=Pr-L

Exercise IV, Computational Complexity 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Diagonalisation and Oracles
Show that the problem
ExpSiM = {(M,z,1") : M is a TM, and M (x) outputs 1 in < 2" steps}
is complete (under poly-time reductions) for the exponential-time class
EXP = U,y TIME(2™).
Namely, show that ExXpSiM € EXP and that for every A € EXP we have A <, EXPSIM.

Solution: Let D be the Turing machine that given a tuple (M, z, 1%), runs M on z for at most
2t steps using the universal Turing machine. If M accepts during the run, D accepts and else
rejects (if M rejected or didn’t finish in time). Note that D decides EXPSIM and runs in time

exponential (the overhead incurred by the universal Turing machine is only polynomial) and
hence ExpSiMm € EXP.

To show completeness, fix any A € EXP. By definition, there exists some Turing machine M
that decides A in time < 27" for a fixed k. Consider the function f : {0, 1}* — {0, 1}* defined
by f(z) = (M,z,11#"). Note that f is poly-time computable and that for each = € {0, 1}™:

r€A <= M(z)=1 <= M(x) outputs 1 in < 217" steps <= f(z) € EXpSIM

Show that TIME(n) is not closed under poly-time reductions. That is, exhibit languages A and
B such that A <, B, B € TIME(n), but A ¢ TIME(n).

(Hint: Use the Time Hierarchy theorem.)

Solution: Pick any A € TIME(n?) \ TIME(n) (the existence of such a language is guaranteed
by the time hierarchy theorem) and let B = {1}. Note that A <, B, B € TIME(n) but
A ¢ TIME(n?)

Show that the following problem is in PSAT:

MAXIS = {(G, k) : G is a graph whose largest independent set is of size exactly k}

Do you think MAXIS is in NP? What about coNP?

Page 1 (of 4)

(CS-524 Computational Complexity e Fall 2024



Solution: Let IS = {(G, k) : G is a graph which contains an independent set of size k} be the
independent set problem (recall it is NP-complete) and observe that:

(G, k) € MAXIS <= (G,k) €IS and (G,k+1) ¢ IS

Since IS € NP and SAT is complete for NP, there exists some function f that reduces IS to
SAT. So it is enough to query the SAT oracle with f((G,k)) and f((G,k + 1)) and use the
above equivalence to decide whether (G, k) € MAXIS.

We show that it is unlikely that MAXIS € NP (a similar argument shows that it is also
unlikely MAXIS € coNP). Suppose that MAXIS € NP and let (V,p) be a certificate system that
witnesses this. Then we have:

(G, k) €IS <= Jq < k: (G, q) € MaXIS
— Jg < kIee {0, 1}PUGDD . v ((G,q),c) accepts

The above chain implies that there is an efficient certificate system for IS (namely ¢ and c)
and thus IS € NP. Since IS is NP-complete, this further means that NP = coNP (an unlikely
collapse).

Show that the NP vs. coNP question relativises both ways. That is,

(a) There is an oracle A relative to which NP4 = coNP*.
(b) There is an oracle B relative to which NP? = coNPZ. Namely, consider the language

Lp ={1":Vx € {0,1}",z € B}

and show that

— Lp € coNP® for every B.
— (*) Ly ¢ NP® for some B.

(Hint: Fiz a poly-time nondeterministic oracle machine MP. Can you define B for
strings of large length n so that MPB reports the wrong answer for “1™ € Lg™?)

Solution: A co-non-deterministic Turing machine is a non-deterministic Turing machine that
accepts if and only if all the non-deterministic paths accepts. Using this definition, we can
define coNP as the set of all languages decided by a polynomial-time co-non-deterministic Turing
machine. We use this definition throughout the exercise.

(a) We pick A = ExpSiM. Note that NP4 C EXP. Indeed, if L € NP4, then there exists
a non-deterministic polynomial-time Turing machine N with oracle A which decides L.
Note that a polynomial number of non-deterministic choice can be simulated classically in
exponential time and that queries to A can by definition be simulated in exponential time
too. Thus, L € EXP. The same argument shows coN P4 C EXP (instead of accepting if
one non-deterministic path accepts, we accept if all paths accept).

On the other hand, EXpSim € PFXPS™M and since EXPSIM is complete for EXP (see problem
1), we have that EXP C PEXPS™M_ Because P C NP, P, we have NP4 = coNP4 = EXP, as

desired.

Page 2 (of 4)

(CS-524 Computational Complexity e Fall 2024



5

(b) We have Lp = {1 : Vx € {0,1}",2 € B} € coNP? for every B since Ly can be decided by
a co-non-deterministic machine that, on input 1", nondeterministically guesses z € {0,1}"
and queries B to check that x € B; this machine accepts iff all computations accept.

The more challenging part is to construct B such that Lp ¢ NPB. Let N be the set of
all non-deterministic Turing machines which run in polynomial time while having oracle
access. This set is countable and hence there exists a sequence (N;);en of non-deterministic
Turing machines that contains all of AV and furthermore, each N € N appears infinitely
many times.

We will construct B dynamically, by specifying what elements of {0, 1}" it contains for
increasingly larger value of n. To do so, it might be easier to think of B as a function
B :{0,1}* — {0, 1, *} where B(z) =0ifx ¢ B, B(z) = 1if z € B and B(z) = = if
the membership is not yet fixed. We thus start with B(x) := « for all z € {0, 1}* and fix
membership values on the fly.

For increasing values of ¢ = 0,1,2,..., we set B in such a way that N; fails to decide
Lp. Suppose we are at step ¢ and let n be the size of the smallest € {0, 1}* such that
B(xz) = . Run N; on input 1" with oracle B. Whenever a membership query is made
with B(z) = %, set B(x) := 1. When the execution is over, if N; made queries up to length
k, set B(z) := 1 for all x € {0, 1}=F with B(z) = *. This way, all values of B up to length
k are fixed.

If N; rejected 1™ with oracle B, then nothing needs to be done, indeed, all strings x €
{0, 1}™ have B(z) = 1 so that 1" € Lg while NZ(1") = 0 thus ruling out N; as a decider
for Lp.

If N; accepted 1™ with oracle B, it means that at least one non-deterministic path accepted
1". Let I' = {z1,...,2p} be the set of membership queries made to B on this path and
I C T the subset of queries with length exactly m. Since N; runs in time polynomial,
it means that |T'| < n©() and thus there exists 2* € {0, 1} \ T". Re-setting the value
B(z*) := 0 still makes the path accept (as it never queried z* in the first place) so that
NB(1") = 1 while 1" ¢ Lp.

Remark: it is possible that for small values of n, there exists no such z*. Indeed, the
run-time of IN; might be n'% which is greater than 2" for small enough n. This is not a
problem: N; appears infinitely many times in the sequence and thus at some point it must
hold that n'% < 27 causing an input to be wrongly decided by N;. This hints that each
N € N fails to decide L on an infinite number of inputs.

(*) Call a language A C {0,1}* sparse if it contains only polynomially many strings of length n,
that is, there is some k& € N such that |4 N {0,1}"| < n* for all n. Show that

LeP/poly iff Le P4 for some sparse A.

Solution: Suppose first that L € P/poly. This implies that there exists a family of circuits
{Cp}nen with |Cy,| < n* for some k € N and:

Clg/(z) = L(x) for each « € {0, 1}*

For each n € N, let (b7,05,.. .,bgn) be the binary encoding of C,, with p, < poly(n). The
idea will be to "store" each C), in A in such a way that a polynomial time Turing machine can
reconstitute any C, at will and then execute it locally. Since an oracle can only give yes/no

Page 3 (of 4)

(CS-524 Computational Complexity e Fall 2024



answer (instead of a full circuit in one go), we will need to query the circuit bit by bit. Formally,
we define A as follows:

A={{1"4,b},...,b) :neNand i€ [p,]}

Let us describe how to fetch the description of C), by querying A. The answer to (1™,1,1) € A
and (17,1,0) € A determines whether the first bit b} is zero or one. Then, the answer to
(1",2,b7,1) € A and (1",2,b07,0) € A determines whether the second bit by is zero or one. This
process can be carried on until both queries return false in which case we know the description
is complete.

This argument shows that L € P4, Indeed, on input z € {0, 1}*, one first fetch the circuit
in poly-time and then execute it (again in poly-time) on z to get L(x). It remains to show
that A is sparse. To see why this is true, fix some string size ¢ and let us bound the size of
Al = {z € A: |z| = q}. Note that no description of a circuit Cs, appears in A9. So that at
most ¢ circuits are represented in A%. Finally, a circuit C<, only incurs poly(q) strings to A,
thus |A7] < ¢ - poly(q) and so A is sparse.

To prove the other direction fix some L € P4 with A sparse. Let D be a poly-time Turing
machine that decides L with oracle access to A. Note that for inputs of length n, D can only
ask membership queries for strings of size poly(n). Hence when extracting the circuit C,, from
D (like in the P C P/poly proof) we only need to hard-code the strings of A up to size poly(n).
This only incurs a polynomial blow-up to the size of C,, because:

poly(n)
|ASPV M| < Nk < poly(n)
i=1
Since we have shown the existence of a family of polynomial-sized circuits deciding L, we
have L € P/poly.

Page 4 (of 4)

(CS-524 Computational Complexity e Fall 2024



