
Exercise IV, Computational Complexity 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Diagonalisation and Oracles

1 Show that the problem

ExpSim = {⟨M,x, 1t⟩ : M is a TM, and M(x) outputs 1 in ≤ 2t steps}

is complete (under poly-time reductions) for the exponential-time class

EXP =
⋃

k∈N TIME(2n
k
).

Namely, show that ExpSim ∈ EXP and that for every A ∈ EXP we have A ≤p ExpSim.

Solution: Let D be the Turing machine that given a tuple (M,x, 1t), runs M on x for at most
2t steps using the universal Turing machine. If M accepts during the run, D accepts and else
rejects (if M rejected or didn’t finish in time). Note that D decides ExpSim and runs in time
exponential (the overhead incurred by the universal Turing machine is only polynomial) and
hence ExpSim ∈ EXP.

To show completeness, fix any A ∈ EXP. By definition, there exists some Turing machine M
that decides A in time ≤ 2n

k for a fixed k. Consider the function f : {0, 1}∗ → {0, 1}∗ defined
by f(x) = ⟨M,x, 1|x|

k⟩. Note that f is poly-time computable and that for each x ∈ {0, 1}n:

x ∈ A ⇐⇒ M(x) = 1 ⇐⇒ M(x) outputs 1 in ≤ 2|x|
k

steps ⇐⇒ f(x) ∈ ExpSim

2 Show that TIME(n) is not closed under poly-time reductions. That is, exhibit languages A and
B such that A ≤p B, B ∈ TIME(n), but A /∈ TIME(n).

(Hint: Use the Time Hierarchy theorem.)

Solution: Pick any A ∈ TIME(n3) \ TIME(n) (the existence of such a language is guaranteed
by the time hierarchy theorem) and let B = {1}. Note that A ≤p B, B ∈ TIME(n) but
A /∈ TIME(n3)

3 Show that the following problem is in PSAT:

MaxIS = {⟨G, k⟩ : G is a graph whose largest independent set is of size exactly k}

Do you think MaxIS is in NP? What about coNP?

Page 1 (of 4)

CS-524 Computational Complexity • Fall 2024

Solution: Let IS = {⟨G, k⟩ : G is a graph which contains an independent set of size k} be the
independent set problem (recall it is NP-complete) and observe that:

⟨G, k⟩ ∈ MaxIS ⇐⇒ ⟨G, k⟩ ∈ IS and ⟨G, k + 1⟩ /∈ IS

Since IS ∈ NP and SAT is complete for NP, there exists some function f that reduces IS to
SAT. So it is enough to query the SAT oracle with f(⟨G, k⟩) and f(⟨G, k + 1⟩) and use the
above equivalence to decide whether ⟨G, k⟩ ∈ MaxIS.

We show that it is unlikely that MaxIS ∈ NP (a similar argument shows that it is also
unlikely MaxIS ∈ coNP). Suppose that MaxIS ∈ NP and let (V, p) be a certificate system that
witnesses this. Then we have:

⟨G, k⟩ ∈ IS ⇐⇒ ∃q < k : ⟨G, q⟩ ∈ MaxIS

⇐⇒ ∃q < k ∃c ∈ {0, 1}p(|⟨G,q⟩|) : V (⟨G, q⟩, c) accepts

The above chain implies that there is an efficient certificate system for IS (namely q and c)
and thus IS ∈ NP. Since IS is NP-complete, this further means that NP = coNP (an unlikely
collapse).

4 Show that the NP vs. coNP question relativises both ways. That is,

(a) There is an oracle A relative to which NPA = coNPA.
(b) There is an oracle B relative to which NPB ̸= coNPB. Namely, consider the language

LB = {1n : ∀x ∈ {0, 1}n, x ∈ B}

and show that

− LB ∈ coNPB for every B.
− (*) LB /∈ NPB for some B.

(Hint: Fix a poly-time nondeterministic oracle machine MB. Can you define B for
strings of large length n so that MB reports the wrong answer for “1n ∈ LB”?)

Solution: A co-non-deterministic Turing machine is a non-deterministic Turing machine that
accepts if and only if all the non-deterministic paths accepts. Using this definition, we can
define coNP as the set of all languages decided by a polynomial-time co-non-deterministic Turing
machine. We use this definition throughout the exercise.

(a) We pick A = ExpSim. Note that NPA ⊆ EXP. Indeed, if L ∈ NPA, then there exists
a non-deterministic polynomial-time Turing machine N with oracle A which decides L.
Note that a polynomial number of non-deterministic choice can be simulated classically in
exponential time and that queries to A can by definition be simulated in exponential time
too. Thus, L ∈ EXP. The same argument shows coNPA ⊆ EXP (instead of accepting if
one non-deterministic path accepts, we accept if all paths accept).

On the other hand, ExpSim ∈ PExpSim and since ExpSim is complete for EXP (see problem
1), we have that EXP ⊆ PExpSim. Because P ⊆ NP,P, we have NPA = coNPA = EXP, as
desired.

Page 2 (of 4)

CS-524 Computational Complexity • Fall 2024

(b) We have LB = {1n : ∀x ∈ {0, 1}n, x ∈ B} ∈ coNPB for every B since LB can be decided by
a co-non-deterministic machine that, on input 1n, nondeterministically guesses x ∈ {0, 1}n
and queries B to check that x ∈ B; this machine accepts iff all computations accept.

The more challenging part is to construct B such that LB /∈ NPB. Let N be the set of
all non-deterministic Turing machines which run in polynomial time while having oracle
access. This set is countable and hence there exists a sequence (Ni)i∈N of non-deterministic
Turing machines that contains all of N and furthermore, each N ∈ N appears infinitely
many times.

We will construct B dynamically, by specifying what elements of {0, 1}n it contains for
increasingly larger value of n. To do so, it might be easier to think of B as a function
B : {0, 1}∗ → {0, 1, ∗} where B(x) = 0 if x /∈ B, B(x) = 1 if x ∈ B and B(x) = ∗ if
the membership is not yet fixed. We thus start with B(x) := ∗ for all x ∈ {0, 1}∗ and fix
membership values on the fly.

For increasing values of i = 0, 1, 2, . . . , we set B in such a way that Ni fails to decide
LB. Suppose we are at step i and let n be the size of the smallest x ∈ {0, 1}∗ such that
B(x) = ∗. Run Ni on input 1n with oracle B. Whenever a membership query is made
with B(x) = ∗, set B(x) := 1. When the execution is over, if Ni made queries up to length
k, set B(x) := 1 for all x ∈ {0, 1}≤k with B(x) = ∗. This way, all values of B up to length
k are fixed.

If Ni rejected 1n with oracle B, then nothing needs to be done, indeed, all strings x ∈
{0, 1}n have B(x) = 1 so that 1n ∈ LB while NB

i (1n) = 0 thus ruling out Ni as a decider
for LB.

If Ni accepted 1n with oracle B, it means that at least one non-deterministic path accepted
1n. Let Γ = {x1, . . . , xp} be the set of membership queries made to B on this path and
Γ′ ⊆ Γ the subset of queries with length exactly n. Since Ni runs in time polynomial,
it means that |Γ′| ≤ nO(1) and thus there exists x⋆ ∈ {0, 1}n \ Γ′. Re-setting the value
B(x⋆) := 0 still makes the path accept (as it never queried x⋆ in the first place) so that
NB

i (1n) = 1 while 1n /∈ LB.

Remark: it is possible that for small values of n, there exists no such x⋆. Indeed, the
run-time of Ni might be n100 which is greater than 2n for small enough n. This is not a
problem: Ni appears infinitely many times in the sequence and thus at some point it must
hold that n100 ≤ 2n causing an input to be wrongly decided by Ni. This hints that each
N ∈ N fails to decide LB on an infinite number of inputs.

5 (*) Call a language A ⊆ {0, 1}∗ sparse if it contains only polynomially many strings of length n,
that is, there is some k ∈ N such that |A ∩ {0, 1}n| ≤ nk for all n. Show that

L ∈ P/poly iff L ∈ PA for some sparse A.

Solution: Suppose first that L ∈ P/poly. This implies that there exists a family of circuits
{Cn}n∈N with |Cn| ≤ nk for some k ∈ N and:

C|x|(x) = L(x) for each x ∈ {0, 1}∗

For each n ∈ N, let (bn1 , b
n
2 , . . . , b

n
pn) be the binary encoding of Cn with pn ≤ poly(n). The

idea will be to "store" each Cn in A in such a way that a polynomial time Turing machine can
reconstitute any Cn at will and then execute it locally. Since an oracle can only give yes/no

Page 3 (of 4)

CS-524 Computational Complexity • Fall 2024

answer (instead of a full circuit in one go), we will need to query the circuit bit by bit. Formally,
we define A as follows:

A = {⟨1n, i, bn1 , . . . , bni ⟩ : n ∈ N and i ∈ [pn]}

Let us describe how to fetch the description of Cn by querying A. The answer to ⟨1n, 1, 1⟩ ∈ A
and ⟨1n, 1, 0⟩ ∈ A determines whether the first bit bn1 is zero or one. Then, the answer to
⟨1n, 2, bn1 , 1⟩ ∈ A and ⟨1n, 2, bn1 , 0⟩ ∈ A determines whether the second bit bn2 is zero or one. This
process can be carried on until both queries return false in which case we know the description
is complete.

This argument shows that L ∈ PA. Indeed, on input x ∈ {0, 1}k, one first fetch the circuit
in poly-time and then execute it (again in poly-time) on x to get L(x). It remains to show
that A is sparse. To see why this is true, fix some string size q and let us bound the size of
Aq = {x ∈ A : |x| = q}. Note that no description of a circuit C>q appears in Aq. So that at
most q circuits are represented in Aq. Finally, a circuit C≤q only incurs poly(q) strings to A,
thus |Aq| ≤ q · poly(q) and so A is sparse.

To prove the other direction fix some L ∈ PA with A sparse. Let D be a poly-time Turing
machine that decides L with oracle access to A. Note that for inputs of length n, D can only
ask membership queries for strings of size poly(n). Hence when extracting the circuit Cn from
D (like in the P ⊆ P/poly proof) we only need to hard-code the strings of A up to size poly(n).
This only incurs a polynomial blow-up to the size of Cn because:

|A≤poly(n)| ≤
poly(n)∑
i=1

ik ≤ poly(n)

Since we have shown the existence of a family of polynomial-sized circuits deciding L, we
have L ∈ P/poly.

Page 4 (of 4)

CS-524 Computational Complexity • Fall 2024

