=Pr-L

Exercise 1l, Computational Complexity 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

1 Prove the following basic properties of polynomial-time reductions.

(a)
(b)
()
(d)
()

A <, A. (reflexivity)

If A<, Band B <, C, then A <, C. (transitivity)
If A <, B then A <p B.

If A<, B and B € NP, then A € NP.

If A€ P then A <, {1}.

Solution: Recall that A <, B if there exists a function f : {0, 1}* — {0, 1}* computable in
polynomial time such that for any = € {0, 1}*, z € A < f(z) € B.

(a)

(b)

Taking f to be the identity function witnesses A <, A. Indeed, the identity function is
polynomial time computable.

Let fi and fo be the witnesses to A <, B and B <, C. Note that f := fy o f is such that
for any = € {0, 1}*:

r€A = fi(r)eB <= fo(fi)eC <= f(z)eC

Observe that f is also efficiently computable since the size of fi(z) is polynomial in |z| so
that the size of f(z) is also polynomial in |z|. This shows that <, is transitive.

Let f be the witness to A <, B which is poly-time computable by assumption. Observe that
for any = € {0, 1}*:

r€A = 121¢A < f(x)¢B < f(z)eB
Let f be a witness for A <, B and V be a verifier for B that has certificates bounded by
some polynomial p : N — N (those two objects exist because B € NP). Now, a verifier for

A is simply V' that on input (z,¢) runs V(f(x),c). This verifier is correct because for any
xz € {0, 1}*:

reA < f(x)eB
— Jee {0, 11PH@D p(f(x), e)
— 3Jce {0, 11PH@ED V(2 ¢)

Note that certificates have again poly-size since f is poly-time computable so that A € NP
too.

Since A € P, A has some efficient decider D. Now, let f: {0, 1}* — {0, 1}* be the function
defined by f(x) =1if x € A and f(x) = 0 else. This function can be computed in poly-time
using D and witnesses that A <, {1}.

Page 1 (of 4)

(CS-524 Computational Complexity e Fall 2024

2 What is wrong with the following “proof” that 2-SAT is NP-complete? Since 3-SAT is in NP,
so is 2-SAT. We then prove that 3-SAT <, 2-SAT by giving a polynomial time computable
reduction. We define a function ¢ +— f(¢) which maps boolean 2-CNF fomulas to 3-CNF
formulas. For a formula ¢ = (a1 V b1) A (a2 V b2) A -+ A (an V by,), where a;, b; are literals, we
define f(¢) = (a1 Vb1 Vb1) A(agVbaVba)A---A(anVb,Vby,). Note that

¢ is satisfiable < f(¢) is satisfiable.

Clearly, f is polynomial time computable given ¢. Hence 3-SAT <, 2-SAT, and in particular
it follows that 2-SAT is NP-complete.

Solution: The issue is that ¢ is actually reducing from 2-SAT to 3-SAT, effectively proving that
2-SAT <, 3-SAT. This is indeed true since 3-SAT € NP. To prove that 2-SAT is NP-complete,
we actually need the opposite statement 3-SAT <, 2-SAT.

3 Show that if any NP-complete problem lies in coNP, then NP = coNP.

Solution: Suppose that L € coNP is NP-complete. We first show how to use that assumption to
prove that any L’ € NP is also in coNP - so that effectively NP C coNP. Since L is NP-complete,
we have L' <, L and thus r <p L. But since L € NP, this means that L’ € NP too and hence
L' € coNP. The other containment coNP C NP can be proved in a similar fashion.

4 Prove that the following problem is NP-complete: Given a set S, a collection C of subsets of S
and a number k, is there a subset T' C S of size k such that TN C; # () for all C; € C? (Hint:
reduce from VERTEXCOVER.)

Solution: This problem is called HITTINGSET. Note that HITTINGSET € NP is witnessed by
the certificate T' and the verifier which simply checks that T'C S, |T'| = k and CNT # () for each
C € C. We further argue that HITTINGSET is NP-complete by showing that VERTEXCOVER <,
HITTINGSET.

We simply transform the instance (G = (V,E),k) of VERTEXCOVER into the instance
(V,E, k) for HITTINGSET. Let us show that this transformation is correct. Suppose first that
(G = (V,E), k) € VERTEXCOVER. This means that there exists a way to choose T' C V with
|T| = k such that each {u, v} = e € E is covered by T: w € T or v € T, i.e. eNT # (). Hence,
(V,E, k) € HITTINGSET. For the other direction, if (V, E, k) € HITTINGSET, then there exists
some T C V of size k with T'Ne # () for each e € F and thus T is a valid vertex cover of size k
for G. Therefore, (G = (V, E), k) € VERTEXCOVER.

5 Let G = (V,FE) be a graph and w: F — N an assignment of non-negative integer weights to the
edges. A subset of edges E' C E is a spanning tree if the subgraph (V, E’) is a tree (no cycles)
that connects all vertices. The weight of the spanning tree is) . w(e). For example, the bold
edges below form a spanning tree of weight 3 + 7 + 8 + 2 = 20.

2
2
87»
3
0
5

Page 2 (of 4)

(CS-524 Computational Complexity e Fall 2024

In the EXACT SPANNING TREE problem (ESP for short), the input consists of a graph G =
(V,E), edge weights w: E — N, and a target k € N. The goal is to decide whether G contains a
spanning tree of weight exactly k. That is,

ESP = {(G,w,k) : G contains a spanning tree of weight exactly k}.
Prove that ESP is NP-complete by finding a reduction SUBSET-SuM <, ESP.

Solution: In an instance (S, t) of Subset-Sum, where S is a set of non-negative integers and ¢
is a non-negative integer, one has to decide whether 3 a subset T" of S that sums to t. We will
convert an instance of Subset-sum into ESP as follows.

1. For each integer ¢ in S, add two separate vertices v and v’ to G. Add an edge of weight ¢
between these two new vertices.

2. For every pair of vertices in G not connected by an edge, add an edge of weight 0.
3. Set k =1t.

The reduction clearly takes polynomial time. Now we prove that (S,t) € Subset-Sum iff
(G, k) € ESP.

1. If (S,t) € Subset-Sum, 3 a T C S that sums to t. Hence, a spanning tree in G' can be
formed by taking edges corresponding to integers in 7" and then connecting the isolated
vertices by zero edges.

2. If (G, k) € ESP, the sum of edges selected in the spanning tree sum to k. By taking the
integers corresponding to the selected non-zero edges in S, one gets T that sums to ¢.
Hence, (S,t) € Subset-Sum.

(*) A multi-variate polynomial equation with integer coefficients is called a Diophantine equation;
for example, 2%y —y? +6 = 0. Let DEQ be the language consisting of all (binary encodings of)
Diophantine equations that admit an integer solution; for example, x = 1, y = —2 for the above
equation. Find a reduction 3-SAT <, DEQ. Do we have DEQ € NP?

Solution: Let ¢ = C1 ACy A --- ANCy, with C; = ;1 V ;2 V {;3 be a 3-SAT instance over
boolean variables {z;} e[, We describe how to transform ¢ into a Diophantine equation. For
each boolean variable x; we introduce a corresponding integer variable y;. Let A be the operator
that transforms a clause C; with negative literals V; C [m] and positive literals P; C [m] into
the polynomial A(C;) = [[;en, ¥j - [1jep (1 — y;). Now, associate to ¢ the polynomial p, over
variables {y;};c(m):

i€k
So that formally our tranformation is f(¢) — p, = 0. Note that this function f is poly-
time computable and indeed yields diophantine equations. For instance, the 3-SAT instance
(x1 Ve VEZ) A (T1V 2y Vas) A (T3 VT4 V7T3) is mapped to the following diophantine equation:
(1 —m1) (1 —22)-23)* + (21 - (1 — 24) - (1 — 25))? + (23 - 24 - 2)* = 0

We prove that the tranformation is correct. Suppose first that ¢ € 3-SAT. Then, it implies
that there is a satisfying assignment {c;};c[,,). Note that p,(c) = 0 since each A(C;)(c) = 0. On

Page 3 (of 4)

(CS-524 Computational Complexity e Fall 2024

the other hand, suppose that p, has a solution c¢. Note that this means A(C;)(c) = 0 for each
i € [k]. Thus, at least one product in each clause is zero, so that ¢ € 3-SAT.

It would be tempting to say that DEQ € NP by just using the solution of the equation as
the certificate, but this is not good enough: there exists Diophantine equations that only have
exponential solutions. This argument is not strong enough to rule out DEQ € NP but it turns
out that DEQ is undecidable (hence DEQ ¢ NP). This is the result of a long line of work that
solved Hilbert’s tenth problem.

Page 4 (of 4)

(CS-524 Computational Complexity e Fall 2024

