
Exercise VIII, Computational Complexity 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Decision trees

1 Define Sink : {0, 1}(
n
2) → {0, 1} by interpreting the input x ∈ {0, 1}(

n
2) as a labelling of the edges

of the complete graph on n vertices such that the bit xe ∈ {0, 1} for edge e = {u, v} defines an
orientation of e, either (u, v) or (v, u). Thus, an input x defines a directed graph Gx = (V,Ex).
We define Sink(x) = 1 iff the graph Gx has a sink, that is, some node v∗ ∈ V such that
(u, v∗) ∈ Ex for all u ̸= v∗. Show that D(Sink) = Θ(n).

Solution: We first show that D(Sink) ≤ O(n) by describing an algorithm solving Sink using
at most 2n− 3 queries. The algorithm starts by looking at the pair of vertices 1 and 2. At least
one is not a source and can be ruled out as a solution. Supposing 2 points to 1, we continue
with the pair 1,3 and again, at least one is not a sink. Continuing this process using n − 1
queries, one reach the last vertex that could potentially be a source. Finally, one can decide if
this particular vertex is a source or not using n− 2 further queries for a total of 2n− 3 queries.
To argue that D(Sink) ≥ Ω(n), we exhibit an adversary strategy that delays the resolution until
at least k = n/2 queries are made. The adversary answers arbitrarily. Observe that before the
k-th query, the function value is still open: one need n queries to certify a sink and at least one
vertex was not queried at all, which could be a sink.

2 Suppose f : {0, 1}n → {0, 1} is monotone, meaning that if x ≤ y (i.e., xi ≤ yi for all i ∈ [n]),
then f(x) ≤ f(y). Show that s(f) = C(f).

Solution: The direction C(f) ≤ s(f) is unconditional and was seen in class. For the other
direction, let x ∈ {0, 1}n be an input that maximizes C(f, x) and suppose that f(x) = 1 (the
other case is analogous). Let ρ be a smallest 1-certificate for x. Observe first that ρ cannot
have a 0-entry - indeed, suppose toward contradiction that ρi = 0 for some i ∈ [n]. We argue
that ρ′ which is a copy of ρ but with ρ′i = ∗ is also 1-certificate for x (since it is smaller, it is
a contradiction with the optimality of ρ). Because x is consistent with ρ, x is consistent with
ρ′ too. Now, pick any y ∈ {0, 1}n consistent with ρ′. If yi = 0, then y is consistent with ρ and
f(y) = 1. If yi = 1 then y ≥ y(i) and by monotonicity of f it holds that f(y) = 1 too (because
y(i) is consistent with ρ). Now, let z ∈ {0, 1}n be an input formed as follows:

zi =

{
0 if ρi = ∗
1 if ρi = 1

Note that f(z) = 1 and we show that z has sensitivity C(f) by showing that flipping any of its
1-entry makes the function change value - further implying that s(f) ≥ C(f). Suppose toward
contradiction that zi = 1 and f(z(i)) = 1. Let ρ′ be a copy of ρ where ρ′i = ⋆. Note that x
matches ρ′ and that for any y which is matched by ρ′, z(i) ≤ y so that f(y) = 1. This shows
that ρ′ is a 1-certificate for x of smaller size.

Page 1 (of 3)

CS-524 Computational Complexity • Fall 2024



3 In the lecture we saw that if there exists an Adversary strategy for answering k−1 many queries
to the input variables of a function f such that the value of f remains undetermined, then
D(f) ≥ k. Prove the converse: if D(f) ≥ k, then there exists an Adversary strategy fooling any
k − 1 query algorithm.

Solution: The idea is to construct the adversary recursively. We prove that for any f : {0, 1}n →
{0, 1}, there exists an adversary that fools any decision tree with depth D(f)− 1 by induction
on n ≥ 1. For n = 1, there are only 4 different function (identity, negation, constant 0 and
constant 1) and the claim holds for each of those. Now, fix any f : {0, 1}n → {0, 1} and let t be
a decision tree t which solves f . If f is constant, then the claim is vacuously true. Else, we can
assume that depth(t) ≥ 1 and suppose that t first queries x1. Let f0, f1 : {0, 1}n−1 → {0, 1} be
the function f where x1 is fixed to be 0 and 1 respectively. By the induction hypothesis, there
exists an adversary A0 that fools any tree that tries to compute f0 with less than D(f0) queries
and an adversary A1 that does the same for f1. Our adversary simply responds to the query x1
with answer b:

b := argmax
b∈{0, 1}

D(fb)

and then uses Ab to handle further queries. Now, suppose that depth(t) ≤ D(f)−1. This means
that depth(tb) ≤ D(f)− 2 = D(fb)− 1. But since Ab can fool any tree that tries to compute fb
with < D(fb) queries, it must be that Ab fools tb so that t is incorrect.

4 A DNF formula F = T1 ∨ · · · ∨ Tm is said to be unambiguous if for any input x, at most one
of the terms Ti evaluate to true, Ti(x) = 1. Define UC1(f) as the least k such that f can be
written as an unambiguous k-DNF. Prove that D(f) ≤ UC1(f)

2.
(Hint: Use a similar idea as in the proof that D(f) ≤ C(f)2.)

Solution: Let F = T1 ∨ · · · ∨ Tm be an unambiguous formula representing f with the least
degree k := UC1(f). We build a decision tree t for f with query cost ≤ k2. Let T be the set
of terms in F , where a term is represented as a set of literals. Note that any two s1, s2 ∈ T has
at least one literal in common else F is ambiguous. The algorithm picks any s ∈ T and query
all the variables of s. If this is already enough to get that the value is 1, we’re done. Else, one
can strip-off from T anything that is inconsistent with the bits that have been queried. Each
s ∈ T also gets its size reduced by at least one. The resulting T is still such that each pair of
sets has a common literal. This process is continued until the value of the function is found or T
is empty (in which case the function value is 0). Note that at each round, the size of the terms
in T decreases by at least one so that the number of queries is at most:

k + (k − 1) + (k − 2) + · · ·+ 1 ≤ O(k2)

Definition 0.1 For x ∈ {0, 1}n and S ⊆ [n], let xS denote the point in {0, 1}n obtained by
flipping all of the bits xi such that i ∈ S.

The sensitivity of f : {0, 1}n → {0, 1} at x, denoted sf (x), is the number of points y that differ
from x in exactly one bit and satisfy f(x) ̸= f(y). The sensitivity s(f) of f is the maximum over
all x ∈ {0, 1}n of s(f, x).

The block sensitivity of f : {0, 1}n → {0, 1} at x, denoted bs(f, x), is the maximum number of
disjoint subsets of the coordinates B1, B2, . . . , Bk ⊆ [n] such that f(x) ̸= f(xBj ) for all j ∈ [k].
The block sensitivity bs(f) is the maximum value of bs(f, x) over all x ∈ {0, 1}n.

5 Sensitivity vs. block-sensitivity. Say that an n-bit string x is paired if there exists an i ∈ [n− 1]
such that xi = xi+1 = 1 and xj = 0 for all other j ∈ [n] \ {i, i + 1}. Define a boolean

Page 2 (of 3)

CS-524 Computational Complexity • Fall 2024



function f : {0, 1}n2 → {0, 1} by interpreting the input x ∈ {0, 1}n2 as an n-by-n boolean matrix
and setting f(x) = 1 iff there exists a row of x that is paired. Prove that f has sensitivity s(f) ≤
O(n) but quadratically larger block-sensitivity bs(f) ≥ Ω(n2).

Solution: Observe that bs(f) ≥ n(n − 1) because for the all-zero input, flipping any two
contiguous bits of a row changes the value of the function from 0 to 1. We now show that
s(f, x) ≤ 2n for any x ∈ {0, 1}n2 . As a first case, assume that x has ≥ 2 paired rows. Then
flipping one bit only is not enough to change the value of the function from 1 to 0. If x has
exactly one paired row, then the only way to make the function change from 1 to 0 is to un-pair
that row. Since there are at most n bits in a row, this leaves us with s(f, x) ≤ n. Finally, if the
input has no paired row, changing the value from 0 to 1 amounts to modifying a row to make
it paired. There are two kinds of row that can be changed from un-paired to paired. The first
one is a row with a single one, in which case two different flips can make it paired. The second
is a row with 3 ones and one must be flipped. This shows that when there are no paired row,
s(f, x) ≤ 3n.

Page 3 (of 3)

CS-524 Computational Complexity • Fall 2024


