=Pr-L

Homework 2, Computational Complexity 2024

The deadline is 23:59 on Wednesday 6 November. Please submit your solutions on Moodle. Typing
your solutions using ITEX is strongly encouraged. The problems are meant to be worked on in groups
of 2-3 students. Please submit only one writeup per team. You are strongly encouraged to solve these
problems by yourself. If you must, you may use books or online resources to help solve homework problems,
but you must credit all such sources in your writeup and you must never copy material verbatim.

Prove that NPSAT = YoP.

Solution: We first prove the easier direction that 5P C NPSAT. Fix any L € S,P. By
definition, there exist a polynomial time deterministic Turing machine M (z,y, z) such that
x € L < Iy, Ve, M(z,y,2) = 1. Now we devise a oracle Turing machine MSAT as follows:

1. Given z,y, construct a formula ¢, , such that ¢, ,(2) = "M (x,y, z) for all 2.
2. Return =SAT(¢,) by calling the oracle.

It is not hard to see the above process can be implemented in polynomial time. Moreover,
relLeIyVe, Mx,y,2) =1 3y, Vz,¢,4(2) =0 & EIy,MSAT(x,y) =1.

Thus L € NPSAT | which implies that L € $oP.

Now we turn our attention to the direction NPSAT C $,P. Fix any L € NPSAT. By definition,
L can be efficiently computed by a nondeterministic oracle Turing machine. Equivalently,
there exists a polynomial-time deterministic oracle Turing machine MSAT such that « € L iff.
MSAT (2, w) = 1 for some w of polynomial length.

To get rid of the SAT oracle, we use the power of nondeterminisim to guess the query outcomes.
Specifically, let a = (ay,...,ar) € {0, 1}7, where T = T(n) is the maximum running time of T
on any n-bit string. We simulate MSAT without calling the oracle by assuming that the i-th call
returns a;. The next step is to verify that aq,...,ar are indeed the query outcomes, in words,
SAT(¢;) = a; for all i € [T'], where ¢; is the i-th instance fed into the oracle assuming that the
previous outcomes are aq, ..., a;—1. To this end, we create two certificates y;, z; € {0, 1}™ for each
i € [T], where n; is the number of input bits to ¢;. Then we verify that Jy; € {0, 1}, ¢;(y;) =1
for all a; =1 and Vz; € {0, 1}™, ¢;(2;) = 0 for all a; = 0.

Let M denote the above deterministic Turing machine which simulates MSAT with treating a
as query outcomes and then verifies that a is indeed the true outcomes. It is clear that M runs
in polynomial-time. Moreover, it follows that

e L e Jw MAT (2 w) =1 @Ew,a,y,Vz,M(:c,w,a,y,z) =1,

where y = (y1,...,y7),2 = (21,...,27). Thus L € ¥3P. We conclude that NPSAT C P,

Page 1 (of 5)

CS-524 Computational Complexity e Fall 2024

2 Construct an oracle A such that RP4 # coRPA. Namely, consider the class of oracles
A = {A C {0,1}* : ¥n, |AN{0,1}"]/2" € {%,0}}

and the associated language L4 = {1" : |[AN {0,1}"|/2" = 3}. Show that

(i) La € RPA for every A € A.
(ii) L4 ¢ coRP for some A € A.

Solution: To show Ly € RP?, we devise the following simple algorithm B: Given input
x € {0, 1}, if x # 0™, simply reject. Otherwise, sample y uniformly from {0, 1}" and return
A(y).

The running time of B is clearly linear in n. The correctness follows from the observation that

o If 1" € Ly, then Pr[B(1") = 1] = Pry o 1y»[A(x) = 1] = 1/2.
o If 1" ¢ L4, then Pr[B(1") = 0] = Pry g 13»[A(x) = 0] = 1.

For (ii), we use diagonalisation method. Let M denote the set of all polynomial-time
probabilistic oracle Turing machine. Since M is countable, there exists a sequence (M;);cn that
contains every machine in M. We iteratively construct A to fool every M;.

For the ease of notation, we will think of A as a function A : {0,1}* — {0, 1,%}, where %
means “undetermined”. In the beginning, we have that A(z) = x for all . Then we enumerate
1 =1,2,3,..., each time we can find a large enough n; such that

1. Tag,(ni) < 2771 where Ty, (n) is the maximum running time of M; on 17,
2. A(x) = * for all z € {0, 1}™.

Such n; is guaranteed to exist since: (1) Ty, (n) is bounded by a polynomial of n; (2) The number
of for which A(z) # * is finite, which we will see later.
Now consider running MZA/ on 1" where A'(z) = L Ale) N ! . Let X; denote the set of
0 otherwise
queries been made during the execution over all randomness seeds. We update A(x) < 0 for all
z € X; such that A(x) = . Moreover, we update A(z) < 0 for all z € {0, 1}". We consider the

following two cases based on the output of MiAl(lni):

e Pr[M/'(1") = 1] = 1. In which case, since A(z) = A'(x) for all z € X;, we also have
Pr[M#(1") = 1] = 1. On the other hand, 1™ ¢ L4 since A(x) = 0 for all x € {0, 1}™.
Thus MiA does not compute L 4.

. Pr[MiA/(ln) = 1] < 1. For convenience, we explicitly spell out the randomness seed 7 to
write M/ (z) as M (x, 7). In this case, we can fix some 7 such that M;(A")(1™) = 0. Let
X! be the set of queries been made during the execution of MZ.A/ (z,r). By assumption,
|X7| < 2%~!. In particular, we can find X C {0, 1}" of size |X| = 2%~ such that
X N X! =0. Then we update A(z) < 1 for all z € X.

Notice that A(z) = A/(x) for all * € X!, we have that M/ (1", 7) = 0. On the other hand,
1™ € Ly since A(z) = 1 for exactly half of the elements = € {0, 1}"™. As a consequence,
MZ-A does not compute L 4.

Since at each stage, we only update A(x) for z € {0, 1}" U X;, which is a finite set, (2) holds
as desired. Moreover, the modification to A in the i-th iteration does not change the value of
Pr[M JA(lnﬂ') = 1] for all j < i due to our choice of n;. We can finally conclude that the language

A € A we construct satisfies that L4 ¢ coRPA.

Page 2 (of 5)

CS-524 Computational Complexity e Fall 2024

3 A 3-colouring of a graph G = (V,E) is an assignment c: V — {1,2,3} such that no edge
{u,v} € E is monochromatic, that is, c(u) = c¢(v). Consider the following 3-colouring game
played by Alice and Bob on a graph G where V = {1,...,n}. In each round of the game, we
have a partial 3-colouring ¢: V' — {1, 2, 3, x}. Initially, ¢(v) = % for all v. In round i = 1,...,n,
if 7 is odd (resp. even), then Alice (resp. Bob) chooses a colour k € {1,2,3} and we update the
partial colouring by c(i) := k. The player who first creates a monochromatic edge ({u,v} € F
such that ¢(u) = ¢(v) # *) loses the game. (If after n rounds there is no monochromatic edge,
Alice wins.) Prove that the following problem is PSPACE-complete

3-CoLOURGAME := {(G): G is a graph such that Alice has a winning
strategy for the 3-colouring game on G }

(Hint: Deciding whether a graph is 3-colourable is NP-complete. It might help you to first figure
out how to prove this. For example, one can reduce from SAT using the following three subgraphs.
Source: p. 325 in Sipser’s textbook)

- - N
palette variable OR-gadget

Solution: We first give an algorithm for 3-COLOURGAME which runs in linear space: For each 4
and ¢ = (c1,...,¢i—1) € [3]""! where c is a valid colouring on vertices {1,2,...,i — 1}, we define
W (i, c) € {0, 1} which equals to 1 if and only if the current player (Alice if i is odd and Bob if
is even) has a wining strategy. We have the following recurrences for W:

Wi, c) =

{]l[n is even] i:n+1. 1)

Ve (¢ = (c.j) isvalidon {1,...,i} A=W (i+1,c)) i<n

Our goal is to compute W (1, ()), which equals to 1 iff Alice has a winning strategy for the whole
game. By (1), this can be simply done by a recursion. Since the recursion has depth at most
n + 1, and we only need to store the partial colour ¢ for the current state (as that for previous
states is just a prefix), we conclude that W (1, ()) can be computed in O(n) space, as desired.

To prove that 3-COLOURGAME is PSPACE-hard, we reduce TQBF to 3-COLOURGAME.

Given a TQBF instance V1, Jxo, Vs, ..., dx,, ¢(x) (assume n is even for simplicity) where
¢ is a CNF. We construct a graph G in an almost same way as we do for reducing SAT to
3-COLOURABLE. Specifically, we first construct a triangle as a palette, where we denote the three
vertices by v, vp, vy respectively. Then for each variable x;, we introduce two vertices v;, v_;,
and construct a triangle with vertices v;, v_;, vy. There are two ways to colour v; and v_;, and
they have the meaning of x; = 1 and z; = 0 respectively.

For each clause ¢; = £; 1V ---V{; 1, we “compute” the value of ¢; by concatenating OR-gadgets
given in the hint. Specifically, for each literal ¢; ;, we identify ¢; ; with v, if ¢; ; = x;, has positive
sign and identify ¢; ; = v_, if ¢; ; = -z, has negative sign. We introduce a new vertex v; ; and
add an edge (v; j,¥¢;). Then for each 2 < j < k, we introduce a vertex w; ; and link it with vy.
For each 3 < j < k, we introduce a vertex u; ; and build a triangle with vertices w; j, v; j, w; j. We
also construct a triangle with vertices v; 1,v; 2, w; 2 and link u; ; with w; ;1 for j > 3. Finally,

Page 3 (of 5)

CS-524 Computational Complexity e Fall 2024

we link w; ;, with v to ensure that the clause is satisfied. See the following figure for an example
of the constructed graph for ¢; = x9 V —x4 V 5.

Now consider the scenario that we have coloured vy, v, vn, V1, ..., Un, V—1,...,V_p. It is easy
to see there is valid colouring of the vertices in the OR~gadgets for ¢; if and only if at least one of
¢; ; has the same colour as vr.

Next, we need to specify an order of the vertices by giving a sequence S: S starts with

vp, R, vN, then followed by v1, ..., v,,v_1,...,v_,. Note that once the colours of vy, vp, vy, v1,. ..

are determined, there exists a unique way to colour v_1,...,v_, Finally, we add vertices in the
OR-gadgets to S in an arbitrary order. To ensure that all the vertices in OR-gadgets are coloured
by Alice, we separate each pair of adjacent vertices which both belong to OR-gadgets by adding
a dummy isolated vertex between them.

The reduction can be clearly realized in polynomial time. It remains to prove the correctness.

If A € TQBF, Alice has a strategy to choose x2,x4,...,2, so that no matter how Bob
chooses x1,x3,...,Tn—1, ¢(x) is satisfied. In words, ¢;(z) = 1 for all i. By our construction,

Page 4 (of 5)

CS-524 Computational Complexity e Fall 2024

this implies that Alice has a strategy to colour ve, vy, ..., v, so that no matter how Bob colours
V1, V3, ..., Up_1, the remaining graph is still 3-colourable. As a consequence, Alices win the game.

On the other hand, if A ¢ TQBF, Bob has a strategy to choose x1,z3,...,x,—1 so that no
matter how Alice chooses xg, x4, ..., Ty, ¢(z) is unsatisfied. In words, ¢;(x) = 0 for some i. By
our construction, this implies that Bob has a strategy to colour vy, vs,...,v,_1 so that no matter
how Alice colours wvo, vy, . .., vy, the remaining graph is not 3-colourable. As a consequence, Bob
wins the game.

In conclusion, 3-COLOURGAME is PSPACE-hard. As a consequence, 3-COLOURGAME is
PSPACE-complete.

Page 5 (of 5)

CS-524 Computational Complexity e Fall 2024

