabilistic oracle Turing machine. Since M is countable, there exists a sequence (Mi)i∈N that
contains every machine inM. We iteratively construct A to fool every Mi.

For the ease of notation, we will think of A as a function A : {0, 1}∗ → {0, 1, ⋆}, where ⋆
means “undetermined”. In the beginning, we have that A(x) = ⋆ for all x. Then we enumerate
i = 1, 2, 3, . . ., each time we can find a large enough ni such that

1. TMi(ni) < 2ni−1, where TMi(n) is the maximum running time of Mi on 1n.
2. A(x) = ⋆ for all x ∈ {0, 1}ni .

Such ni is guaranteed to exist since: (1) TMi(n) is bounded by a polynomial of n; (2) The number
of x for which A(x) ̸= ⋆ is finite, which we will see later.

Now consider running MA′
i on 1ni , where A′(x) =

{
1 A(x) = 1

0 otherwise
. Let Xi denote the set of

queries been made during the execution over all randomness seeds. We update A(x)← 0 for all
x ∈ Xi such that A(x) = ⋆. Moreover, we update A(x)← 0 for all x ∈ {0, 1}ni . We consider the
following two cases based on the output of MA′

i (1ni):

• Pr[MA′
i (1n) = 1] = 1. In which case, since A(x) = A′(x) for all x ∈ Xi, we also have

Pr[MA
i (1n) = 1] = 1. On the other hand, 1ni /∈ LA since A(x) = 0 for all x ∈ {0, 1}ni .

Thus MA
i does not compute LA.

• Pr[MA′
i (1n) = 1] < 1. For convenience, we explicitly spell out the randomness seed r to

write MA
i (x) as MA

i (x, r). In this case, we can fix some r such that Mi(A
′)(1ni) = 0. Let

Xr
i be the set of queries been made during the execution of MA′

i (x, r). By assumption,
|Xr

i | < 2ni−1. In particular, we can find X̂ ⊆ {0, 1}ni of size |X̂| = 2ni−1 such that
X̂ ∩Xr

i = ∅. Then we update A(x)← 1 for all x ∈ X̂.

Notice that A(x) = A′(x) for all x ∈ Xr
i , we have that MA

i (1ni , r) = 0. On the other hand,
1ni ∈ LA since A(x) = 1 for exactly half of the elements x ∈ {0, 1}n. As a consequence,
MA

i does not compute LA.

Since at each stage, we only update A(x) for x ∈ {0, 1}ni ∪Xi, which is a finite set, (2) holds
as desired. Moreover, the modification to A in the i-th iteration does not change the value of
Pr[MA

j (1nj) = 1] for all j < i due to our choice of ni. We can finally conclude that the language
A ∈ A we construct satisfies that LA /∈ coRPA.

Page 2 (of 5)

CS-524 Computational Complexity • Fall 2024

3 A 3-colouring of a graph G = (V,E) is an assignment c : V → {1, 2, 3} such that no edge
{u, v} ∈ E is monochromatic, that is, c(u) = c(v). Consider the following 3-colouring game
played by Alice and Bob on a graph G where V = {1, . . . , n}. In each round of the game, we
have a partial 3-colouring c : V → {1, 2, 3, ∗}. Initially, c(v) = ∗ for all v. In round i = 1, . . . , n,
if i is odd (resp. even), then Alice (resp. Bob) chooses a colour k ∈ {1, 2, 3} and we update the
partial colouring by c(i) := k. The player who first creates a monochromatic edge ({u, v} ∈ E
such that c(u) = c(v) ̸= ∗) loses the game. (If after n rounds there is no monochromatic edge,
Alice wins.) Prove that the following problem is PSPACE-complete

3-ColourGame :=
{
⟨G⟩ : G is a graph such that Alice has a winning

strategy for the 3-colouring game on G
}
.

(Hint: Deciding whether a graph is 3-colourable is NP-complete. It might help you to first figure
out how to prove this. For example, one can reduce from SAT using the following three subgraphs.
Source: p. 325 in Sipser’s textbook)

Solution: We first give an algorithm for 3-ColourGame which runs in linear space: For each i
and c = (c1, . . . , ci−1) ∈ [3]i−1 where c is a valid colouring on vertices {1, 2, . . . , i− 1}, we define
W (i, c) ∈ {0, 1} which equals to 1 if and only if the current player (Alice if i is odd and Bob if i
is even) has a wining strategy. We have the following recurrences for W :

W (i, c) =

{
1[n is even] i = n+ 1∨

j∈[3] (c
′ = (c, j) is valid on {1, . . . , i} ∧ ¬W (i+ 1, c′)) i ≤ n

. (1)

Our goal is to compute W (1, ()), which equals to 1 iff Alice has a winning strategy for the whole
game. By (1), this can be simply done by a recursion. Since the recursion has depth at most
n+ 1, and we only need to store the partial colour c for the current state (as that for previous
states is just a prefix), we conclude that W (1, ()) can be computed in O(n) space, as desired.

To prove that 3-ColourGame is PSPACE-hard, we reduce TQBF to 3-ColourGame.
Given a TQBF instance ∀x1, ∃x2,∀x3, . . . ,∃xn, ϕ(x) (assume n is even for simplicity) where

ϕ is a CNF. We construct a graph G in an almost same way as we do for reducing SAT to
3-Colourable. Specifically, we first construct a triangle as a palette, where we denote the three
vertices by vT , vF , vN respectively. Then for each variable xi, we introduce two vertices vi, v−i,
and construct a triangle with vertices vi, v−i, vN . There are two ways to colour vi and v−i, and
they have the meaning of xi = 1 and xi = 0 respectively.

For each clause ci = ℓi,1∨ · · · ∨ ℓi,k, we “compute” the value of ci by concatenating OR-gadgets
given in the hint. Specifically, for each literal ℓi,j , we identify ℓi,j with vp if ℓi,j = xp has positive
sign and identify ℓi,j = v−p if ℓi,j = ¬xp has negative sign. We introduce a new vertex vi,j and
add an edge (vi,j , ℓi,j). Then for each 2 ≤ j ≤ k, we introduce a vertex wi,j and link it with vN .
For each 3 ≤ j ≤ k, we introduce a vertex ui,j and build a triangle with vertices ui,j , vi,j , wi,j . We
also construct a triangle with vertices vi,1, vi,2, wi,2 and link ui,j with wi,j−1 for j ≥ 3. Finally,

Page 3 (of 5)

CS-524 Computational Complexity • Fall 2024

we link wi,k with vF to ensure that the clause is satisfied. See the following figure for an example
of the constructed graph for ci = x2 ∨ ¬x4 ∨ ¬x5.

Wi,3

Ui,3 Vi,3

Wi,2

Vi,2Vi,1

V2

V−2

V−4

V4

V−5

V5

VN

VT VF

Now consider the scenario that we have coloured vT , vF , vN , v1, . . . , vn, v−1, . . . , v−n. It is easy
to see there is valid colouring of the vertices in the OR-gadgets for ci if and only if at least one of
ℓi,j has the same colour as vT .

Next, we need to specify an order of the vertices by giving a sequence S: S starts with
vT , vF , vN , then followed by v1, . . . , vn, v−1, . . . , v−n. Note that once the colours of vT , vF , vN , v1, . . . , vn
are determined, there exists a unique way to colour v−1, . . . , v−n Finally, we add vertices in the
OR-gadgets to S in an arbitrary order. To ensure that all the vertices in OR-gadgets are coloured
by Alice, we separate each pair of adjacent vertices which both belong to OR-gadgets by adding
a dummy isolated vertex between them.

The reduction can be clearly realized in polynomial time. It remains to prove the correctness.
If A ∈ TQBF, Alice has a strategy to choose x2, x4, . . . , xn so that no matter how Bob

chooses x1, x3, . . . , xn−1, ϕ(x) is satisfied. In words, ci(x) = 1 for all i. By our construction,

Page 4 (of 5)

CS-524 Computational Complexity • Fall 2024

this implies that Alice has a strategy to colour v2, v4, . . . , vn so that no matter how Bob colours
v1, v3, . . . , vn−1, the remaining graph is still 3-colourable. As a consequence, Alices win the game.

On the other hand, if A /∈ TQBF, Bob has a strategy to choose x1, x3, . . . , xn−1 so that no
matter how Alice chooses x2, x4, . . . , xn, ϕ(x) is unsatisfied. In words, ci(x) = 0 for some i. By
our construction, this implies that Bob has a strategy to colour v1, v3, . . . , vn−1 so that no matter
how Alice colours v2, v4, . . . , vn, the remaining graph is not 3-colourable. As a consequence, Bob
wins the game.

In conclusion, 3-ColourGame is PSPACE-hard. As a consequence, 3-ColourGame is
PSPACE-complete.

Page 5 (of 5)

CS-524 Computational Complexity • Fall 2024

