
CS 477:

Advanced Operating Systems
OS Concurrency



• Concurrency primitives recap

• Advanced concurrency framework: Read-copy-update (RCU)

• Operating System Transactions

2

This week



3

OS concurrency

• OS manages multiples of resources to execute multiples of tasks

• Efficiently manage different processes

• Efficiently manage various hardware devices

Processor Memory Storage

IO connection

HW
Operating system

Process 1

 
Threads

Address 
space

Files Sockets

Process 2

 
Threads

Address 
space

Files Sockets

…………. 



4

1  #include<stdio.h>

2  #include<pthread.h>

3

4  int counter = 0;

5  void *incr(void *arg) {

6     printf("%s starts\n", (char *)arg);

7     for (int i=0; i < 100000; i++)

8          counter = counter + 1;

9      return NULL;

10 }

11

12 int main(int argc, char *argv[])

13 {

14     pthread_t t1, t2;

15     // Create two threads T1 and T2

16    pthread_create(&t1, NULL, incr, "T1");

17    pthread_create(&t2, NULL, incr, "T2");

18    pthread_join(t1, NULL); // Wait for T1 to finish

19    pthread_join(t2, NULL); // Wait for T2 to finish

20    printf("Counter: %d (expected: %d)\n", counter, 100000*2);

21    return 0;

22 }

Need for mutual exclusion
Uncontrolled scheduling of threads on shared memory



5

Need for mutual exclusion

• Leads to uncontrolled scheduling of threads: thread interleaving

• Thread interleaving can introduce:

• A race condition occurs when the timing or order of events affects the 

correctness of the program

• A data race when one thread is accessing a mutable variable while another 

thread is writing to it without any synchronization

• Due to race condition, we observe different results for different executions

• Thread interleavings leads to non-deterministic behavior



6

Ensuring atomicity through mutual exclusion

• Data race occurs on shared memory variables

• Code block that concurrently accesses shared region is called critical section

• To ensure correct program, must mediate the access to the critical section

• Achieve atomicity: Execute a critical section as an uninterruptible block

• Mutual exclusion: Only one thread can execute this critical section at any point 

in time, while others wait; Synchronizes the access to the critical section



7

Locks: basic idea

• Lock variables protect critical sections

• All threads competing for a critical section share a lock

• Only one thread succeeds at acquiring the lock (at a time): Lock holder

• Other threads must wait until the lock is released: Lock waiter

lock_t mutex;

...

lock(&mutex);

counter = counter + 1

unlock(&mutex)

A lock is a declared variable



8

Locks: basic idea

• Lock variables protect critical sections

• All threads competing for a critical section share a lock

• Only one thread succeeds at acquiring the lock (at a time)

• Other threads must wait until the lock is released

lock_t mutex;

...

lock(&mutex);

counter = counter + 1

unlock(&mutex)

It is either available (or unlocked or free)

Thus, if no thread holds/acquired the lock,
the lock is available (or unlocked or free)

If the lock is acquired, exactly one thread 
holds the lock and enters the critical section



9

Locks: basic idea

• Lock variables protect critical sections

• All threads competing for a critical section share a lock

• Only one thread succeeds at acquiring the lock (at a time)

• Other threads must wait until the lock is released

lock_t mutex;

...

lock(&mutex);

counter = counter + 1

unlock(&mutex)

Releases the lock, which allows other 
threads to acquire it



10

Synchronization primitives rely on hw support

Hardware provides a set of instructions that provide some form of atomicity across 

all CPUs within a machine

• int xchg(int *ptr, int val): returns the old value and sets val at location *ptr

int cas(int *ptr, int expected, int new): compares the value at ptr, and if it is equal to 

the expected value then the value is overwritten with new, while returning the old 

actual value at ptr

• int faa(int *ptr, int inc): fetch the old value from ptr and add inc to the value stored at 

ptr



11

Spin lock using compare-and-swap
bool lock1 = false;

void lock(bool *l) {

    while (*l); /* spin until we grab the lock */

    *l = true;

}

void unlock(bool *l) {

    *l = false

}

bool lock1 = false;

void lock(bool *l) {

    while (cas(l, false, true) == true);

    // spin and wait (do nothing)

}

void unlock(bool *l) {

    *l = false

}

We expect the lock value is false to acquire the lock. If free, we want to swap it with the 
new value true (acquired). If cas returns true, it means the lock was not free.

The behavior of test-and-set lock and compare-and-swap lock are the same:
Do not violate mutual exclusion but unfair!



12

• Currently, lock waiters keep spinning until they acquire the lock

• Also known as busy-waiting

• Ends up wasting CPU cycles, which could be used by other threads or processes 

in a system

• Some approaches to avoid the situation:

• Lock waiters give up the CPU by yielding

• The scheduler will schedule the thread after some time

• Mutex: waiters go to sleep and the lock holder wakes up the waiters at the 

time of releasing the lock

Problem with spinning of spin lock



13

Bugs in concurrent programs 

1. Atomicity violation bugs: concurrent, unsynchronized modification (locks)

2. Order-violating bugs: Data is accessed in the wrong order (use CV)

3. Deadlock: Program no longer makes progress (locking order)



14

Atomicity violation happens when a sequence of operations that are intended to be 

executed atomically (as an individual unit), are interrupted, allowing other operations 

to interleave, leading to inconsistent or unexpected states in a program.

Atomicity violation bugs

Thread 1::
if (thd->proc_info) {

  …
  fputs(thd->proc_info, …);

  …
}

Thread 2::
thd->proc_info = NULL;

● Thread 1 checks the value for non-NULL 

and writes it

● Thread 2 sets the value to NULL

● Thread 2 can execute before fputs set the 

value to NULL

● Thread 1 will crash once it executes fputsSolution: Use a common lock between both threads when accessing the shared resource



15

Order violation bugs

Thread 1::
void init() {

  mThread = PR_CreateThread(mMain, …);

  mThread->State = …;

}

Thread 2::
void mMain(...) {

  mState = mThread->State

}

Order violation occurs when the expected sequence of operations is not followed due 

to incorrect program execution order, leading to incorrect program behavior.

● Thread 2 assumes that mState is already 

initialized, not NULL

● If thread 2 runs before thread 1, this will 

crash the program due NULL pointer 

dereference

Solution: Use a CV to signal that mState has been initialized



16

Deadlock

Thread 1::
  pthread_mutex_lock(lock1);

  pthread_mutex_lock(lock2);

Thread 2::
  pthread_mutex_lock(lock2);

  pthread_mutex_lock(lock1);

A specific condition when two or more processes are unable to proceed with their 

execution because each one is waiting for the other to release a resource they need.

● Thread 1 and thread 2 will be stuck after 

acquiring lock1 and lock2 respectively



17

Deadlock conditions

Solution: Impose total ordering + obtain all resources or nothing at once + release held 
resources if not all available at the same time

1. Mutual exclusion: Threads claim exclusive control of resources that they require

2. Hold and wait: A thread must be holding at least one resource and waiting to 

acquire additional resources that are currently being held by other threads

3. No preemption: Resources cannot be preempted; that is, resources cannot be 

taken away from a thread unless the thread voluntarily releases them

4. Circular wait:  There must be a circular chain of two or more threads, each of 

which is waiting for a resource held by the next member in the chain



18

• Lock/mutex

• Treats all access to critical section the same

• Readers-writer lock

• Only one writer enters the critical section

OR

• Multiple readers can enter the critical section

• Readers do not modify the critical section

• API: read_lock()/read_unlock() for readers; write_lock()/write_unlock() for writers

Types of mutual exclusion



• Concurrency primitives recap

• Advanced concurrency framework: Read-copy-update (RCU)

• Operating System Transactions

19

This week



• Several data structures are mostly read, occasionally written

• Ex: Linux dentry cache

• Readers-writer lock still allow concurrent reads

• Still require an atomic decrement of a lock counter

• Atomic ops are expensive

Idea: Only acquire locks for writers; carefully update data structure so readers see 

consistent views of data

20

RCU in a nutshell



• Performance of readers-writer lock is 

marginally better than mutex

21

RCU motivation



22

Issue with locks/rwlocks
• Locks have an acquire and release cost

• Substantial, since atomic ops are expensive

• For short critical sections, the cost dominates performance

• Readers-writer locks may allow critical sections to execute in parallel 

• Serialize the increment and decrement of the read count with atomic instructions

• Atomic instructions performance decreases with increasing CPU count

• The read lock itself becomes the scalability bottleneck, even if the data it 

protects is read 99% of the time 



23

An alternative: Lock-free data structures
• Some concurrent data structures have been proposed that don’t require locks

• They are difficult to design if one doesn’t already suit your needs; highly error 

prone

• Can eliminate these problems



24

RCU: Split the difference
• One of the most difficult parts of lock-free algorithm is concurrent changes to 

pointers

• So just use locks and make writers go one-at-a-time

• But, make writers wait be a bit careful so readers see a consistent view of the 

data structures

• If 99% of access are readers, avoid performance-killing read lock in the common 

case



25

Example: linked list

A C D

B

Insert B

Reader goes to B B’s next pointer is 
uninitialized; reader 

gets a page fault

The implementation 
needs a lock



26

Example: linked list

A C D

B

Insert B

Redear goes to C or 
B—either is OK



27

Example recap
• Notice that we first created node B, and set up all outgoing pointers

• Then we overwrite the pointer from A

• No atomic instruction or reader lock needed

• Either traversal is safe

• In some cases, we many need a memory barrier

• Key idea: carefully update the data structure so that a reader never follow a bad 

pointer

• Writers still serialize using a lock



28

Example: linked list

A C D

Delete C

Reader may still be 
looking at C. When 

can we delete?



29

Problem
• We logically remove a node by making it unreachable to future readers

• No pointers to this node in the list

• We eventually need to free the node’s memory

• Leaks in kernel are bad!

• When is this safe?

• Note that we have to wait for readers to “move on” down the list



30

Worst-case scenario
• Reader follows pointer to node X (about to be freed)

• Another thread frees X

• X is reallocated and overwritten with other data

• Reader interprets bytes in X->next as pointer, segmentation fault



31

Quiescence is the answer!
Trick: Linux does not allow a process to sleep while traversing an RCU-protected 

data structure

• Includes kernel preemption, IO waiting, etc. 

Idea: If every CPU has called schedule() (quiesced), then it is safe to free the node

• Each CPU counts the number of times it has called schedule()

• Put a to-be-freed item on a list of pending frees

• Record timestamp on each CPU

• Once each CPU has schedule, do the free



32

Note on RCU
• No doubly-linked list

• Can’t immediately reuse embedded list nodes

• Must wait for quiescence first

• So only useful for lists where an item’s position doesn’t change frequently

• Only a few RCU data structures in existence

• Linked list are the workhorse of the Linux kernel

• Improved performance



33

RCU big picture
• Carefully designed data structures

• Readers always see consistent view

• Low-level “helper” functions encapsulate complex issues

• Memory barriers

• Quiescence



34

RCU API
• Drop in replacement for read_lock: rcu_read_lock()

• Publishing of new data: rcu_assign_pointer()

• Subscribing to the current version of data: rcu_dereference()

• Wrappers such as rcu_assign_pointer() and rcu_dereference() 

include memory barriers

• Rather than immediately freeing an object, use call_rcu(object, 

delete_func) to do a deferred deletion



35

RCU performance



36

RCU area of applicability

https://lwn.net/Articles/262464/



• Concurrency primitives recap

• Advanced concurrency framework: Read-copy-update (RCU)

• Operating System Transactions

37

This week



38

Poor OS support for OS concurrency



39

Poor OS support for OS concurrency
• OS is weak link in concurrent programming model 

• Can’t make consistent updates to system resources across multiple system calls

• Race conditions for resources such as the file system

• No simple work-around

• Applications can’t express consistency requirements

• OS can’t infer requirements



40

System transactions
• System transactions ensure consistent updates by concurrent applications

• Prototype called TxOS

• Solve problems

• System level race conditions (TOCTTOU)

• Build better applications

• LDAP directory server

• Software installation



41

System-level races

Time-of-check-to-time-of-use (TOCTTOU) race condition

if (access(“foo”)) {

    

    fd = open(“foo”);

    write(fd, …);

}



42

System-level races

Time-of-check-to-time-of-use (TOCTTOU) race condition

if (access(“foo”)) {

    symlink(“/etc/passwd”, “foo”);

    fd = open(“foo”);

    write(fd, …);

}

foo == /etc/passwd



43

Eliminating TOCTTOU race

Time-of-check-to-time-of-use (TOCTTOU) race condition

sys_xbegin();

if (access(“foo”)) {

    

    fd = open(“foo”);

    write(fd, …);

}

sys_xend();



44

Eliminating TOCTTOU race

Time-of-check-to-time-of-use (TOCTTOU) race condition

sys_xbegin();

if (access(“foo”)) {

    symlink(“/etc/passwd”, “foo”);

    fd = open(“foo”);

    write(fd, …);

}

sys_xend();

symlink(“/etc/passwd”, “foo”);



45

Example: Better application design
• How to make consistent updates to stable storage?

rename()

???

Database
Enterprise data 

storage

User directory 
service (LDAP)

Editor

Complex

Simple

Sys Tx



46

Example: transactional software install

• A failed install is automatically rolled back

• Concurrent, unrelated operations are unaffected

• System crash: reboot to entire upgrade or none

sys_xbegin();

apt-get upgrade

sys_xend();



47

System transactions
• Simple API: sys_xbegin(), sys_xend(), sys_xabort()

• Transactions wraps group of system calls

• Results isolated from other threads until commit

• Conflicting transactions must serialize for safety

• Conflict must often read and write of same data

• Too much serialization hurts performance 



48

System transactions
• Provide ACID semantics:

• Atomicity (A): all or nothing

• Consistency (C): one consistent state to another

• Isolated (I): updates as if only one concurrent transaction

• Durable (D): committed transactions on disk



49

Building a transactional system 
• Version management

• Private copies instead of undo log

• Detect conflicts

• Minimize performance impact of true conflicts

• Eliminate false conflicts

• Resolve conflicts

• Non-transactional code must respect transactional code



50

TxOS in action
CPU 0 (low priority)

sys_xbegin()

chown(“f”, 0x755);

sys_xend();

CPU 1 (high priority)

sys_xbegin()

chown(“f”, 0x701);

sys_xend();

0x700

1000

Inode “f” data

Inode “f”
header

0x755

1000

Private copies

Conflicting 
annotation

Contention 
Manager

Abort CPU 0
(lower priority)

0x701

1000

Inode “f” data



51

System comparison
Previous systems TxOS

Speculative write location Shared data structures

Isolation mechanism Two-phase locking

Rollback mechanism Undo log

Commit mechanism Discard undo log, release 
locks

Deadlock prone

Can cause priority 
inversion



52

System comparison
Previous systems TxOS

Speculative write location Shared data structures Private copies of data 
structures

Isolation mechanism Two-phase locking Private copies + 
annotations

Rollback mechanism Undo log Discard private copies

Commit mechanism Discard undo log, release 
locks

Publish private copies by 
pointer swap



53

Minimizing false conflicts

sys_xbegin();

create(“/tmp/foo”);

sys_xend();

sys_xbegin();

create(“/tmp/bar”);

sys_xend();

Read Write

Read

Write



54

Minimizing false conflicts

Read Add/del

Read

Add/del

OK if different files 
created, and 

directory is not 
being read

sys_xbegin();

create(“/tmp/foo”);

sys_xend();

sys_xbegin();

create(“/tmp/bar”);

sys_xend();



55

Minimizing false conflicts

Read Add/del

Read

Add/del

OK if different files 
created, and 

directory is not 
being read

• Insight: Object semantics allow more permissive conflict definition and 

therefore more concurrency

• TxOS supports precise conflict definitions per object type



56

Minimizing false conflicts

Read Add/del Add/del + Read

Read

Add/del

Add/del + Read

• Insight: Object semantics allow more permissive conflict definition and 

therefore more concurrency

• TxOS supports precise conflict definitions per object type

• Increases concurrency without relaxing isolation 



57

Serializing txns and non-txns (strong iso.)
• TxOS mixess transactional and non-transactional code

• In databases, everything is transaction

• Semantically murky in historical systems

• Critical to correctness

• Allows incremental adoption of transactions

• TOCTTOU attacker will not use a transaction

• Problem: Can’t roll-back non-transactional system calls

• Always aborting transaction undermines fairness



58

Strong isolation example in TxOS
CPU 0

symlink(“/etc/passwd”, 

“/tmp/foo”);

CPU 1

sys_xbegin()

if (access(“/tmp/foo”))

    open(“/tmp/foo”));

sys_xend();

Dentry “/tmp/foo” data

header

Conflicting 
annotation

Contention 
Manager

Options:

● Abort CPU1

● Deschedule CPU0



59

Transactions for application state
• System transactions only manage system state

• Applications can select their approach

• Copy-on-write paging

• Hardware or software transactional memory (TM)

• Application-specific compensation code



60

Transactions: a core OS abstraction
• Easy to make kernel subsystems transactional

• Transactional file system in TxOS

• Transactional implemented in VFS or higher

• FS responsible for atomic updates to stable store

• Journal + TxOS = Transactional file system

• 1 developer-month transactional ext3 prototype



61

TxOS prototype
• Extended Linux 2.6.22 to support system transactions

• Runs on commodity hardware

• Added 8,600 LoC to Linux

• Minor modification to 14,000 LoC

• Transactional semantics for a range of resources

• File system, signals, processes, pipes



62

Transactional software install

• A failed install is automatically rolled back

• Concurrent, unrelated operations are unaffected

• System crash: reboot to entire upgrade or none

sys_xbegin();

dpkg -i openssh;

sys_xend();

sys_xbegin();

install svn;

sys_xend();

10% overhead 70% overhead



63

Transaction overheads
Execution time normalized to Linux

• Memory overhead on LFS large:

• 13% high, 5% low (kernel)



64

Write speedups
Speedup over Linux

• Better IO scheduling – not luck

• Tx boundaries provide IO scheduling hints to the OS



65

Non-transactional overheads
• Non-transactional Linux compile: <2% on TxOS

• Transactions are “pay-to-play”

• Single system call: 42% geometric mean

• With additional optimization: 14% geomean

• Optimizations approximated by eliding checks



66

What is practical? 

• Feature creep over 2 years costs 16%

• Developers are willing to give up performance for useful features

• Transactions are in the same range (14%), more powerful

Mean Linux syscall overhead, normalized to 2.6.22



67

Summary
• RCU designed for handling read-mostly workloads

• RCU follows a publish-subscribe model with only single pointer update possible

• Transactions solve long-standing problems (TOCTTOU)

• Replace ad-hoc solutions

• Transactions enable better concurrent programs


