Chapter 18
Resolution

Propositional proof systems operate with boolean formulas, the simplest of which
are clauses, that is, ORs of literals, where each literal is either a variable x; or its
negation —x;. A truth-assignment is an assignment of constants 0 and 1 to all the
variables. Such an assignment satisfies (falsifies) a clause if it evaluates at least one
(respectively, none) of its literals to 1. A set of clauses, that is, a CNF formula, is
satisfiable if there is an assignment which satisfies all its clauses. The basic question
is: Given an unsatisfiable CNF formula F', what is the size of a proof that F' is indeed
unsatisfiable? The size (or length) of a proof is the total number of clauses used in it.

A proof of the unsatisfiability of F starts with clauses of F (called axioms),
at each step applies one of several (fixed in advance) simple rules of inferring
new clauses from the already derived ones, and must eventually produce the empty
clause @ which, by definition, is satisfied by none of the assignments.

For such a derivation to be a legal proof, the rules must be sound in the following
sense: if some assignment (of constants to all variables) falsifies the derived clause,
then it must falsify at least one of the clauses from which it was derived. Then the
fact that @ was derived implies that the CNF F was indeed unsatisfiable: given any
assignmenta € {0, 1}" we can traverse the proof going from @ to an axiom (a clause
of F'), and the soundness of the rules will give us a clause of F which is not satisfied
by a.

The main goal of proof complexity is to show that some unsatisfiable CNFs
require long proofs. A compelling reason to study this problem is its connection
with the famous P versus NP question. It has long been known (Cook and Reckhow,
1979) that NP = co-NP iff there is a propositional proof system giving rise to short
(polynomial in | F'|) proofs of unsatisfiability of all unsatisfiable CNFs F'; here and
throughout, | F'| denotes the number of clauses in F.

Thus a natural strategy to approach the NP versus co-NP problem, and hence,
also the P versus NP problem is, by analogy with research in circuit complexity, to
investigate more and more powerful proof systems and show that some unsatisfiable
CNFs require exponentially long proofs. In this and the next chapter we will
demonstrate this (currently very active) line of research on some basic proof
systems, like resolution and cutting planes proofs.

S. Jukna, Boolean Function Complexity, Algorithms and Combinatorics 27, 493
DOI 10.1007/978-3-642-24508-4_18, © Springer-Verlag Berlin Heidelberg 2012

494 18 Resolution

The areas of circuits complexity and proof complexity look similar, at least
syntactically: in proof complexity one also starts from some ‘“‘simplest” objects
(axioms) and applies local operations to obtain a result. But there is a big difference:
the number of “objects of interest” differ drastically between the two settings. There
are doubly exponentially number of boolean functions of n variables, but only
exponentially many CNFs of length n. Thus a counting argument shows that some
functions require circuits of exponential size (see Theorem 1.14), but no similar
argument can exist to show that some CNFs require exponential size proofs. This is
why even existence results of hard CNFs for strong proof systems are interesting in
this setting as well.

The most basic proof system, called the Frege system, puts no restriction on the
formulae manipulated by the proof. It has one derivation rule, called the cut rule:
from AV C and B v —C one can derive A V B in one step. Adding any other sound
rule turns out to have little effect on the length of proofs in this system. The major
open problem in proof complexity is to find any tautology that has no polynomial-
size proof in the Frege system. As lower bounds for Frege are hard to obtain, we
turn to subsystems of Frege which are interesting and natural. One of the simplest
and most important such subsystems is called Resolution. This subsystem is used
by most propositional, as well as first order automated theorem provers.

18.1 Resolution Refutation Proofs

The resolution proof system was introduced by Blake (1937) and has been
made popular as a theorem-proving technique by Davis and Putnam (1960) and
Robinson (1965). Let F be a set of clauses and suppose that F' is not satisfiable. A
resolution refutation proof (or simply, a resolution proof) for F is a sequence of
clauses R = (Cy, ..., C,) where C;, = 0 is the empty clause and each intermediate
clause C; either belongs to F or is derived from some previous two clauses using
the following resolution rule:

AV X; B Vv —x;

18.1
AV B ()

meaning that the clause A v B can be inferred from two clauses A Vv x; and B vV —x;.

In this case one also says that the variable x; was resolved to derive the clause
A Vv B; here A and B are arbitrary ORs of literals. The size of such a proof is
equal to the total number ¢ of clauses in the derivation. It is often useful to describe
a resolution proof as a directed acyclic graph (see Fig. 18.1). If this graph is a
tree, then one speaks about a tree-like resolution proof. For technical reasons the
following “redundant” rule, the weakening rule, is also allowed: a clause A V B can
be inferred from A.

Observe that the resolution rule is sound: if some assignment (of constants to all
variables) falsifies the derived clause A Vv B, then it must falsify at least one of the

18.2 Resolution and Branching Programs 495

yV -z TV -y zV —x -z VoYV oz zVyVz
\ /
—x VvV Yy
Y
/
-z TV z

~ /
~_

Fig. 18.1 A resolution refutation proof of an unsatisfiable CNF formula F. Leaves (fanin-0 nodes)
are clauses of F', and each inner node is a clause obtained from previous ones by the resolution
rule. This proof is not tree-like

clauses A Vv x; and B Vv —Xx; from which it was derived. It is also known (and easy
to show, see Exercise 18.1) that Resolution is complete: every unsatisfiable set of
clauses has a resolution refutation proof.

Interestingly, resolution proofs are related to the model of computation we
already considered above—branching programs.

18.2 Resolution and Branching Programs

Let F be an unsatisfiable CNF formula, that is, for every input a € {0, 1}" there is
a clause C € F for which C(a) = 0. The search problem for F is, given a, to find
such a clause; there may be several such clauses—the goal is to find at least one
of them. Such a problem can be solved by a branching program with at most | F |
nodes. Namely, given an assignment a € {0, 1}"", we can test whether all literals of
the first clause in F are falsified by a. If yes, then we reach a leaf labeled by this
clause. If not, then test whether all literals of the second clause in F are falsified
by a, etc. Note that the resulting branching program is not read-once: if a variable
appears in k clauses, then it will be retested k times.

Of course, the search problem for any unsatisfiable CNF formula can be solved
by a decision tree, and hence, by a read-once branching program. But the size (total
number of nodes) may be then exponential in the number n of variables.

Let Sg(F) be the smallest size of a resolution refutation of F, and BP(F') the
smallest size of (the number of nodes in) a deterministic branching program solving
the search problem for F. It is not difficult to show that Sg(F) > BP(F) (see
the first part of the proof of Theorem 18.1 below). But the gap between these two
measures may be exponential: as mentioned above, any unsatisfiable CNF F has a

496 18 Resolution

trivial branching program of size n| F'| whereas, as we will show in the next section,
some CNFs require Sg(F) exponential in their variables.

The first exponential lower bounds for resolution proofs were obtained long
ago by Tseitin (1970) under an additional restriction that along every path every
particular variable x; can be resolved at most once. He called this model regular
resolution. It turns out that this model exactly coincides(!) with the familiar model
of read-once branching programs.

Let 1-Sr(F) be the smallest size of a regular resolution refutation proof for F,
and 1-BP(F) the smallest size of a deterministic read-once branching program
solving the search problem for F.

The following theorem was used implicitly by various authors and explicitly
noted in Lovasz et al. (1995).

Theorem 18.1. For every unsatisfiable CNF formula F, we have
Sr(F) > BP(F) and 1-Sg(F) = 1-BP(F).

Proof. Resolution proofs = branching programs: To show that Sg(F) > BP(F)
and 1-Sg(F) > 1-BP(F), let R be a resolution refutation proof for F. Construct a
branching program as follows.

e The nodes of the program are clauses C of R.

e The source node is the last clause in R (the empty one), the sinks are the initial
clauses from F'.

e Each non-sink node C has fanout 2 and the two edges directed from C to the two
clauses Cy and C; from which this clause is derived by one application of the
resolution rule. If the resolved variable of this inference is x; then the edge going
to the clause containing x; is labeled by the test x; = 0, and the edge going to
the clause containing —x; is labeled by the test x; = 1 (see Fig. 18.2).

It is straightforward to verify that all clauses on a path determined by an input
a € {0, 1}" are falsified by a, and hence, the last clause of F reached by this path
is also falsified by a. That is, the obtained branching program solves the search
problem, and is read-once if R was regular.

Read-once branching programs = regular resolution proofs: It remains to prove
the more interesting direction that 1-Sg(F) < 1-BP(F). Let P be a deterministic
read-once branching program (1-b.p.) which solves the search problem for F'. That
is, for every input a € {0, 1}" the (unique) computation path on «a leads to a clause
C € F such that C(a) = 0. We will associate a clause to every node of P such that
P becomes a graph of a resolution refutation for F. A vertex v labeled by a variable
will be associated with a clause C, with the property that

C,(a) = 0 for every input @ € {0, 1}" that reaches v. (18.2)

We associate clauses inductively from the sinks backwards. If v is a sink then let C,
be the clause from F labeling this sink in the program P.

18.2 Resolution and Branching Programs 497

yV -z xV -y zV —x -z VoYV oz xVyVz

y=0

- x
\\m& %:0

source node

Fig. 18.2 A branching program obtained from the resolution proof given in Fig. 18.1: just reverse
the direction of arcs and label them accordingly. The program is not read-once

Now assume that the node v of P corresponds to a variable x; and has edges
(v, up) for x; = 0 and (v, u;) for x; = 1. By induction we may assume that u, and
u; are labeled by clauses Cy and Cj satisfying (18.2).

Claim 18.2. C, does not contain —x; and C; does not contain Xx;.

Proof. Otherwise, if Cy contains —x;, take an input @ with a; = 0 that reaches v.
Such an input exists since by the read-once assumption on P, the i-th bit x; was
not asked along any path from the source to v. The input a can reach uy and it
satisfies Cy, in contradiction to the inductive hypothesis. The proof in the case when
C, contains x; is similar. O

We conclude that

(i) Either Cyp = (x; vV A) and C; = (—x; V B),
(ii) Or one of Cy and C; does not contain x;, —x; at all.

In the first case label v with C, = A v B. In the second case label v with the clause
that does not contain x;, —x;. (If both clauses do not contain x;, —x; choose any of
them.)

It is easy to see that the inductive hypothesis (18.2) holds for C,. Indeed, if C,
were satisfied by some (partial) input a reaching the node v then, due to the read-
once property, this input could be extended to two inputs a¢ and a; by setting the
i-th bit to 0 and to 1. But C,(a) = 1 implies that either A(a) = 1 or B(a) = 1 (or
both). Hence, we would have that either Cy(a;) = 1 or Cy(a;) = 1, contradicting
the inductive hypothesis (18.2).

Finally, the clause associated with the source node must be the empty clause,
just because every input reaches it. Thus the obtained labeled digraph represents
a regular resolution derivation for F (possibly with some redundant steps that
correspond to the second case (ii) in the labeling above. O

498 18 Resolution

We thus have a bridge between resolution refutations and branching programs:

e Every resolution refutation is a restricted branching program.
* Every regular resolution refutation is just a read-once branching program.
* Every tree-like resolution refutation is just a decision tree.

The only difference is that now these branching programs solve search problems,
not just decision problems.

Remark 18.3. Note that Claim 18.2 holds for any deterministic branching program,
not just for read-once programs: it is enough that P is a minimal program. Indeed, in
this case a node must be reachable by (at least) two inputs ¢ and b such that a; = 0
and b; = 1, for otherwise the test on the i-th bit made at the node v would be
redundant. However, the fact that the branching program is read-once was essential
to show that the constructed clause C, satisfies (18.2).

To see this, let Cy = (x; VA), C; = (—x; vB)and C, = AV B. Suppose that the
node v is reached by two inputs a and b such that a; = 0 and b; = 1. Assume that
the bit x; was tested along both paths at least once; hence, the paths must diverge
after the test on x; at the node v, that is, a cannot reach C, and b cannot reach C.
Assume now that A(a) = B(b) = 0but A(b) = 1 or B(a) = 1. Then Cyp(a) = 0
and C;(b) = 0but C,(a) = 1 or Cy(h) = 1. In the read-once case such a situation
cannot occur because then every (single!) computation reaching a node v can be
extended in both directions.

18.3 Lower Bounds for Tree-Like Resolution

Let F be an unsatisfiable CNF formula. A resolution proof for F is tree-like
if its underlying graph is a tree. That is, tree-like resolution proof is a special
case of regular resolution proofs; the corresponding branching program for the
corresponding search problem is then just a decision tree. By the size |T'| of a tree-
like resolution proof 7" we will mean the number of leaves in the corresponding
decision tree. Since the search problem for any unsatisfiable CNF formula can be
solved by a decision tree, Theorem 18.1 implies that any such CNF formula has a
tree-like resolution proof, and hence, also regular resolution proof. The question,
however, is: how large tree-like proofs must be?

Lower bounds on the size of tree-like resolution can be proved using the
following game-theoretic argument proposed by Pudldk and Impagliazzo (2000).
There are two players, Prover and Delayer. The goal of the Prover is to construct
a (partial) assignment falsifying at least one clause of F. The goal of Delayer is
to delay this happening as long as possible. The game proceeds in rounds. In each
round

* Prover suggests a variable x; to be set in this round, and
* Delayer either chooses a value 0 or 1 for x; or leaves the choice to the Prover.

18.3 Lower Bounds for Tree-Like Resolution 499

 In this last case, Delayer scores one point, but the Prover can then choose the
value of x;.

The game is over when one of the clauses is falsified by the obtained (partial)
assignment, that is, when all the literals in the clause are assigned 0.

Pudléak and Impagliazzo observed that, if the Delayer has a strategy which scores
r points, then any tree-like resolution refutation proof for F' has size at least 2.
This holds because, given a tree-like derivation, the Prover can use the following
strategy: if the Delayer leaves the choice to the Prover, then the Prover chooses an
assignment resulting into a smaller of the two subtrees.

This result can be easily extended to the case of asymmetric games, where the
Delayer earns different number of points depending on whether the prover sets x; =0
or x; = 1. As before, the game proceeds in rounds. In each round

e Prover suggests a variable x; to be set in this round, and
* Delayer either chooses a value 0 or 1 for x; or leaves the choice to the Prover
e The number of points earned by the Delayer is

— 0if Delayer chooses the value for x;,
— log, a if Prover sets x; to 0, and
— log, b if Prover sets x; to 1.

The only requirementis that 1 /a +1/b = 1; in this case we say that (a, b) is a legal
scoring pair, and call this game the (a, b)-game. Hence, the symmetric game is one
witha = b = 2.

Lemma 18.4. Let F be an unsatisfiable CNF formula F. If Delayer can earn r
points in some asymmetric game on F, then any tree-like resolution refutation proof
for F has size at least 2".

Proof. We will prove the lemma in the converse direction: if F has a tree-like
resolution refutation proof 7" with |T'| leaves then, in any (a,b) game for F, the
Prover has a strategy under which the Delayer can earn at most log | 7’| points.

Consider an arbitrary (a, b)-game on F, and let ¢; be the partial assignment
constructed after i rounds of the game (the i-th prefix of «). By p; we denote the
number of points that Delayer has earned after i rounds, and let 7; be the sub-tree
of T which has as its root the node reached in 7" along the path specified by ¢;. Our
goal is to prove, by induction on i, that

T
|T;| < % (18.3)

The desired inequality p,, < log|T| then follows, because T, consists of just one
clause falsified by «.

So it remains to prove the claim (18.3). At the beginning of the game (i = 0) we
have py = 0 and Ty = T'. Therefore the claim trivially holds.

500 18 Resolution

For the inductive step, assume that the claim holds after i rounds and Prover asks
for the value of the variable x in round i + 1. The variable Prover asks about is
determined by T': it is the variable resolved at the root of the subtree reached after
the i-th round.

It the Delayer chooses the value, then p;+; = p; and (18.3) remains true after
the (i + 1)-th round. Otherwise, let T be the O-subtree of 7;, and T;! the 1-subtree
of T;. Since 1/a + 1/b = 1, we have that

T; T;

701+ 17 = i) = Ty T
a b

If the Delayer defers the choice to the Prover, then the Prover can use the following

“take the smaller tree” strategy: set x = 0if |T’| < |T;|/a, and set x = 1 otherwise;

in this last case we have that |7}'| < |T;|/b. Thus if Prover’s choice is x = 0, then

we get

I U I VA e v
Tl = 2 < 2L =T
~ a T a2pi 2pitloga Dpit

as desired. Since the same holds (with a replaced by b) if Prover’s choice is x = 1,
we are done. O

We now apply this lemma to prove that the unsatisfiable CNF corresponding to
the pigeonhole principle (and even to its “weak’ version) require tree-like resolution
refutation proofs of exponential size.

The weak pigeonhole principle asserts that if m > n then m pigeons cannot sit
in n holes so that every pigeon is alone in its hole.! In terms of 0-1 matrices, this
principle asserts that, if m > n then no m x n 0-1 matrix can simultaneously satisfy
the following two conditions:

1. Every row has at least one 1.
2. Every column has at most one 1.

To write this principle as an unsatisfiable CNF formula, we introduce boolean
variables x; ; interpreted as:

x;,; = L if and only if the i-th pigeon sits in the j-th hole.

Let PHP}' denote the CNF consisting of the following clauses:

e Pigeon Axioms: each of the m pigeon sits in at least one of n holes:

Xi1VXiogV-V Xy foralli =1,...,m.

'The word “weak” is used here to stress that the number m of pigeons may be arbitrarily large. The
larger m is, the “more obvious” the principle is, and hence, its proof might be shorter.

18.3 Lower Bounds for Tree-Like Resolution 501

* Hole Axioms: no two pigeons sit in one hole:
=Xy Y T Xy for all i, 7é i» andj =1,...,n.

Hence, truth assignments in this case are boolean m x n matrices . Such a matrix
can satisfy all pigeon axioms iff every row has at least one 1, whereas it can satisfy
all hole axioms iff every column has at most one 1. Since m > n 4 1, no assignment
can satisfy pigeon axioms and hole axioms at the same time. So PHP)' is indeed an
unsatisfiable CNF.

Theorem 18.5. (Dantchev and Riis 2001) For any m > n, any tree-like resolution
refutation proof of PHP™ has size n?™.

Note that the lower bound does not depend on the number m of pigeons—it may be
arbitrarily large! A smaller (but also exponential) lower bound of the form 2" for
an arbitrary number of pigeons was proved earlier by Buss and Pitassi (1998).

Proof. (Due to Beyersdorff et al. 2010) By Lemma 18.4, we only have to define an
appropriate scoring pair (@, b) for which the Delayer has a strategy giving her many
points in the (a,b) game on PHP)'. We first define the Delayer’s strategy for an
arbitrary (a, b) game, and then choose a and b so that to maximize the total score.
By Lemma 18.4, it is enough to show that the Delayer can earn £2(n log n) points.

The goal of the Delayer is to delay an appearance of two 1s in a column and of an
all-0 row as long as possible. So if Prover asks for a value of x; ;, then the Delayer
is only then forced to set it to O if the j-th column already has a 1. Otherwise it is
beneficial for the Delayer to set x; ; = 1 to avoid an all-0 row. But at the same time,
it is beneficial for her not to set too many 1s in a row to avoid two 1s in a column.
Intuitively, it would be the best for the Delayer to set just one 1 per row. Moreover,
she should not wait too long: if the i-th row already has many Os, she should try to
seta 1 in it, for otherwise she could be forced (by many columns already having a 1)
to set the remaining variables in this row to Os.

To formally describe the strategy of the Delayer, let « be a partial assignment to
the variables X = {x; ; | i € [m],j € [n]}. For pigeon i, let J;(«) be the set of
“excluded free holes” for the pigeon i. These are the holes which are still free (not
occupied by any pigeon) but are explicitly excluded for pigeon i by «:

Ji(a):={j €[n] | a(x;;) =0and a(x; ;) # 1 forall i’ € [m]}.

If Prover asks for a value of x; ;, then the Delayer uses the following strategy
(see Fig. 18.3):

0 if either the i-th row or the j-th column already has a 1;
a(x; ;) =13 1 if |J;(«)| = n/2 and there is no 1 in the j-th column yet;

* otherwise.

Here * means the decision is deferred to the Prover.

502 18 Resolution

Fig. 18.3 The strategy of the j

Delayer: she sets x; ; = 1if /
|J;| > n/2 and there is no 1 0 0
in the j-th column, and sets 3 L
X j = 0 if either the i-th row §n0 ! s * 1
or the j-th column already |) 0
has a 1. Otherwise, she defers i %0 _0#H1* i [% 0 1 #Hol*
the decision to the Prover e . .

i 0 0

J.

If Delayer uses this strategy, then none of the hole clauses —x;, ; vV —x;, ; from
PHP}! will be falsified in the game. Therefore, a contradiction (a falsified clause)
will be a pigeon clause x;; V --- V X;,. That is, the resulting assignment « sets all
n variables in this clause to zero (pigeon i has no hole).

But after the number |J;(a)| of excluded free holes for pigeon i reaches the
threshold n /2, Delayer will not leave the choice to Prover. Instead, Delayer will try
to place pigeon i into some hole. Since this hasn’t happened, the Delayer was forced
to set the remaining /2 variables in the i -th row to 0. Since the Delayer is only then
forced to set x; ; to 0 when the j-th column already has a 1, there must already be
a 1 in each of these n/2 columns. Moreover, no two of these 1s can be in one row,
since Delayers strategy forbids this: she always sets a “dangerous” variable (with a
1 in the same row or column) to 0. Therefore, at the end of the game at least n/2
variables must be set to 1, and no two of these 1s lie in one row or one column. We
assume w.l.0.g. that these are the variables x; ;, fori = 1,...,n/2. Let us check
how many points Delayer earns in this game. We calculate the points separately for
each pigeoni = 1,...,n/2.

Case 1: Delayer sets x; ;, to 1. Then pigeon i was not assigned to a hole yet, and
|Ji(a)| = n/2. Hence, there must be a set J of |J| > n/2 0-positions in the i-th
row of . Moreover, all these positions must be already set to 0 by the Prover (not
by the Delayer) because none of the columns j € J can have a 1, by the definition
of J;(a). Thus before Delayer sets cc(x; ;) = 1, she has already earned points for
all |J| > n/2 previous 0-settings by the Prover. That is, in this case Delayer earns
at least (n/2) loga points.

Case 2: Player sets x; j to 1. In this case Delayer earns (1/2) log b points.
Thus, the Delayer earns either (1n/4) logh or (n?/8)loga points. To maximize
the score, we set b = n/logn and

b [1/(b—1)y _ 9(10;%”)
b_1_1+b_1_9(e)=2 :

a =

Since 1/a+1/b = (b—1)/b+ 1/b = 1, this is a legal scoring, and Delayer earns
£2(n logn) points, as desired. O

18.4 Tree-Like Versus Regular Resolution 503
18.4 Tree-Like Versus Regular Resolution

A partial ordering of A is a binary relation a — b which is antisymmetric and
transitive. Thatis, @ — b implies =(b — a),anda — b and b — ¢ impliesa — c.
An element ¢ € A is minimal if it has no predecessor, that is, if =(b — a) for
all b € A, b # a. Itis clear that in each partial order there must be at least one
minimal element. We consider the CNF formula G7, expressing the negation of

this property. For this we take A = {1,...,n} and associate a boolean variable x;;
to each pair (i, j) of elements. We interpret these variables as x;; = 1 if and only if
i—J.

The CNF formula G T,, consists of three sets of clauses. The first two sets consist
of all clauses —x;; V —=x jx V x;x and —x;; vV —x; for all distinct i, j, k. These clauses
ensure that we have a partial ordering. The third set consists of n clauses

Cn(j):xlj Ve VXj—1j VXj41j VooV Xy, j=1,...,n

stating that every element j has at least one predecessor (no minimal element). In
terms of graphs, the CNF formula G T}, is a negation of the property that if a directed
graph is transitive and has no loops and no cycles of size two, then there must be at
least one source node, that is, a node of fanin 0.

It was conjectured that G T, requires resolution refutation proofs of exponential
size. And indeed, it was shown by Bonet and Galesi (1999) that tree-like refutations
for this CNF must be of exponential size. However, Stalmark (1996) showed that
this CNF has a small regular resolution refutation.

Theorem 18.6. (Stalmark 1996) The CNF formula GT, has a regular resolution

refutation of polynomial size.

Proof. We will construct the desired refutation proof recursively. Our initial clauses
(axioms) are A(i, j. k) = —x;; V—xx VXik, B(i, j) = —x;ij V—x};, and the clauses
C,(j) forall j =1,...,n. We introduce auxiliary clauses

Cm(]) = Xy V"'vxj—l,j ij+l,j \/"'me,j

forall m = 2,...,n, stating that some element i € {1,...,m} is smaller than j.
The idea of the proof is to obtain clauses of the form C,,(j) from m = n down to
m = 2 in the following way:

Co(1) Co(2) ... Co(n—1) Culn)
Cn—l(l) Cn—l(z) Cn—l(” - 1)

G G(2)

504 18 Resolution

Cm+1(]) A(lam_l' 17])
Cm(J) V =1,m41 Cmt1(m+1) Cm+1(J) A(2,m+1,7)
Cm(J) Va2,ms1 VeV Tmmyl Cn(§) V =22, m41

o —

Cm(]) \ T3,m+1 VeV Tm, m+1

|

: Cm1(5) Alm,m+1,)
} o

Cm(]) V Tjm+1 V Tm,m+1 Cm(]) V Tm,m+1

Cm+1(7) B(m +1,7)
o
Cm(j) V xjm Cm(J) V T m+1
c l() /
m\]J

Fig. 18.4 Resolution derivation of C,,(j), for j # m + 1. Note that x j.m=+1 can not be deleted in
the upper part of the derivation but is removed in the last step of the derivation. Note also that the
derivation is not tree-like: the same clause C,, 4 () is used many times

Note that the first (top) row corresponds to our initial CNF formula G T,,, the second
to GT,_, and so on. For each m, clauses C, (1), ..., C,,(m) are obtained in parallel.
Each C,,(j) is obtained using the clauses Cy,+1(j) and Cy41(m + 1) derived
in the previous step, and the initial clauses (axioms) A(l,m + 1,j), AQ2,m +
1,7),....,A(m,m + 1, j) and B(m + 1, j) (see Fig. 18.4). At the end we easily
derive the empty clause from C»(1), C2(2) and B(2, 1). O

Remark 18.7. Alekhnovich et al. (2007) proved that an appropriate modification
GT! of GT, requires regular refutations of exponential size, but has (non-regular)
resolution refutations of polynomial size. More precisely, if S denotes the smallest
size of a non-regular resolution refutation of GTn/ , and R the smallest size of a
regular resolution refutation of GT), then log R = 2(~/S). Using different CNF
formulas, Urquhart (2011) obtained even larger gap: log R = £2(S/polylog(S)).
Thus, we have the following separations, where “4 <« B” stands for “proof system
A is exponentially weaker that B”:

tree-like resolution < regular resolution < general resolution.

18.5 Lower Bounds for General Resolution 505
18.5 Lower Bounds for General Resolution

General, non-tree-like resolution proofs are much harder to analyze. The first
exponential lower bound for the size of such proofs was proved by Haken (1985).

Theorem 18.8. (Haken 1985) Any resolution refutation proof of PHP),_, requires
size 29

Proof. (Due to Beame and Pitassi 1996) The proof is by contradiction. We define
an appropriate notion of a “fat” clause and show two things:

1. If PHP; _, has a short resolution proof, then it is possible to set some variables to
constants so that the resulting proof is a refutation of PHP} _, for a large enough
m, and has no fat clauses.

2. If m is large enough, then every refutation proof for PHP), _, must have at least
one fat clause.

This implies that PHP} _, cannot have short resolution proofs.
In the case of the CNF formula PHP],_, truth assignments « are n by n — 1
boolean matrices. We say that a truth assignment « is i -critical if

e The i-th row of « is the only all-0 row, and
e Every column has exactly one 1.

Note that each such assignment « is “barely unsatisfying’: it satisfies all hole axioms
—X;,,j V 7, ; as well as the axioms of all but the i/-th pigeon. That is, the only
axiom it falsifies is the pigeon axiom C; = x;1 V X;2 V -+ V X;,—1. Thus an i-
critical assignment corresponds to an assignment of pigeons to holes such thatn — 1
of the pigeons are mapped to n — 1 different holes, but the i -th pigeon is mapped to
no hole at all. Call an assignment « critical if it is i-critical for some 1 < i < m.
The properties of critical truth assignments make it convenient to convert each
clause C to a positive clause C T which is satisfied by precisely the same set of
critical assignments as C. More precisely to produce C *, we replace each negated
literal —x; ; with the OR of all variables in the j-th column, except the i-th one:

Xi’j =X1,j Vo VX1 VXit1j VoV Xy .

Note that the monotone version C T of every hole axiom C = —x;, ; V =X, ; is
just the OR of all variables in the j-th column, and hence, is satisfied by any critical
assignment.

Claim 18.9. For every critical truth assignment o, C () = C().

Proof. Suppose there is a critical assignment o such that C*(a) # C(«). This
could only happen if C contains a literal —x; ; such that —x; ; (@) # X; ;(cr). But
this is impossible, since « has precisely one 1 in the j-th column. O

Associate with each clause in a refutation of PHP}_; the set

Pigeon(C) = {i/there is some i -critical assignment « such that C(«) = 0}

506 18 Resolution

of pigeons that are “bad” for this clause: some critical assignment of these pigeons
falsifies C.
The width, w(C), of a clause is the number of literals in it.

Claim 18.10. Every resolution refutation of PHP)_, must have a clause C such
that w(C*) > n?/9.

Proof. Define the weight of a clause C as u(C) := |Pigeon(C)|. By the definition,
each hole axiom has weight 0, each pigeon axiom has weight 1, and the last (empty)
clause has weight n since it is falsified by any truth assignment. Moreover, this
weight measure is subadditive: if a clause C is derived from clauses A and B, then
w(C) < n(A) + n(B). This holds because every assignment (even a non-critical
one) falsifying C must falsify at least one of the clauses A and B. Therefore, if C
is the first clause in the proof? with 11(C) > n/3, we must have

n/3 < u(C) <2n/3. (18.4)

Fix such a “medium heavy” clause C and let s = u(C) be its weight. Since n/3 <
s < 2n/3,itis enough to show that the positive version C ™ of this clause must have
w(C ™) > s(n — s) distinct variables.

Fix some i € Pigeon(C) and let & be an i -critical truth assignment with C(«) =
0. For each j ¢ Pigeon(C), define the j-critical assignment &', obtained from « by
toggling rows i and j. That is, if @ maps the j-th pigeon to the k-th hole, then o’
maps the i -th pigeon to this hole (see Fig. 18.5).

Now C(a’) = 1 since j ¢ Pigeon(C). By Claim 18.9, we have that C *(a) = 0
and C*(a’) = 1. Since the assignments o,a’ differ only in the variables X; ; and
Xk, this can only happen when C * contains the variable Xi k-

Running the same argument over all n — s pigeons j ¢ Pigeon(C) (using the
same «), it follows that C* must contain at least n — s of the variables Xidseoos
X; n—1 corresponding to the 7-th pigeon. Repeating the argument for all pigeonsi €
Pigeon(C) shows that C ™ contains at least s(n — s) variables, as claimed. O

We can now finish the proof of Theorem 18.8 as follows. Let R be a resolution
refutation proof of PHP!!_,. Let a and b > 2 be positive constants (to be specified

k k

10000 10000

jloooo i 10000

.]) 00100 00100

Fig. '18.5 Assignment o’ is i |0(©0 00 i |o(ooo

f)btamed fr‘omaby 00010 00010

interchanging the i -th and 0000 1 00001
J -th rows

ZRecall that a proof is a sequence of clauses. Alternatively, one can apply Lemma 1.3.

18.5 Lower Bounds for General Resolution 507

Fig. 18.6 Setting of

constants to eliminate clauses ’
containing x; ;; non-shaded v
positions are not set. In this 0
way PHP;, _, is reduced to 0
PHP!”} i 0010
0
0

later). For the sake of contradiction, assume that
IR| < e/

Together with R we consider the set RT = {CT | C € R} of positive versions
of clauses in R. Say that a clause is fat if it contains at least n%/b variables. Let S
be the total number of fat clauses in R™. Since each fat clause has at least a 1/b
fraction of all the variables, there must be (by the pigeonhole principle!) a variable
x;,; which occurs in at least S/b of fat clauses in R*.

Set this “popular” variable to 1, and at the same time set to O all the variables
x;j and x;7; for all j* # j,i’ # i (see Fig. 18.6). After this setting, all the
clauses containing x; ; will disappear from R (they all get the value 1) and the
variables which are set to 0 will disappear from the remaining clauses.

Applying this restriction to the entire proof R leaves us with a refutation proof
Ry for PHP'Z), where the number of fat clauses in R is at most S(1 — 1/b).
Applying this argument iteratively d = b1In S < (b/a)n times, we are guaranteed
to have knocked out all fat clauses, because

S(1—1/b)4 <emS=/b =1,

n

Thus we are left with a refutation proof for PHP}; _,, where

m=n—d=>(1->b/a)n,

and where w(C) < n?/b for all its clauses. But Claim 18.10 implies that any
refutation proof of PHP? _, must contain a clause C for which

n?/b>w(C%)>m?/9> (1—b/a)’n?/9.

To get the desired contradiction, it is enough to choose the parameters ¢ and b so
that (1—b/a)*> > 9/b which, in particular, is the case forb = 16and a = 4b = 64,
O

The reader may wonder: where in this proof did we used the fact that the clauses
in a refutation are derived using only resolution and weakening rules? The same
argument seems to work for more general derivations. And this is indeed the case:
the only important thing was that the formulas in such a derivation are clauses—this
allowed us to kill off a clause by setting just one variable to a constant.

508 18 Resolution

Actually, a closer look at the proof shows that it also works for a more general
derivation rule, called semantic derivation rule. This rule allows to derive a clause
C from clauses Cy, ..., Cy if these clauses “semantically imply” C in the following
sense: for all @ € {0, 1}",

Ci(e) =1,...,C(x) =1 implies C;(x) = 1.

A semantic proof of an unsatisfiable CNF F is a sequence R = (Cy,...,C;) of
clauses such that C; = 01is the empty clause and each C; is either an axiom (belongs
to F') or is obtained from k or fewer previous clauses (already derived or belonging
to F') by one application of the semantic rule.

The only difference is that now instead of (18.4) we will have (cf. Lemma 1.3):

n kn
- C) < _
1 MO =5

which results in a lower bound w(C ™) > n?/(k + 1) in Claim 18.10. The rest is
the same with constants b := (k + 1)> and @ := (k + 1)°. The resulting lower
bound is then e”/**+D’ which is super-polynomial as long as k < /n/logn.

18.6 Size Versus Width

We have already seen that “fat” clauses—those whose width (number of literals)
exceeds some given threshold value—play a crucial role in trying to show that the
size of a resolution proof (= the total number of lines in it) must be large. We are
now going to show that this is a general phenomenon, not just an accident: if any
resolution proof for an unsatisfiable CNF formula F' must contain at least one fat
clause, then F cannot have a short resolution proof.

The width of a clause C is just the number of literals in it. If F is a set of clauses
then its width w(F') is the maximum width of its clause. Recall that each resolution
refutation R is also a set (more precisely, a sequence) of clauses. Hence, the width
of a refutation is also the maximum width of a clause participating in it.

Now let F' be an unsatisfiable CNF of n variables. Define its resolution refutation
width wg (F) as the minimum width of a resolution refutation of F. The resolution
refutation size Sg(F) is, as before, the minimum number of clauses in a resolution
refutation of F'. That is,

wr(F) = min{w(R) : R is a resolution refutation proof of F}
and

Sr(F) = min{|R]| : R is a resolution refutation proof of F'}.

18.6 Size Versus Width 509

Note that refutation proofs R achieving wr(F) and Sg(F) may be different!
Let also S7(F) denote the minimum number of clauses in a tree-like resolution
refutation of F.

What is the relation between these parameters? If we use all clauses of the CNF
F in its refutation, then wg(F) > w(F). But this is not true in general: it may
happen that not all clauses of F are used in the refutation of F.

The relation Sg(F) < (2n + 1)"*F) between proof-size and proof-width is easy
to see: since we only have 2n literals, the number of all possible clauses of width k
does not exceed (2n + 1)*. Much more interesting is the following lower bound on
proof-size in terms of proof-width: only CNF formulas having narrow proofs can be
proved in a short time!

Theorem 18.11. (Ben-Sasson and Wigderson 2001) For any unsatisfiable k-CNF
formula F of n variables,

AY
log Sp(F) > YR — k) (18.5)
16n
and
log S7(F) = wg(F) — k. (18.6)

For the proof of this theorem we need a concept of a restriction of CNFs and
of refutation proofs. Let F be some set of clauses (think of F as a CNF or as a
refutation proof). Let x be some of its literals. If we set this literal to 0 and to 1, then
we obtain two sets of clauses:

e F.—ois F with all clauses containing —x removed from F (they get value 1) and
literal x removed from all the remaining clauses of F' (it gets value 0);

e F.—is F with all clauses containing x removed from F and literal —x removed
from all the remaining clauses of F.

Note that, if F' was an unsatisfiable CNF, then both CNFs F,—, and F,—; remain
unsatisfiable. Moreover, if R was a resolution refutation proof of F and a € {0, 1},
then R, —, is also a resolution refutation proof of F,—,. Indeed, if at some step in R
a literal x is resolved using the resolution rule, then this step in R—, corresponds
to an application of the weakening rule:

AVvx BvVv-x A B
— or .
AV B AV B AV B

Lemma 18.12. Let F be an unsatisfiable k-CNF formula. If wg(Fy=1) < w—1
and wg(Fy=9) < w, then wg(F) < max{w, k}.

Proof. The idea is to combine refutations for F,—; and for F,— into one refutation
proof for F. First we can deduce —x from F,—; using clauses of width at most w.
To do this, follow closely the deduction of the empty clause from F,—;, which

510 18 Resolution

uses clauses of width at most w — 1, and add the literal —x to every clause in that
deduction. Let R be the resulting deduction of —x from F,—;. Now, from —x and F’
we can deduce Fy—(by using the resolution rule: just resolve —x with each clause
of F containing x to get F\—o. This step does not introduce any clauses of width
more than k. Finally, deduce the empty clause from F,—(using clauses of width at
most w. O

Now let W be a parameter (to be specified later), and call a clause fat if it has
width larger than W. Set also

—1
a:= 1—K > W/,
2n -

Lemma 18.13. If a k-CNF F has a refutation that contains fewer than a’ fat
clauses then wg(F) < W + b + k.

Proof. We prove this by induction on b and n. The base case b = 0 is trivial, since
then we have no fat clauses at all implying that wg (F) < max{W,k} < W + k.
Now assume that the claim holds for all smaller values of n and b. Take a
resolution refutation R of F using < a” fat clauses. Since there are at most 2n
literals and any fat clause contains at least W of them, an average literal must
occur in at least a W/2n fraction of fat clauses. Choose a literal x that occurs
most frequently in fat clauses and set it to 1. This way we kill off (evaluate
to 1) all clauses containing x. The obtained refutation R,—; of Fy—; has fewer
than a® (1 — %) = a®7! fat clauses. By induction on b we have wg(Fy=;) <
W + (b — 1) + k. On the other hand, since Fy—(has one variable fewer, induction
onn yields wg (Fy=o) < W +b + k. The desired upper bound wg(F) < W +b+k
now follows from Lemma 18.12. O

Proof of Theorem 18.11. Choose b so that a” = Sg(F). Then

bh— log Sg(F) _ 2nlog Sg(F) _ 4nlog Sg(F)
 loga ~ Wlogle) ~ w

and, by Lemma 18.13,

4nlog Sk(F
wR(F)§W+%R()+k.

Choosing W := 2,/nlog Sg(F') to minimize the right-hand side yields the desired
upper bound wr(F) < 4,/nlog Sr(F) + k. This finishes the proof of (18.5). We
leave the proof of (18.6) as an exercise; hint: as the literal x to be set take the last
literal which is resolved to get the empty clause. O

Remark 18.14. That Theorem 18.11 cannot be substantially improved was shown
by Bonet and Galesi (1999): there are unsatisfiable k-CNF formulas F (k being a
constant) such that Sg(F) < n®WD but wg(F) = 2(/n).

18.7 Tseitin Formulas 511

A general frame to prove that the proof-width wg(F'), and hence, the proof-size
Sr(F) must be large is as follows.

1. Take an arbitrary resolution refutation proof R for F.
2. Define some measure 1 (C) of “weight” of its clauses C € R such that

a. The weight of each axiom is small;

b. The last (empty) clause @ has large weight, and

c. The measure is subadditive: u(C) < u(A) + p(B) if C is a resolvent of A
and B.

3. Use the subadditivity of p to find a clause C € R of “intermediate” (large, but
not too large) measure ©(C).
4. Show that any clause of intermediate j;i-measure must have many literals.

To achieve these goals one usually takes £(C) to be the smallest number of axioms
in a “witness” for C. A set A of axioms is a witness for C if every assignment
satisfying all axioms in A satisfies the clause C as well. Then one argues as follows.
The minimality of A implies that, for any axiom A € A, there must exist an
assignment « such that C(¢) = 0 but B(a) = 1 forall B € A, B # A. Now
suppose that flipping the i -th bit of & gives us an assignment ¢’ satisfying all axioms
in A. Since A is a witness for C, we have that C(¢’) = 1. But the assignments « and
o' only differ in the i-th position, implying that the i -th variable x; or its negation
must be present in C. Note that this was the way we argued in the proof of Haken’s
theorem for PHP"*!,
In the next sections we show how this idea works in other situations.

18.7 Tseitin Formulas

In this section we discuss a large class of unsatisfiable CNFs whose resolution
refutation proofs have large width. These CNFs formalize the basic property of
graphs: in every graph, the number of vertices of odd degree must be even. This
is a direct consequence of Euler’s theorem stating that the sum of degrees in any
graph is two times the number of edges, and hence, is even.

Let G = (V, E) be a connected graph, and f : V — {0, 1} an assignment of bits
0 and 1 to its vertices. Let d(v) denote the degree of a vertex v € V. Associate with
each edge e € E a boolean variable x.. For each vertex v € V, let A, be a CNF
formula with 29! clauses expressing the equality

L,: P x. = f. (18.7)

evee

For example, the equality x @ y @ z = 0 is expressed by a CNF

(xVayV)AXVYV)AKXVoYyVI)A(XVYV2).

512 18 Resolution

The Tseitin formula, (G, f), is the AND of all these CNF formulas 4,, v € V.
Tseitin (1970) used such formulas to prove the first exponential lower bound on the
size of regular resolution.

Remark 18.15. 1f k is the maximal degree of G, then 7(G, f) is a k-CNF formula
with at most 725! clauses and nk /2 variables. Thus, if the degree k is constant,
then 7(G, f') is a k-CNF formula with O(n) clauses and O(n) variables.

The meaning of Tseitin’s formulas is the following. The function f “charges”
some of the vertices, that is, gives them value 1. Each assignment o of constants
0 and 1 to the variables x, defines a subgraph G, of G. Such an assignment o
satisfies (G, f) if and only if exactly the charged vertices have odd degrees in the
subgraph G.

It is not difficult to show that if we charge an odd number of vertices, that is,
if @,cp f(v) = 1, then 7(G, f) is not satisfiable. Indeed, otherwise the graph G
would have a subgraph in which an odd number of vertices (the charged ones) have
odd degree, contradicting the Euler theorem. Interestingly, the converse also holds.

Lemma 18.16. (Tseitin 1970) For a connected graph G = (V,E), the CNF
(G, f) is satisfiable if and only if an even number of vertices are charged by f.

Proof. Assume first that f charges an odd number of vertices. We have used Euler’s
theorem to show that then t(G, f') is unsatisfiable. This can also be shown directly.
Observe that each variable x, with e = {u, v} appears in exactly two equations L,
and L,. Hence, if we sum (modulo 2) all equations in (18.7), the left hand side will
be equal to 0, whereas the right hand side will be 1, a contradiction. Hence, in this
case the system (18.7) is not satisfiable.

Now assume that f charges an even number of vertices. We have to show that
then t(G, f) is satisfiable. For this, we make the following simple observation. Now
start with an all-0 assignment «. If « satisfies all equalities L,, we are done. If «
does not satisfy all equalities, then the number of unsatisfied equalities must be even
(the number of vertices v with f(v) = 1 must be even). We take any two vertices u, v
with unsatisfied equalities L,, L, and change all bits of « corresponding to edges
on a path from u to v (such a path must exist since G is connected). The obtained
assignment o’ will already satisfy L, and L,. Moreover, by our observation,®> we
have that L, (¢') = L, («) for all vertices w ¢ {u,v}. Hence, the number of
unsatisfied equalities decreases by two. Proceeding in this way we will eventually
reach an assignment satisfying all equalities. O

We now give a general lower bound of the resolution refutation width of
unsatisfiable Tseitin formulas (G, f) in terms of one combinatorial characteristic
of the underlying graphs G = (V, E). Forasubset S C V of vertices, lete(S, '\ S)
denote the number of crossing edges with one endpoint lying in .S and the other in

3Let @ € {0, 1}F be an assignment, and e}, e, two edges with a common endpoint v. Let o’ be
obtained by flipping the values of both variables x,, and x,,. Then L,(¢’) = L, ().

18.7 Tseitin Formulas 513

V'\ S. Define the edge expansion, ex(G), of G as the minimum of e(S, V' \ §) over
all subsets S with n/3 < |S| < 2n/3; here n = |V| is the total number of vertices

in G.

Theorem 18.17. (Ben-Sasson and Wigderson 2001) Let G = (V, E) be a con-
nected graph, and f : 'V — {0, 1} satisfy @, f(v) = 1. Then

wr(t(G, f)) = ex(G).

Proof. Fix an arbitrary resolution refutation proof R for (G, f). Recall that
axioms of this proof are CNF formulas A4, corresponding to equalities (18.7). For a
subset S C V of vertices, let Ag be the AND of all clauses in the sets A,, v € S.
Define the measure 1 : R — N on clauses by:

w(C) := min{|S| : As implies C}.

If C is one of the axioms, then clearly u(C) = 1. Furthermore, u is subadditive:
w(C) < u(A) + u(B) if C is aresolvent of A and B.

Claim 18.18. ;(9) = n.

Proof. By the definition of u, u(9) is exactly the smallest number |S| of vertices
such that Ay is unsatisfiable. So it is enough to show that Ay is satisfiable for each
subset S C V of size |S| < |V|. To show this, take any vertex v € V' \ S. Consider
the function f/: V — {0, 1} such that f/(v) = 1— f(v) and f'(u) = f(u) for all
u # v. Since @,y f'(v) = 0, Lemma 18.16 implies that t(G, f”) is satisfiable.
Since v & S, the CNF Ag is a part of the formula 7(G, f), and hence, is satisfiable
as well. Hence, u(9) = n. O

By the subadditivity of u, there must exist a clause C € R such thatn/3 < u(C) <
2n/3, an “intermediate clause” (see Lemma 1.3). Let S € V' be a minimal set for
which Ag implies C; hence n/3 < |S| < 2n/3.

To finish the proof of the theorem, it is enough to show that x, € C for every
crossing edge ¢ = {u,v} withu € S andv € V \ S. For the sake of contradiction,
assume that x, ¢ C. By the minimality of S, there exists an assignment o which
satisfies all axioms in Ags except those in A,, and falsifies C. The assignment o/,
obtained from « by flipping the bit x,, satisfies all axioms in Ag (because v & S),
and hence, must satisfy the clause C. This is a contradiction because C(«) = 0 and
the new assignment o’ still agrees with « for all variables of C. O

Theorem 18.17 gives us a whole row of unsatisfiable k-CNF formulas F =
(G, f) of n variables such that k = O(1), |F| = O(n) and wg(F) = £2(n).
Together with Theorem 18.11, these CNF formulas require resolution proofs of
size 25 For this, it is enough that the underlying graph G has constant degree k
and still has large edge extension ex(G). The existence of such graphs can be
shown by simple probabilistic arguments. There are even explicit graphs with these
properties. Such are, for example, Ramanujan graphs considered in Sect. 5.8. By
the Expander Mixing Lemma (see Appendix A) these graphs have ex(G) = §2(n).

514 18 Resolution
18.8 Expanders Force Large Width

We have shown that resolution refutation proofs for Tseitin CNF formulas (G, f)
require large width as long as the underlying graph G has good expanding
properties. It turns out that a similar fact also holds for any unsatisfiable CNF as
long as it has good expansion properties in the following sense.

Look at a CNF formula F as a ser of its clauses. Hence, | F| denotes the number
of clauses in F', and G € F means that the CNF G contains only clauses of F. Let
var(F) denote the number of variables in F.

We say a CNF formula F is (r, ¢)-expanding if

var(G) > (1 + ¢)|G]| for every subset G C F ofits |G| < r clauses.

We can associate with F' a bipartite graph, where nodes on the left part are clauses
of F, nodes on the right part are variables, and a clause C is joined to a variable x
iff x or —x belongs to C. Then F is (r, c)-expanding iff every subset of s < r nodes
on the left part have at least (1 + ¢)s neighbors on the right part.

Theorem 18.19. (Ben-Sasson and Wigderson 2001) Let F be an unsatisfiable
CNF formula. If F is (r, c)-expanding, then wg(F) > cr/2.

We first prove three claims relating the number of clauses with the number of
variables in unsatisfiable CNF formulas.

Claim 18.20. If |G| < var(G) forevery G C F, then F is satisfiable.

Proof. We will use the well-known Hall’s Marriage Theorem. It states that a family
of sets S = {81, ..., Sy} has a system of distinct representatives (that is, a sequence
X1, ...,X%y, of m distinct elements such that x; € §;) iff the union of any number
1 < k < m of members of S has at least k elements.

Now assume that |G| < var(G) for all G € F. Then, by Hall’s theorem,
we can find for each clause C of F a variable x¢ € var(C) such that x¢ or its
negation appears in C, and for distinct clauses these variables are also distinct. We
can therefore set these variables to 0 or 1 independently to make all clauses true.
Hence, F is satisfiable. O

Say that an unsatisfiable CNF formula is minimally unsatisfiable if removing any
clause from it makes the remaining CNF satisfiable. The following claim is also
known as Tarsi’s Lemma.

Claim 18.21. If F is minimally unsatisfiable, then | F| > var(F).

Proof. Since F is unsatisfiable, Claim 18.20 implies that there must be a subset of
clauses G C F such that |G| > var(G). Let G C F be a maximal subset of clauses
with this property. If G = F then we are done, so assume that G C F and we will
derive a contradiction.

18.8 Expanders Force Large Width 515

Take an arbitrary sub-formula H € F \ G, and let Vars(H) be the set of its
variables. Due to maximality of G, Vars(H) \ Vars(G) must have at least |H |
variables, for otherwise we would have that var(G U H) < |G U H|, a contradiction
with the maximality of G.

Thus the CNF formula F \ G satisfies the condition of Claim 18.20, and hence,
can be satisfied by only setting constants to variables in Vars(F) \ Vars(G). Since F
is minimally unsatisfiable, the CNF formula G must be satisfiable using only the
variables in Vars(G). Altogether this gives us a truth assignment satisfying the entire
formula F', a contradiction. O

As before, we say that a CNF formula F implies a clause A if any assignment
satisfying F also satisfies A. We also say that F' minimally implies A if the CNF
formula F implies A but none of its proper subformulas (obtained by removing any
clause) does this.

Claim 18.22. If F minimally implies a clause A, then |A| > var(F) — | F|.

Proof. Let Vars(F) = {xi,...,x,} and assume that Vars(4) = {xi,..., xx}. Take
a (unique) assignment @ € {0, 1}* for which A(a) = 0. Since F implies A,
restricting F' to o must yield an unsatisfiable formula F;, on variables x4, ..., X,.
The formula F,, must also be minimally unsatisfiable because F' minimally implied
A. By Claim 18.21, F, must have more than n — k clauses. Hence, |F| > |F,| >
n —k = var(F) — | A|, as desired. O

We now turn to the actual proof of the theorem.

Proof of Theorem 18.19. Let F be an (r, ¢)-expanding unsatisfiable CNF formula,
and let R be any resolution refutation proof of F'. We can assume that both numbers
r and ¢ are positive (otherwise there is nothing to prove). With each clause C in R
associate the number

1w(A) = min{|G|: G C F and G implies A}.

It is clear that u(A) < 1 for all clauses A of F. Furthermore, u is subadditive:
w(C) < u(A)+u(B)if C isaresolventof A and B. Finally, the expansion property
of F implies that ;£(0) > r. Indeed, by the definition, (0) is the smallest size |G|
of an unsatisfiable subformula G C F, and Claim 18.21 yields |G| > var(G). Had
we 1(0) < r, then we would also have |G| < r and the expansion property of F
would imply var(G) > (1 + ¢)|G|, a contradiction.

Hence, the subadditivity of u implies that the refutation R of F' must contain a
clause C such that r/2 < u(C) < r (cf. Lemma 1.3). Fix some G C F minimally
implying C; hence, r/2 < |G| = u(C) < r. By the expansion of F, var(G) > (1+
¢)|G|. Together with Claim 18.22 this implies |C | > var(G) — |G| > ¢|G| = cr/2,
as desired. O

516 18 Resolution
18.9 Matching Principles for Graphs

We already know (see Theorem 18.8) that the pigeonhole principle PHP)' requires
resolution proof of exponential size, as long as the number m of pigeons is
m = n + 1, where n is the number of holes. However, the larger m is, the more
true the pigeonhole principle itself is, and it could be that PHP)" with larger number
m pigeons could be refuted by much shorter resolution refutation proof. We now will
use expander graphs to prove that PHP}' has no resolution proofs of polynomial size
even if we have up to m = n>~°() pigeons.

Given a bipartite m x n graph G = ([m], [n], E), we may consider the CNF
formula PHP(G) which is an AND of the following set of axioms:

* Pigeon Axioms: C; = \/; j)ep Xij fori =1,....m.
* Hole Axioms: —x;, ; V —x;, ; foriy # i, € [m]and j € [n].

That is, the graph dictates what holes are offered to each pigeon, whereas hole
axioms forbid (as in the case of PHP)) that two pigeons sit in one hole.

Observe that, if m > n and if the graph G has no isolated vertices, then the
CNF formula PHP(G) is unsatisfiable. Indeed, every truth assignment « defines a
subgraph G, of G. Now, if « satisfies all hole axioms then G, must be a (possibly
empty) matching. But we have m > n vertices of the left side. Hence, at least one
of these vertices i € [m] must remain unmatched in G, implying that C; («) = 0.

Observe also that PHP)! = PHP(K,, ,) where K,, , is a complete bipartite mxn
graph. Moreover, if G’ is a subgraph of G, then every resolution refutation for
PHP(G) can be turned to a resolution refutation of PHP(G’) just by setting to 0
all variables corresponding to edges of G that are not present in G’. Thus to prove
a lower bound of the resolution complexity of PHP(G) it is enough to prove such a
bound for any subgraph of G.

This opens plenty of possibilities to prove large lower bounds for PHP}': just
show that there exists a graph G (a subgraph of K, ,) such that PHP(G) requires
long resolution refutation proofs. By Theorems 18.11 and 18.19, this can be done
by showing that the CNF formula F = PHP(G) has large expansion. This, in turn,
can be achieved if the underlying graph G itself has good expansion properties.

A bipartite graph is an (r, c)-expander if every set of k < r vertices on the
left part has at least (1 + ¢)k neighbors on the right part. It can be easily shown
(Exercise 18.4) that if G is an (r, c)-expander then the CNF formula PHP(G) is
(r, ¢)-expanding.

Using a probabilistic argument it can be shown that (r, ¢)-expanders with ¢ > 0,
r = 2(n) and constant left-degree exist (Exercise 18.5). Hence, the CNF formula
F = PHP(G) has N = O(m) variables and each its clause has constant width.
Theorem 18.19 implies that wg (F') = £2(n). So by Theorem 18.11, every resolution
refutation for F, and hence, for PHP”' must have size exponential in wg(F)*/N =
2n*/m).

This gives super-polynomial lower bound on the size of resolution refutations of
PHP? for up to m < n?/logn pigeons. In Sect. 18.3 we have proved that, no matter

Exercises 517

how large the number m > n of pigeons is, any tree-like resolution refutation proof
of PHP” must have size n**"". But all attempts to overcome the “n? barrier” for
the number of pigeons m in the case of general (not just tree-like) resolution proofs
failed for many years. This was one of the most famous open problems concerning
resolution proofs.

The “n? barrier” was finally broken by Raz (2001). He proved that, for any
number /m > n of pigeons, the CNF PHP/ requires general (non-tree-like) resolution
proofs of exponential size. Shortly after, Razborov (2003) found a simpler proof.

Exercises

18.1. Show that Resolution is complete: every unsatisfiable CNF formula F has a
resolution refutation proof.

Hint: Show that the search problem for F' can be solved by a decision tree, and use Theorem 18.1.

18.2. Show that Theorem 18.5 remains true if instead of CNF formula PHP} we
take its functional version by adding new axioms —x; ;, V —x; j, forall j; # j, and
i =1,...,m. These axioms claim that no pigeon can sit in two holes.

18.3. Let F be a CNF formula and x a literal. Show that F is unsatisfiable if and
only if both CNFs F,—; and Fy—(are unsatisfiable.

18.4. Let G be a bipartite (r, c)-expander graph. Show that then the induced CNF
formula PHP(G) is (r, ¢)-expanding.

18.5. Show that for every constant d > 5, there exist bipartite n x n graphs of left
degree d that are (r, c)-expanders forr = n/d andc = d /4 — 1.

Hint: Construct a random graph with parts L and R, |L| = |R| = n, by choosing d neighbors for
each vertex in L. For S € L and T C R, let Es 7 be the event that all neighbors of S lie within
T. Argue that, Prob[Es 7] = (|T|/n)?'®!. Let E be the event that the graph is not the desired

expander, i.e., that all neighbors of some subset S C L of size |S| < n/d lie within some
subset T C R of size |T| < (d/4)|S|. Use the union bound for probabilities and the estimate

(}) < (en/k)* to show that Prob[E] < S (%)M/Q. Use our assumption d > 5 together with

i=1
the fact that Y ;= x' = 1/(1 — x) for any real number x with |x| < 1 to conclude that Prob[E] is
strictly smaller than 1.

18.6. Given an unsatisfiable set F of clauses, define its boundary OF to be the set
of variables appearing in exactly one clause of F. Let also

s(F) =min{|G| : G C F and G is unsatisfiable}.
Define the expansion of F by

e(F) = m%)mmﬂam G CF /2G| <s}.

Prove that, for every unsatisfiable CNF F, wg(F) > e(F).

518 18 Resolution

Hint: Take a resolution refutation proof R for F. Define the witness of a clause C in the proof
to be the set G C F of all those clauses in F that are used by the proof to derive C. Show that
the clause C can have at most |dG| literals (if a literal appears in an axiom A € F, then the only
way it can be removed from clauses derived using A is if the literal is resolved with its negation).
Then, define 14(C) to be the number |G| of clauses in the witness G of C in the proof. Show that:
u(@) > s(F),and u(C) = 1 for any clause C in F, and u(C) < u(A)+ u(B) if C is aresolvent
of Aand B.

18.7. (2-satisfiable CNFs) A CNF formula F is k-satisfiable if any subset of its
k clauses is satisfiable. Prove the Lieberher-Specker result for 2-satisfiable CNF
formulas: if F is a 2-satisfiable CNF formula then at least y-fraction of its clauses
are simultaneously satisfiable, where y = (/5 — 1)/2 > 0.618.

Hint: Define the probability of a literal y to be satisfied to be: a (a > 1/2) if y occurs in a unary
clause, and 1/2 otherwise. Observe that then the probability that a clause C is satisfied is a if C is
a unary clause, and at least 1 — a” otherwise (at worst, a clause will be a disjunction of two literals
whose negations appear as unary clauses); verify thata = 1 —a? fora = y.

18.8. (3-satisfiable CNFs) Given a 3-satisfiable CNF formula F of n variables,
define a random assignment & = (¢4, ..., ®,) € {0, 1}" by the following rule:

2/3 if F contains a unary clause (x;);
Proble; = 1] = { 1/3 if F contains a unary clause (—x;);
1/2 otherwise.

1. Why is this definition consistent?
Hint: 3-satisfiability.

2. Show that Prob[y(«) = 1] > 1/3 for each literal y € {x;, —x;}, which appears
in the formula F (independent of whether this literal forms a unary clause or
not).

3. Show that the expected number of clauses of F satisfied by « is at least a 2/3
fraction of all clauses.

Hint: Show that each clause if satisfied by « with probability at least 2/3. The only nontrivial
case is when the clause has exactly two literals. Treat this case by keeping in mind that our
formula is 3-satisfiable, and hence, cannot have three clauses of the form (y V z), (—y) and

(—2).

18.9. (Due to Hirsch 2000) Suppose we have a CNF formula F of n variables with
is satisfiable. Our goal is to find a satisfying assignment. Consider the following
randomized algorithm: pick an initial assignment « € {0, 1}" uniformly at random,
and flip its bits one by one trying to satisfy all clauses. At each step, the decision
on what bit of a current assignment « to flip is also random one. The algorithm
first constructs a set I C [n] of bits such that flipping any bit i € I increases the
number of satisfied clauses. Then it chooses one of these bits at random, and flips
it. If I = @, then the algorithm chooses one bit at random from the set of bits that
do not lead to the decrease of the number of satisfied clauses. If all variables lead
to such a decrease, it chooses at random a bit from [r]. The algorithm works in
iterations, one iteration being a random choice of an initial assignment z. We are

18.9 Matching Principles for Graphs 519

interested in how many iterations are needed to find a satisfying assignment with a
constant probability.

Consider the CNF formula F' which is an AND of two CNFs G and H. The first
CNF G consists of n 4 1 clauses:

=X VX, TX2VX3, ..., X, Vx3 and —xjV —x;.

The first n clauses express that in every satisfying assignment for G the values of
all its bit must be equal. The last clause of G ensures that all these values must be
equal to 0. Hence, « = 0 is the only assignment satisfying all the n + 1 clauses of

G. The second CNF H consists of all n("gl) clauses of the form —x; Vv x; V x;

withi # j # k. Hence, « = 0 is the unique satisfying assignment for the entire
CNF F = G A H. The clauses in H are intended for “misleading” the algorithm.
Prove that, regardless of how long one iteration tends, at least 2¢") iterations are
necessary for the CNF formula F.

Hint: Show that, if ¢ is a sufficiently large constant, then assignments o with ¢ := n/3 + ¢ or
more ones form an “insurmountable ring” around the (unique) satisfying assignment 0. Namely, if
the algorithm encounters an assignment with this number of ones, then it chooses a wrong bit for
flipping. That is, on such assignments « the algorithms flips some 0-bit to 1-bit, and hence, goes
away from the satisfying assignment 0. When showing this, it is only important that (k — 1)(n —

k—1) > ("3*) + 2 holds for all k > t.

	Chapter 18: Resolution
	18.1 Resolution Refutation Proofs
	18.2 Resolution and Branching Programs
	18.3 Lower Bounds for Tree-Like Resolution
	18.4 Tree-Like Versus Regular Resolution
	18.5 Lower Bounds for General Resolution
	18.6 Size Versus Width
	18.7 Tseitin Formulas
	18.8 Expanders Force Large Width
	18.9 Matching Principles for Graphs
	Exercises

