
Exercise VI, Computational Complexity 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Polynomial Hierarchy

1 Recall from Exercise III(5) that there are CNFs φ such that the smallest DNF equivalent to φ
is exponentially larger than φ. Inspired by this, consider the following problem:

DNF-Size = {⟨φ, 1k⟩ : φ is a CNF and there is a DNF equivalent to φ with k terms}.

Show that DNF-Size ∈ Σ2P.

Solution: DNF-Size can be recasted as an ∃∀ problem. Indeed ⟨φ, 1k⟩ ∈ DNF-Size if and only
if there exists a DNF formula φ′ with k terms such that such that for any variable assignment
x, φ(x) = φ′(x). More formally, consider the Turing machine M which on input (φ, 1k, φ′, x),
checks that:

(a) φ is a CNF

(b) φ′ is a DNF with at most k terms

(c) φ(x) = φ′(x)

The runtime of M is linear in its input and we have:

⟨φ, 1k⟩ ∈ DNF-Size ⇐⇒ ∃φ′ ∀xM(φ, 1k, φ′, x) = 1

Observe that the search space for φ′ is bounded by k · |φ| bits and the one for x is polynomial
too. Thus, DNF-Size ∈ Σ2P.

2 Show that PH does not have a complete problem, unless PH collapses.

(Hint: Assume some problem L ∈ PH is complete. Then it lies in some finite level L ∈ ΣiP.
Proceed to show that ΠiP = ΣiP and apply a lemma from lecture.)

Solution: Suppose that some L is PH-complete and fix an i ∈ N such that L ∈ ΣiP with verifier
M:

∀x ∈ {0, 1}∗ : x ∈ L ⇐⇒ ∃y1 ∀y2 . . . Qiyi : M(x, y1, y2, . . . , yi) = 1

We first show that ΠiP ⊆ ΣiP. To do so, fix some L′ ∈ ΠiP and let f : {0, 1}∗ → {0, 1}∗ be
a poly-time computable reduction from L′ to L (f exists because L is PH-complete). We have
that:

∀x ∈ {0, 1}∗ : x ∈ L′ ⇐⇒ f(x) ∈ L ⇐⇒ ∃y1 ∀y2 . . . Qiyi : M(f(x), y1, y2, . . . , yi) = 1

This shows that L′ ∈ ΣiP with the verifier that applies f to its first input. On the other hand,
note that for any L ∈ ΣiP, L ∈ ΠiP and thus by the argument we just showed, L ∈ ΣiP and
hence L ∈ ΠiP, so that ΣiP ⊆ ΠiP. Thus ΣiP = ΠiP and we conclude that the PH hierarchy
collapses to level i using the argument seen in class.

Page 1 (of 4)

CS-524 Computational Complexity • Fall 2024

3 Define the difference polynomial-time class DP as consisting of those languages L such that
L = L1 ∩ L2 for some L1 ∈ NP and L2 ∈ coNP. (Do not confuse DP with NP ∩ coNP!)

(a) Show that DP ⊆ PNP.

(b) Show that the following problem is in DP

UniqueSat = {⟨φ⟩ : φ is a CNF and it has a unique satisfying assignment}.

(c) Show that the following problem is DP-complete:

Sat-Unsat = {⟨φ,φ′⟩ : φ is a satisfiable CNF and φ′ is an unsatisfiable CNF}.

(d) True or false: If L is NP-complete and L′ is coNP-complete, then L ∩ L′ is DP-complete?

Solution:

(a) Fix some L = L1 ∩ L2 ∈ DP with L1, L2 ∈ NP. Note that for all x ∈ {0, 1}∗, x ∈ L ⇐⇒
x ∈ L1 ∧ x /∈ L2. This equivalence shows how to build a PNP machine that decides L so
that L ∈ PNP.

(b) Note that UniqueSat = L1 ∩ L2 where:

L1 = {⟨φ⟩ : φ is a sat CNF}
L2 = {⟨φ⟩ : ∀x1, x2 : x1 ̸= x2 =⇒ ¬φ(x1) ∨ ¬φ(x2)}

L1 is basically Sat and thus L1 ∈ NP. On the other hand, L2 ∈ NP because a certificate
is simply two different inputs which satisfy φ. Therefore, UniqueSat ∈ DP.

(c) Sat-Unsat ∈ DP as it is the intersection of Sat and Sat. Now, fix some L ∈ DP. By
assumption L = L1 ∩ L2 with L1 ∈ NP and L2 ∈ coNP. Since Sat is NP-complete and
Sat is coNP-complete, there exists poly-time functions f1, f2 such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ x ∈ L1 ∧ x ∈ L2

⇐⇒ f1(x) ∈ Sat ∧ f2(x) ∈ Sat

⇐⇒ (f1(x), f2(x)) ∈ Sat-Unsat

Thus, Sat-Unsat is DP-complete

(d) False: Take L1 = Sat and L2 = Sat. Then L1 ∩ L2 = ∅, which cannot be DP-complete
(no L ̸= ∅ reduces to ∅).

4 Prove that if NP ⊆ TIME(nlogn) then PH ⊆
⋃

k∈N TIME(nlogk n).

Solution: Assuming that NP ⊆ TIME(nlog(n)), we show by induction on i ≥ 1 that ΣiP ⊆⋃
k∈N TIME(nlogk(n)). The base case corresponds to our hypothesis. Let us now suppose the

claim is true for i and let us show it also holds for i + 1. Fix any language L ∈ Σi+1P. By
definition there exists an efficient Turing machine M as well as a polynomial q such that for all
x ∈ {0, 1}n:

x ∈ L ⇐⇒ ∃u1 ∀u2 · · · ·Qk+1ui+1M(u1, u2, . . . , ui+1, x) = 1

Page 2 (of 4)

CS-524 Computational Complexity • Fall 2024

Where all ui ∈ {0, 1}q(|x|). Define now the language L′ ⊆ {0, 1}∗ with:

L′ = {(x, u1) : ∀u2 · · · ·Qk+1ui+1M(u1, u2, . . . , ui+1, x) = 1}

Observe that L′ ∈ ΠiP. Our induction hypothesis says that there exists some k ∈ N such that
ΣiP ⊆ TIME(nlogk(n)). Because deterministic time classes are closed under complement (by
reversing the output), we have in turn that ΠiP ⊆ TIME(nlogk(n)). Thus, let D be a decider for
L′ that runs in time t(n) := nlogk(n). Note that for any x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|) : (x, u1) ∈ L′ ⇐⇒ ∃u1 ∈ {0, 1}q(|x|) : D(x, u1)

Observe that if D was to run in polynomial time, we would be done because we would have
L ∈ NP. To circumvent the fact that D is non-polynomial, we use a padding argument. Let us
define L′′ = {(x, 1t(|x|)) : x ∈ L} and observe that for any y ∈ {0, 1}∗:

y ∈ L′′ ⇐⇒ ∃x ∈ {0, 1}≤t−1(|y|) : (x, 1t(|x|)) = y and x ∈ L

⇐⇒ ∃x ∈ {0, 1}≤t−1(|y|) : (x, 1t(|x|)) = y and ∃u1 ∈ {0, 1}q(|x|) : D(x, u) = 1

⇐⇒ ∃x ∈ {0, 1}≤t−1(|y|) ∃u1 ∈ {0, 1}q(|x|) : (x, 1t(|x|)) = y and D(x, u) = 1

⇐⇒ ∃z ∈ {0, 1}≤2q(t−1(|y|)) : Q(z, y)

Where z is the concatenation of x and u1 and Q simply unzips z = (x, u1) and checks that
(x, 1t(|x|)) = y and D(x, u) = 1. Note that |z| ≤ 2q(t−1(|y|)) ∈ poly(|y|). The run-time of Q
is dominated by computing D on z - which takes time t(|z|) ≤ t(2q(t−1(|y|))) ∈ poly(|y|). We
have thus shown that L′′ ∈ NP and so using the initial assumption, there exists a decider P for
L′′ which runs in time O(nlog(n)). Notice that the Turing machine that on input x, prepares the
string y = (x, 1t(|x|)) and then runs P on y decides correctly L. Furthermore, its run-time is
dominated by the computation of P on y which has time O(t(|x|)log(t(|x|))) ∈ O(|x|log2k+1(|x|)).
This shows that L ∈

⋃
k∈N TIME(nlogk(n)).

5 (*) Denote by PNP[logn] the class of problems soluble by a poly-time TM that makes at most
O(log n) queries to a Sat oracle. Denote by P∥NP the class of problems soluble by a poly-time
TM that queries a Sat oracle in parallel, that is, the TM first computes deterministically a list
of m = nO(1) many Sat-instances, φ1, . . . , φm, then queries the oracle with all the φi at once,
receives some string of answers a ∈ {0, 1}m, and then produces an output depending on a.

Show that

PNP[logn] = P∥NP.

(Hint: The inclusion PNP[logn] ⊆ P∥NP is the easier one to prove. For the harder inclusion,
namely PNP[logn] ⊇ P∥NP, consider the answer string a ∈ {0, 1}m and first find its Hamming
weight (i.e., number of i ∈ [m] with ai = 1). Then, knowing the Hamming weight, make one
more clever NP-oracle query.)

Solution: We first argue that PNP[logn] ⊆ P∥NP. Indeed, fix some Turing machine witnessing
that some language L ∈ PNP[logn]. We can see it as a decision tree of depth O(log(n)) where each
decision is made according to a oracle answer. This can be simulated in the second model by
querying in advance the complete decision tree and then run it as usual. Note that the complete
decision tree has 2O(log(n)) = nO(1) nodes and thus only a polynomial number of oracle queries

Page 3 (of 4)

CS-524 Computational Complexity • Fall 2024

are necessary.

Fix some P∥NP machine A for language L and let us show how to simulate it with a PNP[log(n)]

machine B. On input x ∈ {0, 1}∗, A prepares a list of queries Q = (x1, . . . , xm) with m ∈ nO(1),
receives a list of answers a = (a1, . . . , am) and decides whether x ∈ L or not. It is not possible
for B to learn the full vector a, but we will see that knowing its Hamming weight is sufficient.
Let k be the Hamming weight of a, i.e. its number of 1-entries.

Note that for any q ∈ N, the problem of deciding whether k ≥ q is in NP. Indeed, it amounts
to finding q certificates for some q-subset of queries in Q. Thus, using binary search with queries
of the form “k ≥ q”, B can pinpoint the value of k with log(m) = O(log(n)) oracle queries.

After figuring out k, we make one more NP oracle query to decide whether x ∈ L. Here is
the oracle query:

Does there exist an a′ ∈ {0, 1}m of Hamming weight k such that for every i ∈ [m]
with a′i = 1 the i-th query in Q has a positive answer, and moreover, A accepts x if
the oracle answers are a′.

A certificate for this query consists of a′ and the k certificates for a′i = 1; verifying it amounts
to checking each certificate, and simulating A with oracle answers a′.

Thus, B performs O(log(n)) oracle queries and decides L in poly-time.

Page 4 (of 4)

CS-524 Computational Complexity • Fall 2024

