=Pr-L

Exercise V, Computational Complexity 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Space Complexity

Basics:

(a) Prove that TQBF € PSPACE by designing a polynomial-space algorithm for it.
(b) Prove that NL C P. (Hint: Construct the whole configuration graph for an NL algorithm.)

Consider the following single-player pebble game played on an directed acyclic graph G = (V, E)
with a unique sink vertex v* € V (out-degree 0). There is a set of pebbles that can be placed
on the vertices in V. The game proceeds in rounds. At start, the graph is empty of pebbles. In
each round we perform either of the following pebbling moves:

(a) We may place a pebble on any vertex whose predecessors are pebbled. In particular, we
may always place a pebble on a source vertex (in-degree 0).
(b) We may always remove a pebble from any vertex.

The goal is to pebble the sink v* while minimising the number of pebbles used (maximum number
of pebbles in any configuration during the game).

In the PEBBLE problem, we are given (G, k) as input and want to determine if the sink can be
pebbled using at most k pebbles. Show that PEBBLE € PSPACE. Do you think PEBBLE € NP?

Show that the following parsing problems are in L.

(a) The input is a string of parentheses x € {(,)}*. We wish to know whether x is properly
nested; for instance, (()) () and () () ) are allowed but ()) is not.

(b) The input is a string € {(,), [,]1}*. We again wish to know whether x is properly nested,;
for instance, ([1) [J and [() [1] are allowed but [(]) is not.

(Hint: Show that one only needs to check a simple condition for each substring of x.)

In the context of the previous problem, suppose the TM is only allowed to scan the input x once
from left to right—much like a deterministic finite automaton. Show that (a) can still be done
with memory O(logn), but (b) requires memory ©(n).

(Hint: What does the TM need to remember when it sweeps past the middle symbol of x?)

Page 1 (of 2)

(CS-524 Computational Complexity e Fall 2024



5 The alternating path game is played by two competing players, Alice and Bob, on a directed
graph G = (V, E,v*) where v* is a distinguished vertex. The players alternate in constructing
a directed path wvg,v1, ... starting at vg = v*: Alice chooses v1 as one of the out-neighbours of
Vg, then Bob chooses vy as one of the out-neighbours of vy, and so on the players alternate. The
first player who cannot choose a previously unvisited vertex loses the game—that is, the player
is forced to choose a previously visited vertex, or the path has terminated at a sink.
In the ALTPATH problem, the input is the graph G and the goal is to decide if Alice has a
winning strategy for the alternating path game on GG. Show that ALTPATH is PSPACE-complete
by giving a reduction from TQBF.

(Hint: Suppose Jz1Vxo - Qnry: o(z) is the TQBF instance where ¢ is a 3-CNF. Construct
G so that it has one vertex for every literal x; and Z;, and connect them by directed edges so
that Alice (resp. Bob) gets to choose, for each existentially (universally) quantified x;, whether
to wvisit vertex labelled x; or T;. After a path has determined a truth assignment to x by visiting
appropriate literal vertices, check whether it satisfies the CNF formula by including in G one
node each clause in @.)

Page 2 (of 2)

(CS-524 Computational Complexity e Fall 2024



