=Pr-L

Exercise VI, Computational Complexity 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Polynomial Hierarchy

Recall from Exercise III(5) that there are CNFs ¢ such that the smallest DNF equivalent to ¢
is exponentially larger than . Inspired by this, consider the following problem:

DNF-SizE = {{¢,1%) : ¢ is a CNF and there is a DNF equivalent to ¢ with k terms}.
Show that DNF-S1zE € Y5P.

Solution: DNF-SIZE can be recasted as an 3V problem. Indeed (p, 1¥) € DNF-SIZE if and only
if there exists a DNF formula ¢’ with k terms such that such that for any variable assignment
z, p(r) = ¢'(x). More formally, consider the Turing machine M which on input (¢, 1%, ¢/,),
checks that:

(a) pis a CNF
(b) ¢ is a DNF with at most k terms

(c) p(z) =¢'(2)
The runtime of M is linear in its input and we have:
(,1%) € DNF-S1ZE <= 3¢'Va M(p,1%, ¢’ 2) =1

Observe that the search space for ¢’ is bounded by k - |¢| bits and the one for z is polynomial
too. Thus, DNF-SIZE € ¥,P.

Show that PH does not have a complete problem, unless PH collapses.

(Hint: Assume some problem L € PH is complete. Then it lies in some finite level L € ¥;P.
Proceed to show that 1;P = 3;P and apply a lemma from lecture.)

Solution: Suppose that some L is PH-complete and fix an ¢ € N such that L € ;P with verifier
M:

Vee{0,1}*:x el < JynVya ... Qiyi : M(z,y1,y2,...,4i) =1
We first show that II;P C 3;P. To do so, fix some L' € II;P and let f : {0, 1}* — {0, 1}* be
a poly-time computable reduction from L’ to L (f exists because L is PH-complete). We have
that:

Vee{0,1} 1z el < f(x)eL < Iy ... Qiyi : M(f(2),y1,y2,...,4) =1

This shows that L' € 3;P with the verifier that applies f to its first input. On the other hand,
note that for any L € ¥;P, L € II;P and thus by the argument we just showed, L € %;P and
hence L € II;P, so that ¥;P C II;P. Thus ;P = II;P and we conclude that the PH hierarchy

collapses to level i using the argument seen in class.

Page 1 (of 4)

(CS-524 Computational Complexity e Fall 2024

3 Define the difference polynomial-time class DP as consisting of those languages L such that
L =LyN Ly for some L; € NP and Ls € coNP. (Do not confuse DP with NP N coNP!)

(a) Show that DP C PNP.

(b) Show that the following problem is in DP

UNIQUESAT = {(p) : ¢ is a CNF and it has a unique satisfying assignment}.

(c) Show that the following problem is DP-complete:

SAT-UNSAT = {{p,¢') : ¢ is a satisfiable CNF and ¢’ is an unsatisfiable CNF}.

(d) True or false: If L is NP-complete and L’ is coNP-complete, then L N L' is DP-complete?

Solution:

(a) Fix some L = L1 N Ly € DP with L1, Ly € NP. Note that for all z € {0, 1}*, z € L <=
xe€liNe ¢ Lo. This equivalence shows how to build a PNP machine that decides L so
that L € PNP.

(b) Note that UNIQUESAT = L; N Ly where:
L; = {{p) : ¢ is a sat CNF}
Ly = {{p) :Vz',a? 12" #2° = —p(a') V ~p(a”)}

L is basically SAT and thus L; € NP. On the other hand, Ly € NP because a certificate
is simply two different inputs which satisfy ¢. Therefore, UNIQUESAT € DP.

(c) SAT-UNSAT € DP as it is the intersection of SAT and SAT. Now, fix some L € DP. By
assumption L = Lq N Lo with L; € NP and Ly € coNP. Since SAT is NP-complete and
SAT is coNP-complete, there exists poly-time functions fi, fo such that for all z € {0, 1}*:

rel < xeliNzx €l
— fi(z) € SAT A fo(z) € SAT
<~ (fi(z), fa(x)) € SAT-UNSAT

Thus, SAT-UNSAT is DP-complete

(d) False: Take Ly = SAT and Ly = SAT. Then L; N Ly = @, which cannot be DP-complete
(no L # () reduces to 0).

4 Prove that if NP C TIME(n!'°¢™) then PH C Uken TIME(nlng").

Solution: Assuming that NP C TIME(nlOg(”)), we show by induction on ¢ > 1 that X;P C
Uren TIME(nlng(”)). The base case corresponds to our hypothesis. Let us now suppose the
claim is true for ¢ and let us show it also holds for ¢ + 1. Fix any language L € ¥;11P. By
definition there exists an efficient Turing machine M as well as a polynomial ¢ such that for all
z € {0, 1}™

x €L <= FJuiVuy - - Qre1uit1 M (ur,ug, ..., uiy1,z) =1

Page 2 (of 4)

(CS-524 Computational Complexity e Fall 2024

Where all u; € {0, 1}90#D), Define now the language L’ C {0, 1}* with:

L'={(z,u1) : Yug -+ Qpr1uir1 M(ur,uz, ..., uit1,z) =1}

Observe that L' € II;P. Our induction hypothesis says that there exists some k € N such that
¥P C TIME(nlogk(”)). Because deterministic time classes are closed under complement (by
reversing the output), we have in turn that II;P C TIME(nlogk(”)). Thus, let D be a decider for
L’ that runs in time t(n) := nlog" (") Note that for any z € {0, 1}*:

vel <« Ju e{0, 13900 : (z,uy) e I' < Fu; € {0, 139D ;. D(z,uy)

Observe that if D was to run in polynomial time, we would be done because we would have
L € NP. To circumvent the fact that D is non-polynomial, we use a padding argument. Let us
define L” = {(z,1%0#1)) : 2 € L} and observe that for any y € {0, 1}*:

yel" « 3xef0, 1} W (1)) =y andz € L
— 3z e {0, 1} WD (2, 1402y = y and uy € {0, 1}90°D : D(z,u) =1
e Fo e {0, 13570 3y, € {0, 1390#D ; (2, 140#D) = 4 and D(z,u) =1
e 3z {0, 1320 1D) ; Q(z,y)

Where z is the concatenation of x and u; and @ simply unzips z = (x,u;) and checks that
(z,140#)) = y and D(x,u) = 1. Note that |z| < 2¢(t~*(|y|)) € poly(|y|). The run-time of Q
is dominated by computing D on z - which takes time ¢(|z]) < t(2¢(t7*(|y|))) € poly(Jy|). We
have thus shown that L” € NP and so using the initial assumption, there exists a decider P for
L" which runs in time O(nlog(”)). Notice that the Turing machine that on input x, prepares the
string y = (z, lt(M)) and then runs P on y decides correctly L. Furthermore, its run-time is
dominated by the computation of P on y which has time O(t(]z|)°e®(=))) ¢ O(]x|1°g2k+l(‘x|)).
This shows that L € (Jycy TIME(no8" (),

(*) Denote by PNPIogn] the class of problems soluble by a poly-time TM that makes at most

O(logn) queries to a SAT oracle. Denote by PINP the class of problems soluble by a poly-time

TM that queries a SAT oracle in parallel, that is, the TM first computes deterministically a list

of m = n°M) many SAT-instances, ©1,---,Pm, then queries the oracle with all the ; at once,

receives some string of answers a € {0,1}™, and then produces an output depending on a.
Show that

PNP[logn] _ P”NP.

(Hint: The inclusion PNPlogn] C PINP s the easier one to prove. For the harder inclusion,
namely PNPlosnl 5 PINP = congider the answer string a € {0,1}™ and first find its Hamming
weight (i.e., number of i € [m| with a; = 1). Then, knowing the Hamming weight, make one
more clever NP-oracle query.)

Solution: We first argue that PNPlognl C PINP Tndeed, fix some Turing machine witnessing
that some language L € PNPIogn] We can see it as a decision tree of depth O(log(n)) where each
decision is made according to a oracle answer. This can be simulated in the second model by
querying in advance the complete decision tree and then run it as usual. Note that the complete
decision tree has 20008() — pOM) podes and thus only a polynomial number of oracle queries

Page 3 (of 4)

(CS-524 Computational Complexity e Fall 2024

are necessary.

Fix some PIINP machine A for language L and let us show how to simulate it with a PNPllog()]
machine B. On input z € {0, 1}*, A prepares a list of queries Q = (z1, ...,) with m € n©),
receives a list of answers a = (aq, ..., a,) and decides whether x € L or not. It is not possible
for B to learn the full vector a, but we will see that knowing its Hamming weight is sufficient.
Let k be the Hamming weight of a, i.e. its number of 1-entries.

Note that for any ¢ € N, the problem of deciding whether k > ¢ is in NP. Indeed, it amounts
to finding ¢ certificates for some g-subset of queries in). Thus, using binary search with queries
of the form “k > ¢”, B can pinpoint the value of k with log(m) = O(log(n)) oracle queries.

After figuring out k, we make one more NP oracle query to decide whether x € L. Here is
the oracle query:

Does there exist an o’ € {0,1}™ of Hamming weight k such that for every i € [m)]
with a}, = 1 the i-th query in Q has a positive answer, and moreover, A accepts x if
the oracle answers are a’.

A certificate for this query consists of a’ and the k certificates for a; = 1; verifying it amounts
to checking each certificate, and simulating A with oracle answers a’.

Thus, B performs O(log(n)) oracle queries and decides L in poly-time.

Page 4 (of 4)

(CS-524 Computational Complexity e Fall 2024

