
Homework 1, Computational Complexity 2024

The deadline is 23:59 on Wednesday 9 October. Please submit your solutions on Moodle. Typing
your solutions using LATEX is strongly encouraged. The problems are meant to be worked on in groups
of 2–3 students. Please submit only one writeup per team. You are strongly encouraged to solve these
problems by yourself. If you must, you may use books or online resources to help solve homework problems,
but you must credit all such sources in your writeup and you must never copy material verbatim.

1 A decisive nondeterministic Turing machine is one where each nondeterministic computation path
outputs either yes, no, or maybe. We say such a machine decides a language L if the following
holds: If x ∈ L, then all computations end up with yes or maybe, and at least one yes. If x /∈ L,
then all computations end up with no or maybe, and at least one no. Show that L is decided by
a decisive polytime NTM if and only if L ∈ NP ∩ coNP.

Solution: Let N be a polytime decisive NTM that decides L and N ′ a copy of N with maybe
branches changed to no branches. N is a polytime NTM and we show that it decides L. To do
so, fix some x ∈ {0, 1}∗. If x ∈ L, then N has some branch that outputs yes and therefore N ′

accepts x. On the other hand, if x /∈ L, then all branches of N output no or maybe, therefore
all the branches of N ′ output no and N ′ rightly rejects. One can show in a similar manner that
L ∈ coNP by changing maybe branches into yes branches.

Regarding the other direction, fix some L ∈ NP ∩ coNP. Let M be a non-deterministic
poly-time decider for L and N a co-non-deterministic poly-time decider for L. Consider the
machine D that first runs M on x, get some non-deterministic yes/no guess, then runs N on x to
get yet another non-deterministic yes/no guess and then finally produce its own guess according
to the following table:

M ’s guess N ’s guess D’s guess
yes yes yes
yes no maybe
no yes maybe
no no no

This machine runs in polynomial non-deterministic time and we now argue it indeed decides
L. To do so, fix some x ∈ {0, 1}∗. If x ∈ L, then all branches of N accept x and at least one
branch of M accept. Hence, branches of D either output yes or maybe but at least one accepts.
Correspondingly, if x /∈ L, all branches of M reject and at least one branch of N rejects as well
so that D outputs no or maybe but has at least one no path.

2 Show that the following distinct-3SAT problem is NP-complete:

D3SAT = {⟨φ⟩ : φ ∈ 3SAT and each clause of φ involves three distinct variables}.

Page 1 (of 3)

CS-524 Computational Complexity • Fall 2024

(For example, (x ∨ y ∨ z) ∧ (x ∨ y ∨ w) ∈ D3SAT, whereas (x ∨ y ∨ z) ∧ (x ∨ y ∨ y) /∈ D3SAT
since the clause (x ∨ y ∨ y) involves only two distinct variables.)

Solution: D3SAT is in NP: the certificate will be an assignment to a formula, and it is easy to
check in polynomial time 1) that the assignment is a satisfying one; 2) that each clause of φ has
three distinct variables.

D3SAT is NP-hard: we can build a reduction from 3SAT to D3SAT in the following way.
Suppose a formula ψ is such that its every clause contains no more than 3 literals. It is enough
to generate a formula f(ψ) = φ such that its every clause contains three literals with distinct
variables and such that φ is satisfiable iff ψ is satisfiable.

First, while ψ contains clauses with one literal, we set these literals to 1, since any satisfying
assignment to ψ should satisfy such clauses. Also, while ψ contains clauses with fewer variables
than literals (they contain both ¬x and x for some x), we delete such clauses, since they are
equivalent to 1 and do not affect the satisfiability of ψ.

Then, for each clause C ∈ ψ, we consider two cases:

• C contains three distinct variables. Then we add C to φ;

• C contains two distinct variables. Then we add to φ clauses C ∨ x and C ∨ ¬x for a fresh
variable x.

It’s easy to check that any extension of a satisfying assignment for ψ satisfies φ, and any restriction
of a satisfying assignment for φ on variables of ψ satisfies ψ.

3 Let G = (V,E) be an undirected graph. We say that a vertex set K ⊆ V is a kernel iff (i) for any
two v, u ∈ K we have {v, u} /∈ E, and (ii) for every u ∈ V \K there is v ∈ K such that {u, v} ∈ E.
In other words, a kernel is a set that is both (i) independent and (ii) dominating∗. Show that the
following problem is NP-complete:

Kernel = {⟨G, k⟩ : G has a kernel of size at most k}.

(You can use any NP-complete problem discussed in class/exercises in your reductions.)

Solution: We first show that Kernel ∈ NP. A certificate for ⟨G, k⟩ ∈ Kernel is a set of
vertices K and it can be checked in polynomial time that:

1. K is an independent set,

2. K is a dominating set,

3. K has size at most k.

We then show that Kernel is NP-hard by reducing 3SAT to Kernel. Given a 3SAT instance
φ over variables {xi}i∈[n] and clauses {Cj}j∈[m], we construct a graph G = (V,E) as follows.
V has one vertex uj for each clause Cj and for each i ∈ [n] it contains the vertices vi, v+i and
v−i . The edge set makes sure that each group {vi, v+i , v

−
i } forms a triangle – i.e. E contains

edges {vi, v+i }, {v
+
i , v

−
i } and {v−i , vi} to E. E also models the clauses as follows. For each clause

Cj = ℓ1 ∨ ℓ2 ∨ ℓ3, we add an edge {v+i , uj} if ℓk = xi and an edge {v−i , uj} if ℓk = xi for k ∈ [3].
See Figure 1 for a visual representation of the reduction. Finally, we define the Kernel instance
with ⟨G,n⟩. As this reduction can be performed in polynomial time it remains to argue that

∗https://en.wikipedia.org/wiki/Dominating_set

Page 2 (of 3)

CS-524 Computational Complexity • Fall 2024

https://en.wikipedia.org/wiki/Dominating_set

φ ∈ 3SAT ⇐⇒ ⟨G,n⟩ ∈ Kernel. Suppose first that φ ∈ 3SAT and let x ∈ {0, 1}n be a
satisfying assignment and define K ⊆ V with:

K = {v+i : xi = 1}i∈[n] ∪ {v−i : xi = 0}i∈[n]

Note first that K has size n. K is furthermore an independent set as it contains no clause-vertex
K and has only one vertex per group {v+i , v

−
i , vi}. Finally, as φ is satisfied by x it must be that

K dominates G as well and so ⟨G,n⟩ ∈ Kernel.

For the other direction, fix a kernel K of size n in G. Observe that for each i ∈ [n],
|K ∩ {vi, v+i , v

−
i }| = 1. Indeed, if the intersection size is 0, then vi is not dominated by K and if

the intersection size is 2 or 3, then K is not an independent set. This further implies that K
does not contain any uj as |K| = n. We define a satisfying assignment x ∈ {0, 1}n for φ with:

xi =

{
1 if v+i ∈ K or vi ∈ K

0 if v−i ∈ K

As {uj}j∈[m] is dominated by K, it must be that x satisfies each clause Cj and thus φ ∈ 3SAT.

Figure 1. A visual representation of the reduction in Problem 3. The crux is that if K is an n-kernel
then there is exactly one vertex per triangle in K. Selecting these forms a satisfying assignment for
φ.

Page 3 (of 3)

CS-524 Computational Complexity • Fall 2024

