CS 477:

Advanced Operating Systems

OS Concurrency

This week

* Concurrency primitives recap
* Advanced concurrency framework: Read-copy-update (RCU)

* QOperating System Transactions

, D
OS concurrency ¢ L

an)/
w aF

* OS manages multiples of resources to execute multiples of tasks

* Efficiently manage different processes

e Efficiently manage various hardware devices

!ocess 2

=T e

Need for mutual exclusion

Uncontrolled scheduling of threads on shared memory

#include<stdio.h>
#include<pthread.h>

void *incr(void *arg) {
printf("%s starts\n", (char *)arg);
for (int i=0; i < 100000; i++)
- counter = counter + 1;747

1

2

3

4 int counter = 0;
5

6

Azi

8

9 return NULL;

10 }

11

12 int main(int argc, char *argv[])

13 {

14 pthread_t t1, t2;

15 // Create two threads T1 and T2

16 pthread_create(&tl, NULL, incr, "T1");

17 pthread create(&t2, NULL, incr, "T2");

18 pthread_join(tl, NULL); // Wait for T1 to finish

19 pthread_join(t2, NULL); // Wait for T2 to finish

20 printf("Counter: %d (expected: %d)\n", counter, 100000%*2);
21 return 0;

22 }

Need for mutual exclusion

* Leads to uncontrolled scheduling of threads: thread interleaving
* Thread interleaving can introduce:
* Arace condition occurs when the timing or order of events affects the
correctness of the program
A data race when one thread is accessing a mutable variable while another
thread is writing to it without any synchronization
 Due to race condition, we observe different results for different executions

* Thread interleavings leads to non-deterministic behavior

Ensuring atomicity through mutual exclusion

Data race occurs on shared memory variables

Code block that concurrently accesses shared region is called critical section

mov Ox2e95 (%rip) ,%eax # 4034 <counter>
add $0Xl,%&a1

mov %eax,0x2e8c(%rip) # 4034 <counter>

To ensure correct program, must mediate the access to the critical section
* Achieve atomicity: Execute a critical section as an uninterruptible block
Mutual exclusion: Only one thread can execute this critical section at any point

in time, while others wait; Synchronizes the access to the critical section

Locks: basic idea

* Lock variables protect critical sections
e All threads competing for a critical section share a lock
* Only one thread succeeds at acquiring the lock (at a time): Lock holder

e Other threads must wait until the lock is released: Lock waiter

|10c k_t mutex; I A lock is a declared variable

lock(&mutex);
counter = counter + 1
unlock (&mutex)

Locks: basic idea

* Lock variables protect critical sections
e All threads competing for a critical section share a lock
* Only one thread succeeds at acquiring the lock (at a time)

e QOther threads must wait until the lock is released

lock t mutex; It is either available (or unlocked or free)

Ilock(&mutex); Thus, if no thread holds/acquired the lock,
the lock is available (or unlocked or free)

counter = counter + 1

unlock(&mutex) If the lock is acquired, exactly one thread

holds the lock and enters the critical section

Locks: basic idea

* Lock variables protect critical sections
e All threads competing for a critical section share a lock
* Only one thread succeeds at acquiring the lock (at a time)

e QOther threads must wait until the lock is released

lock_t mutex; Releases the lock, which allows other
threads to acquire it

lock(&mutex);
counter = counter + 1
lunlock(&mutex)

Synchronization primitives rely on hw support

Hardware provides a set of instructions that provide some form of atomicity across

all CPUs within a machine

 Int xchg(int "ptr, int val): returns the old value and sets val at location *ptr

INt cas(int "ptr, int expected, int new): compares the value at ptr, and if it is equal to
the expected value then the value is overwritten with new, while returning the old

actual value at ptr

* intfaa(int *ptr, int inc): fetch the old value from ptr and add inc to the value stored at

ptr

10

Spin lock using compare-and-swap

bool lockl = false;

bool lockl = false;

void lock(bool *1) {
while (*1); /* spin until we grab the lock */
*]1 = true;

void lock(bool *1) {
while (cas(1l, false, true) == true);

A
Y

// spin and wait (do nothing)

} }

void unlock(bool *1) { void unlock(bool *1) {
*1 = false *1 = false

} }

We expect the lock value is fa1se to acquire the lock. If free, we want to swap it with the
new value true (acquired). If cas returns true, it means the lock was not free.

The behavior of test-and-set lock and compare-and-swap lock are the same:
Do not violate mutual exclusion but unfair!

11

Problem with spinning of spin lock

e Currently, lock waiters keep spinning until they acquire the lock

 Also known as busy-waiting
* Ends up wasting CPU cycles, which could be used by other threads or processes

In a system

 Some approaches to avoid the situation:

* Lock waiters give up the CPU by yielding

* The scheduler will schedule the thread after some time
« Mutex: waiters go to sleep and the lock holder wakes up the waiters at the

time of releasing the lock

12

Bugs in concurrent programs

1. Atomicity violation bugs: concurrent, unsynchronized modification (locks)
2. Order-violating bugs: Data is accessed in the wrong order (use CV)

3. Deadlock: Program no longer makes progress (locking order)

13

Atomicity violation bugs

Atomicity violation happens when a sequence of operations that are intended to be
executed atomically (as an individual unit), are interrupted, allowing other operations

to interleave, leading to inconsistent or unexpected states in a program.

- B ® Thread 1 checks the value for non-NULL
read 1::

if (thd->proc_info) { and writes it

fputs(thd->proc_info, ...);

® Thread 2 sets the value to NULL

-
e Thread 2 can execute before fputs set the

Thread 2::
thd->proc_info = NULL; Value to NULL

Solution: Use a common lock between both threads when accessing the shared resource

14

Order violation bugs

Order violation occurs when the expected sequence of operations is not followed due

to incorrect program execution order, leading to incorrect program behavior.

- N e Thread 2 assumes that mState is already
read 1::
void init() { e ege qe

mThread = PR_CreateThread(mMain, ...); |n|t|allzed, not NULL

mThread->State = ...;]]
} e |f thread 2 runs before thread 1, this will
Thread 2:: crash the program due NULL pointer
void mMain(...) {

mState = mThread->State dereference

!

Solution: Use a CV to signal that mState has been initialized

15

Deadlock

A specific condition when two or more processes are unable to proceed with their

execution because each one is waiting for the other to release a resource they need.

Thread 1::

pthread_mutex_lock(lockl); ® Thread 1 and thread 2 will be stuck after
pthread _mutex_ lock(lock2);

acquiring 1lockl and lock2 respectively
Thread 2::
pthread mutex lock(lock2);
pthread mutex lock(lockl);

16

Deadlock conditions

1. Mutual exclusion: Threads claim exclusive control of resources that they require

2. Hold and wait: A thread must be holding at least one resource and waiting to
acquire additional resources that are currently being held by other threads

3. No preemption: Resources cannot be preempted; that is, resources cannot be
taken away from a thread unless the thread voluntarily releases them

4. Circular wait: There must be a circular chain of two or more threads, each of

which is waiting for a resource held by the next member in the chain

Solution: Impose total ordering + obtain all resources or nothing at once + release held
resources if not all available at the same time

Types of mutual exclusion

e Lock/mutex
* Treats all access to critical section the same
* Readers-writer lock
* Only one writer enters the critical section
OR

 Multiple readers can enter the critical section
Readers do not modify the critical section

e APIl: read_lock()/read _unlock() for readers; write lock()/write_unlock() for writers

18

This week

* Concurrency primitives recap
* Advanced concurrency framework: Read-copy-update (RCU)

* QOperating System Transactions

19

RCU in a nutshell

* Several data structures are mostly read, occasionally written
* Ex: Linux dentry cache

* Readers-writer lock still allow concurrent reads
 Still require an atomic decrement of a lock counter

Atomic ops are expensive

Idea: Only acquire locks for writers; carefully update data structure so readers see

consistent views of data

RCU motivation

Performance of readers-writer lock is

marginally better than mutex

Hash Table Searches per Microsecond

35

30

25

20

15

10

. I
“ideal"
"global"
"globalrw”

-
m " aea

2L

- T

—

1 2

CPUs

4

21

Issue with locks/rwlocks

Locks have an acquire and release cost

* Substantial, since atomic ops are expensive

For short critical sections, the cost dominates performance

* Readers-writer locks may allow critical sections to execute in parallel

e Serialize the increment and decrement of the read count with atomic instructions

e Atomic instructions performance decreases with increasing CPU count

* The read lock itself becomes the scalability bottleneck, even if the data it

protects is read 99% of the time

22

An alternative: Lock-free data structures

* Some concurrent data structures have been proposed that don’t require locks

* They are difficult to design if one doesn’t already suit your needs; highly error

prone

* Can eliminate these problems

23

RCU: Split the difference

* One of the most difficult parts of lock-free algorithm is concurrent changes to

pointers
* So just use locks and make writers go one-at-a-time

* But, make writers wait be a bit careful so readers see a consistent view of the
data structures
* |f 99% of access are readers, avoid performance-killing read lock in the common

case

24

Example: linked list

W I I I I S S S S S S S S S S S S . .- \
I

| A C —— p —!
I [
S N J
The implementation B
needs a lock
Reader goes to B B’s next pointer is

uninitialized; reader
gets a page fault

25

Example: linked list

Insert B

——

Redear goes to C or
B—either is OK

26

Example recap

* Notice that we first created node B, and set up all outgoing pointers

 Then we overwrite the pointer from A

e No atomic instruction or reader lock needed
 Either traversal is safe

* In some cases, we many need a memory barrier

* Key idea: carefully update the data structure so that a reader never follow a bad

pointer

e Writers still serialize using a lock

27

Example: linked list

Delete C

=

Reader may still be
looking at C. When
can we delete?

28

Problem

* We logically remove a node by making it unreachable to future readers
* No pointers to this node in the list

* We eventually need to free the node’s memory
* Leaksin kernel are bad!

e When is this safe?

* Note that we have to wait for readers to “move on” down the list

29

Worst-case scenario

* Reader follows pointer to node X (about to be freed)
e Another thread frees X
 Xis reallocated and overwritten with other data

* Reader interprets bytes in X->next as pointer, segmentation fault

30

Quiescence is the answer!

Trick: Linux does not allow a process to sleep while traversing an RCU-protected

data structure

* Includes kernel preemption, 10 waiting, etc.

Idea: If every CPU has called schedule() (quiesced), then it is safe to free the node
 Each CPU counts the number of times it has called schedule()
* Put ato-be-freed item on a list of pending frees
* Record timestamp on each CPU

* Once each CPU has schedule, do the free

31

Note on RCU

* No doubly-linked list
e Can’timmediately reuse embedded list nodes
* Must wait for quiescence first
So only useful for lists where an item’s position doesn’t change frequently
* Only a few RCU data structures in existence
* Linked list are the workhorse of the Linux kernel

Improved performance

32

RCU big picture

» Carefully designed data structures

* Readers always see consistent view

* Low-level “helper” functions encapsulate complex issues

* Memory barriers

e (Quiescence

33

RCU API

« Drop in replacement for read_lock: rcu_read_lock()

* Publishing of new data: rcu_assign_pointer()
e Subscribing to the current version of data: rcu_dereference()
« Wrappers such as rcu_assign_pointer() and rcu_dereference()

include memory barriers

« Rather than immediately freeing an object, use call_rcu(object,

delete_func) to do a deferred deletion

RCU performance

1e+06

: 1 L] L L L L I] 1 L T 711 l:
© C 0
e R -
O
O " -
@
R
= 100000 —
= : =
- - -
m — —
Q b —
7))
Q— = 2 -
S 10000 - E
- = =
© : i
—
o p— —
F — —

1000 1 1 Illllll 1 1 L1l 1 Ll
1 10

Number of CPUs/Threads

35

RCU area of applicability

Read-Write, Need Consistent Data
(RCU Might Be OK...)

https://lwn.net/Articles/262464/

36

This week

* Concurrency primitives recap
* Advanced concurrency framework: Read-copy-update (RCU)

e Operating System Transactions

37

Poor OS support for OS concurrency

LILILLLLL

Fine-grained locking
- Bug-prone, hard to maintain
- OS provides poor support

Parallelism

Coarse-grained locking
- Reduced resource utilization

Maintainability

38

Poor OS support for OS concurrency

OS is weak link in concurrent programming model

Can’t make consistent updates to system resources across multiple system calls

* Race conditions for resources such as the file system

* No simple work-around

Applications can’t express consistency requirements

OS can’t infer requirements

39

System transactions

e System transactions ensure consistent updates by concurrent applications
* Prototype called TxOS

* Solve problems
e System level race conditions (TOCTTOU)

* Build better applications

* LDAP directory server

e Software installation

40

System-level races

if (access(“foo0”)) {

fd = open(“fo0”);
write(fd, ...);

Time-of-check-to-time-of-use (TOCTTOU) race condition

41

System-level races

if (access(“foo”)) {

symlink(“/etc/passwd”, “foo0”);
fd = open(“foo”);
write(fd, ...);

Time-of-check-to-time-of-use (TOCTTOU) race condition

42

Eliminating TOCTTOU race

sys_xbegin();
if (access(“foo0”)) {

fd = open(“fo0”);
write(fd, ...);
}

sys_xend();

Time-of-check-to-time-of-use (TOCTTOU) race condition

43

Eliminating TOCTTOU race

sys_xbegin();
if (access(“foo0”)) {

fd = open(“fo0”);
write(fd, ...);
}

sys_xend();

Time-of-check-to-time-of-use (TOCTTOU) race condition

44

Example: Better application design

* How to make consistent updates to stable storage?

Enterprise data _ Complex
storage

User directory _

service (LDAP)

45

Example: transactional software install

sys_xbegin();
apt-get upgrade
sys_xend();

* Afailed install is automatically rolled back
e Concurrent, unrelated operations are unaffected

e System crash: reboot to entire upgrade or none

46

System transactions

 Simple API: sys_xbegin(), sys_xend(), sys_xabort()
e Transactions wraps group of system calls

* Results isolated from other threads until commit
* Conflicting transactions must serialize for safety

e Conflict must often read and write of same data

 Too much serialization hurts performance

47

System transactions

Provide ACID semantics:
e Atomicity (A): all or nothing
Consistency (C): one consistent state to another

Isolated (I): updates as if only one concurrent transaction

Durable (D): committed transactions on disk

48

Building a transactional system

Version management
* Private copies instead of undo log

e Detect conflicts

* Minimize performance impact of true conflicts

 Eliminate false conflicts
 Resolve conflicts

* Non-transactional code must respect transactional code

49

Abort CPU O

TxOS in action (lower priority)

CPU 1 (high priorit

‘ sys_xbegin()

CPU t

Contention
Manager

chown(“f”, 0x701);
‘ sys_xend();
Inode “f”
header Conflicting
amnotation

T~

0x755 0x701

1000 1000

Private copies Inode “f” data Inode “f” data

System comparison

Previous systems

Speculative write location Shared data structures

Isolation mechanism Two-phase locking
Rollback mechanism Undo log
Commit mechanism Discard undo log, release

locks

TxOS

Deadlock prone

Can cause priority
inversion

51

System comparison

Speculative write location

Isolation mechanism

Rollback mechanism

Commit mechanism

Previous systems

Shared data structures

Two-phase locking

Undo log

Discard undo log, release
locks

TxOS

Private copies of data
structures

Private copies +
annotations

Discard private copies

Publish private copies by
pointer swap

52

Minimizing false conflicts

Read

Write

Read

V4

Write

sys_xbegin();
create(“/tmp/foo0”);
sys_xend();

sys_xbegin();
create(“/tmp/bar”);
sys_xend();

53

Minimizing false conflicts

Read
Add/del

sys_xbegin();
create(“/tmp/foo0”);
sys_xend();

Read

V4
&

Add/del

sys_xbegin();
create(“/tmp/bar”);
sys_xend();

OK if different files
created, and
directory is not
being read

54

Minimizing false conflicts

OK if different files
created, and
directory is not
being read

Read Add/del

Read @
Add/del xR

Insight: Object semantics allow more permissive conflict definition and
therefore more concurrency

e TxOS supports precise conflict definitions per object type

55

Minimizing false conflicts

Read Add/del Add/del + Read

Read v x x
Add/del b4 V4 b4
Add/del + Read 7 7 ¢ X

Insight: Object semantics allow more permissive conflict definition and
therefore more concurrency
e TxOS supports precise conflict definitions per object type

* Increases concurrency without relaxing isolation

56

Serializing txns and non-txns (strong iso.)

e TxOS mixess transactional and non-transactional code

* |n databases, everything is transaction

e Semantically murky in historical systems
* Critical to correctness

* Allows incremental adoption of transactions

e TOCTTOU attacker will not use a transaction
* Problem: Can’t roll-back non-transactional system calls

e Always aborting transaction undermines fairness

57

Strong isolation example in TxOS

CPU 0o CPU 1

- ‘ sys_xbegin()
symlink(“/etc/passwd”, - ‘ if (access(“/tmp/fo00”))
“/tmp/fo0”’); open(“/tmp/f00”));

sys_xend();

header

Contention
Manager

Options:

Conflicting
annotation

e Abort CPU1

e Deschedule CPUO
Dentry “/tmp/foo” data

58

Transactions for application state

* System transactions only manage system state
* Applications can select their approach
* Copy-on-write paging
 Hardware or software transactional memory (TM)

* Application-specific compensation code

59

Transactions: a core OS abstraction

* Easy to make kernel subsystems transactional
* Transactional file system in TxOS
* Transactional implemented in VFS or higher
FS responsible for atomic updates to stable store
e Journal + TxOS = Transactional file system

* 1 developer-month transactional ext3 prototype

60

TxOS prototype

 Extended Linux 2.6.22 to support system transactions
* Runs on commodity hardware
 Added 8,600 LoC to Linux
Minor modification to 14,000 LoC
* Transactional semantics for a range of resources

* File system, signals, processes, pipes

61

Transactional software install

sys_xbegin(); sys_xbegin();
dpkg -i openssh; install svn;
sys_xend(); sys_xend();

10% overhead 70% overhead

* Afailed install is automatically rolled back
* Concurrent, unrelated operations are unaffected

e System crash: reboot to entire upgrade or none

62

Transaction overheads

Execution time normalized to Linux

5 | l | |
install

dpkg

make

LFS Small Delete

LFS Small Read
LFS Large Read Rnd

l
0 0.5 1 1.5 2

* Memory overhead on LFS large:

* 13% high, 5% low (kernel)

Write speedups

Speedup over Linux

RAB cp

RAB mkdir

LFS L Write Rand
LFS L Write Seq
LFS S Create

e Better 10 scheduling — not luck

* Tx boundaries provide 10 scheduling hints to the OS

|

0

8

10

12

14

16 18 20

64

Non-transactional overheads

* Non-transactional Linux compile: <2% on TxOS
* Transactions are “pay-to-play”

* Single system call: 42% geometric mean
* With additional optimization: 14% geomean

Optimizations approximated by eliding checks

65

What is practical?

Mean Linux syscall overhead, normalized to 2.6.22

1.2
1.15
1.1
1.05
] T I I I T [| 1
22 23 24 25 26 27 28 29 30 31
08/07 09/09

Feature creep over 2 years costs 16%

Developers are willing to give up performance for useful features

* Transactions are in the same range (14%), more powerful

66

Summary

* RCU designed for handling read-mostly workloads

* RCU follows a publish-subscribe model with only single pointer update possible

* Transactions solve long-standing problems (TOCTTOU)
* Replace ad-hoc solutions

* Transactions enable better concurrent programs

67

