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Exercise Ill, Computational Complexity 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Circuit complexity

In the CNF-EQUIVALENCE problem, the input consists of a pair of CNF formulas (¢, ) both
defined over the same set of n variables * = (x1,...,z,). The goal is to decide if they are
equivalent, that is, do they compute the same boolean function: ¢(z) = ¢ (x) for all x € {0,1}"?
Classify this problem as best as you can—is it in P, NP, or coNP? is it complete for any class?

Solution: Let us abbreviate CNF-EQUIVALENCE by simply C and show that the language C
is coNP-complete. Note that C € coNP because C is the language of all pairs of functions
(i, 1) that are not equivalent and non-equivalency can be certified by exhibiting an assignment

z € {0, 1}™ with p(z) # ¥ (z).

We further show that the coNP-complete problem SAT reduces to C. Indeed, let f :
{0, 1}* — {0, 1}* be the poly-time computable function that takes a formula ¢ and returns
the C instance (¢, 21 A —x1). Then, for any formula ¢:

P€ESAT <= =0 <= p=x1 N1 <= f(p) €C
This shows that most likely C ¢ NP.

Complete the proof of CIRCUIT-SAT <, SAT from the lecture by finding, for each of the
following logical predicates, an equivalent CNF formula.

(a) y ¢ (zV2)
(b) y < (zA2)
(c) y+ —x

Solution: One can find an equivalent CNF formula by applying standard boolean algebra
identities. We do the details for the first item only.
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y<(@ANz)=(yVz)A(-zVz)A(-xV-zVy)

y < x=("zV-oy)A(zVy)
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3 The n-bit function XOR,,: {0,1}" — {0, 1} outputs 1 iff the number of 1-bits in the input is odd.
Show that XOR,, can be computed with a boolean circuit (gates V, A, =) of size O(n). Can you
also make the circuit have depth (i.e., length of longest directed path) at most O(logn)?

(Hint: Construct a circuit for n = 2 and then use many copies of that circuit for general n.)

g4

-]

Solution:

4 Let ¢ be any DNF formula over n variables that computes XOR,,. Recall that p =TV --- VT,
where each Tj is a term, that is, a conjunction of literals.

(a) Show that any term Tj either contains n distinct variables or is contradictory, meaning
that it contains x; and T; for some variable x;.

(Hint: Show that if Tj is not contradictory and omits both x; and ; for some i, then ¢
fails to compute XOR,, correctly. Use the fact that the value of XOR, is flipped if we flip
the value of x;.)

(b) Show that ¢ must contain m > 2”1 terms.

Conclude that circuits can be exponentially more expressive than DNF/CNF formulas.

Solution: (a) Suppose T} is not contradictory. Then it accepts some input « € {0,1}" so that
Tj(z) = 1 and hence ¢(z) = XOR,(z) = 1. Suppose for the sake of contradiction that 7; does
not contain all n variables, say, variable x;. Consider 2’ € {0,1}" which is the same as x but with
the value of variable z; flipped. We still have that T;(2") = 1 and hence ¢(z') = X0OR,(2') = 1.
But this is a contradiction since z and 2’ have different parities! Hence we conclude that Tj
contains all n variables.

(b) Item (a) implies that each term of ¢ can accept at most one input. But there are 271
many inputs z with XOR,(z) = 1 and hence ¢ must contain one term for each such x.

5 (*) Consider the 2n-variate CNF formula defined by ¢ = (1 Vy1) A (2 Vy2) Ao A(xn V Yn).
Show that any DNF formula equivalent to ¢ requires at least 2" terms.
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Solution: Let ¢ =Ty V15V ---V T} be an equivalent DNF formula. Consider the family of
inputs F C {0, 1}%™:
F = {(2i,yi)icm) : (xi,yi) € {01, 10} }

Observe that each term T of 1 can accept at most one element of F. Indeed, suppose toward
contradiction that T'(f) = T(f’") = 1 for two distinct elements f, f* € F. Without loss of gen-
erality, we may assume that the mismatch happens at index ¢ with f; = 01 and f/ = 10. Since
T is a conjunction, it must be that 7" is not looking at variables x; and y; at all so that T" also
accepts the input f which is a copy of f where f; is modified to be 00. Ultimately, this implies
that ¥(f) = 1: a contradiction with the fact that ¢(f) = 0.

Note that all strings of F are accepted by . Correspondingly, for each f € F, there must
be a term T of 1) accepting f. Using our above observation, we directly get that k& > |F| = 2".

(*) Recall from your undergrad days that a language L C {0, 1}* is regular if it is accepted by
a deterministic finite automaton D = (Q, %, 9, qo, F'). Here @Q is a finite set of states, ¥ = {0, 1}
is the input alphabet, §: @ x X — @ is the transition function, gy € @ is the initial state, and
F C @ is the set of final accepting states. For example, the following automaton accepts all
binary strings that contain “100” as a substring:

Prove that every regular language can be computed by a linear-size circuit. That is, let L C
{0,1}* be a regular language. For any input length n € N, show how to construct a boolean
circuit Cp, with n input variables and O(n) gates such that

Ve €{0,1}": Cp(zr)=1 < z € L.

Solution: Let D = (@, {0, 1}, 6, qo, F') be a DFA that recognizes L. For simplicity, let us assume
that the k states are labelled with {e1, es, ..., ex} where e; € {0, 1}* is the indicator bit-string
which is 1 only at position 3.

Note that the transition function ¢ : {0, 1}¥*1 — {0, 1}* can be computed by a circuit A
of constant size. Indeed, since the input size is £ + 1 and the output size is k, the function is
described by a truth table of size (2)2""" € O(1).

To construct the circuit that recognizes L on inputs of length n, we mimic D by processing
the input iteratively, updating the state each time with A. When the last bit of the input has
been processed, we check the final state and output 1 if and only if it belongs to F' (this can
be done with a constant number of gates), see Figure [1| for a depiction of the circuit. Since the
circuit emulates D, it correctly computes L while using n - O(1) + O(1) = O(n) gates.
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Figure 1. Architecture of the circuit that accepts n-bit words of L.
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