CS 477:

Advanced Operating Systems

Flash Memory & Today’s LFS

Midterm marks distribution

Midterm Score Percentage Distribution

8

Students

0,41 0,55 0,68 0,81 0,94 0,94
Min Avg Max
Percentage 41% 62% 94%

This week

* Solid state drives (SSDs)
* Flash memory basics

* SSD types
e Zoned namespace SSDs (ZNS)
e Key-value SSD (KVSSD)

 Computational storage (CSD)
* F2FS

SSD vs. HDD

Platters

Spindle

R/W Head

Actuator Arm NAND Flash
Memory
Actuator Axis

Actuator Controller

Storage interfaces

SW Interface

HW/SW
Interface

Transport

Links

Electricals
/ Phys

Mechanicals

" Client NIA NVM Programming TWG. - S s
~ Persistent Memory JVDIMM
e SN .

AHCI } Leustond
Hot Plug Support @

[SCSI Express Enable, LER, DPC, Enh DPC
A Express Bay _______ %
WCIe Stanaaras

l ' SATA- Exp Cables

FF 8680 SFF 8639 AS X4
ST ...l l
/

Operations inching closer to the processor speed

Intel Optane SSD
Samsung Z-SSD
10-20 ps
PCle SSD DRAM
NECEEESY Optane Memory

SATA/SAS SSD 100 ps
SATA HDD 150 ps)
10 ms

11
l 50-300 ns

Operations Per Second

Milliseconds Microseconds Nanoseconds

NVMe (NVM Express)

- The industry standard interface for high-performance NVM storage
* NVMe 1.0in 2011 by NVM Express Workgroup
NVMe 1.2 in 2014 20

16

e PCle-based 19

10
* Lower latency

5

* Direct connection to CPU

0.6
0

e Scalable bandwidth

Sata 6Gbps PCle 3.0x4 PCle 4.0x4 PcCle 5.0x4

1 GB/s perlane (PCl Gen 3); 2 for PCle Gen 4

NVMe SSD form factors

U.2
(SFF-8639:
Up to x4)

SATA

SATA Signal Pins Power and Control Pins

ey
{Precludes non-SATA drive insertion)

Signal Pins (SAs Port B)

SAS

Power and Control Pins :

oooooo
weos ‘mmnn

2242 2260 2280 U.2
M.Z (PCIe: Up to x4) Tm’gna s il 1: Power and Control Pins

Lanes 1-3,
SMBus, & Dual Port Enable

SSD internals

SATA
SAS
PCle

Flash Flash Memory Bus 0

Embedded Controller I | |

CPU(s) | S

Flash Flash Memory Bus 1

Host _ Controller ! | |

D Interface

Controller Flash Flash Memory Bus 2

Controller I l |

DRAM
Controller

Flash Flash Memory Bus 3

SSD Controller Controller l L

NAND array

DRAM

10

The unwritten contract

Several assumptions are no longer valid

Sequential accesses much faster than random
No write amplification

Little background activity

Media does not wear down

Distant LBNs lead to longer access time

vooocH
®®®®®E

This week

* Solid state drives (SSDs)
* Flash memory basics

* SSD types
e Zoned namespace SSDs (ZNS)
e Key-value SSD (KVSSD)

 Computational storage (CSD)
* F2FS

12

Flash memory basics: NAND transistor

* Datais stored in memory cells

e Cells have floating-gate transistors that can capture

electrons for an extended period, but not indefinitely

* Chip pushes electrons into the oxide layer and into the

“silicone” gate

p-substrate

* Float gate ensures that electricity keeps circulating
even if the power is switched off
e Floating gate selects the zero or one state based on

the memory’s state before it was turned off

13

Logical view of NAND flash

* A collection of blocks
* Each block has a number of pages

* The size of a page or block depends on the technology in use

Data area

Spare area

14

Plane

* Each plane has its own plane register or cache register
e Pages can be reprogrammed or read at once

 Optional feature: 1, 2, 4, 8 .. planes

+2,112 bytes—<+— 2,112 bytes —»

o - “— Vo7
Cache Register 2,048 |64 2,048 164 | /0'6
1 1
Data Register 2048 |64 2048 64
[1page = (2K + 64 bytes)
1block = (2K + 64) bytes x 64 pages
03¢ Dioks ‘ J = (128K + 4K) bytes
per plane) 1 block 1 block
4,096 blocks 1 plane f (213?5(l\;b4K) bytes x 2,048 blocks
per device -
1 device = 2,112Mb x 2 planes
N = 4,224Mb
_ A y
" "N
Plane of Plane of
even-numbered blocks odd-numbered blocks

(0,2,4,6, .., 4,092 4094) (1,3,5,7, ..,4,093, 4,095)

Chip/die

e Each chip has multiple dies (can be stacked)

e + extra circuits, chip enable signal, ready/busy signal

Serial Connection
Plane 0 Plape 1 Plage 2 Plane 3 Plage 0 Plane 1 Plane 2 FPlape 3
€ N 3 3 s 3 s @
Block 0 Block 1 Block 4096 Block 4097 Block 0 Block 1 Block 4096 Block 4097
Page 0 Page 0 Page(Page 0 Page 0 Page 0 Page 0 Page 0
Pagel Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1
0 > o o o ° c o
0 o) o o 0 c o
Page 63 | Page 63 | | Page 63 | | Page 63 Page 63 | Page 63 Page 63 | | Page 63
\ / \ / . N \
0 0 5 9 [© 0 v
o o o o o o o 0
0 0 o o o o 0 °
0 0 o ° o o 0 °
Block 4094 Block 4095 Dlock 8190 Block 8191 Block 4094 Block 4095 Block 8190 /])lock 8191
Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0
Page 1 Page 1 Pagel Page 1 Page 1 Page 1 Page 1 Page 1
o o v o o o © o
o o hd o o o s o
| Page 63 I Page 63 I Page 63 I Page 63 | Page 63 | I Page 63 | Page 63 I Page 63
\ 7 S \. ¥, J A
| 4K Register | |_4K Register | 4K Register ||| [4K Register | | 4K Register | | | | 4K Register | |_4K Register | | || 4K Register |
- J
Die 0 i
Flash Package (4 GB) Die 1

16

NAND flash types

* SLC NAND: Single level cell (1 bit/cell)
* Most expensive, used in servers B o TLe et
e MLC NAND: multi-level cell (2 bits/cell) :
* Used where endurance is not important on
e TLC NAND: triple-level cell (3 bits/cell) ° =
° Cheapest Option on the market 1 Bit Per Cell 2 Bit Per Cell 3 Bit Per Cell 4 Bit Per Cell
100K 10K 3K 1K
° QLC NAND: quad-level Ce” (4 bltS/Ce”) P/E Cycles P/E Cycles P/E Cycles P/E Cycles

https://www.kingston.com/en/blog/pc-performance/difference-between-sic-mic-tic-3d-nand#:~:text=MLC%20has %20a%20higher%20data,lower%20endurance%20compared%20to%20SLC. 17

Flash memory characteristics: erase-before-write

e |n-place update (overwrite) not allowed
10 B B e
* Pages must be erased before programming new data T

write
* The erase unit is much larger than the read/write unit (program)
* Read/write unit: page (4KB, 8KB, 16KB, ...) 11001 10 170

e Erase unit: block (64-512 pages)

l erase

* Handling live pages in a block marked for deletion? 1] 11 41 11 2l 1] 21 1

18

Flash memory characteristics: erase-before-write

e |n-place update (overwrite) not allowed
10 B B e
* Pages must be erased before programming new data T

write
* The erase unit is much larger than the read/write unit (program)
* Read/write unit: page (4KB, 8KB, 16KB, ...) 1110l 1/ 1l0! 1|0
e Erase unit: block (64-512 pages) -
l erase

* Handling live pages in a block marked for deletion? 11 11 11 11 11 11111

* Copy the live pages to a spare area and then mark the

block for garbage collection

19

Flash memory characteristics: limited lifetime

 NAND flash blocks has limited programmed and erased (P/E) cycle:
e SLC:50,000-100,000
MLC: 3,000 - 10,000
- eMLCs (enterprise MLCs): 10,000 — 30,000
- TLCs: 1,000 - 3,000
- QLC:100-1,000
* High voltage applied to cell degrades the oxide layer

* Electrons trapped in oxide; break down of the oxide layer

20

Flash memory characteristics: asymmetric rd/wr lat

* Reading a page is faster than programming it
e Usually more than 10x
* MLC: read 45us, program 1350us, erase 4ms
* Programming a page should go through multiple steps of program and verify steps
* With shrinking technology, read/write latency tends to increase

e MLC and TLC make it even worse

21

How does storage stack interact with SSDs?

Storage abstraction

* Abstraction given by block device drivers:

0 1

* QOperations:
* l|dentify(): returns N
 Read (start sector #, # of sectors, buffer address)

* Write (start sector #, # of sectors, buffer address)

23

FTL: flash translation layer

A flash layer that makes NAND flash fully emulate the traditional block devices

a1 Y

Read Sectors Write Sectors Read Sectors

A Read Sectors
O

Write Sectors

Write Sectors

®

Read Write Erase

FTL

AR

Device Driver

+

Device Driver

24

NAND flash types

* Sector translation layer i
.
 Address mapping T
* Garbage collection Block Layer

* Wear levelling Block Device Driver
- Block management layer

- Bad block management

Controller

----~

FTL (Flash Translation Layer) W
| Flash Translation Layer

| STL(Sector Translation) | 2 |
. Low level driver | I e , LI .

* Error handling

 Flash interface

25

Address mapping

write

LBA address space
(As seen by the host)

-

Mapping table

T

NAND flash

26

Address mapping: cannot overwrite the same page

write LBA address space

(As seen by the host)

Mapping table

L _____mm

NAND flash

X old data

4 new data

27

Mapping scheme

* Page mapping

* Fine-granularity page-level mapping table

Huge amount of memory space required for the map table
Block mapping

Coarse-granular block-level map table

Small amount of memory space required for the map table
Hybrid mapping

Use both page-level and block-level map tables

Higher algorithm complexity

28

Garbage collection

e Garbage collection (GC)
* Eventually, FTL will run out of blocks to write to
- GCreclaims free space

- Actual GC procedure depends on the mapping table
- GCin page-mapping FTL

. Select victim block(s)

- Copy all valid pages of victim block(s) to free block

Erase victim block(s)

Note: At least one free block should be reserved for GC

29

Write amplification

* Ratio of data written to flash to data written on host
* Write amplification factor (WAF)
= Bytes written to flash / bytes written from host
= (Bytes written from host + bytes written during GC) / bytes written from host
* Generally, WAF > 1
* Due to valid page copies made from victim block to free block during GC

WAF is one of the metrics showing the efficiency of GC

30

Victim selection policy: Greedy

e Select a block with largest amount of invalid data
* A block with the min. utilization u
u = # valid pages in a block / # pages in a block
* Pros:
e Least valid data copying costs
Simple
Cons

Performs worse when there is a high locality among writes

Does not consider wear leveling

31

Victim selection policy: Cost-benefit

e Select a block with the maximum
Benefit / cost = (1 - u)/2u x age
e u: utilization
e age: the time since the last modification
* Pros:
* Performs well with locality

- Somehow also maintains wear-leveling
. Cons:

- Computation/data overhead

32

This week

* Solid state drives (SSDs)
* Flash memory basics

* SSD types
* Zoned namespace SSDs (ZNS)
e Key-value SSD (KVSSD)

 Computational storage (CSD)
* F2FS

33

Zoned storage model

* Zones are laid out sequentially in an NVMe namespace

* The zone size is fixed and applies to all zones in the

NVMe Namespace
A

namespace (e.g., 512 MB) {

|

Zone 0

| Zone 1 |

Zone x-1

* Inherits the base NVMe command set

LBAD |LBA1]

| LBA 2-1

* Built upon the conventional block interface |

Zone 0

| Zone 1 I

Zone x-1

(read, write, flush, and other commands)
e Adds rules to collaborate with host and device data

placement

[tBam| teams1 | . | tean2 | tBAn |
—> Write
Sequentially

34

Writing to a zone

* Only supports sequential writing

* Either write sequentially or reset if written again Empty Zone

* Each zone has a set of associated attributes: T Ry | Ty

A
* Write pointer "BAm

* /one starting LBA

* Zone capacit
P Y Partially Written Zone

* /one state | LBA m(i.e..ZSLBA)‘ l LBAw | ‘ LBA n-1
\

Y l

written LBAs write pointer
(LBA w)

35

Reading from a zone

* Writes are required to be sequential within a zone

 Reads may be issued to any LBA within a zone and in any order

Reads
Zone 0 Zone 1 Zone x-1
LBAQ | LBA1 LBA z-1
Zone 0 Zone 1 Zone x-1

LBAm| LBA m+1 LBAn-2 LBA n-1

This week

* Solid state drives (SSDs)
* Flash memory basics

* SSD types
e Zoned namespace SSDs (ZNS)
e Key-value SSD (KVSSD)

 Computational storage (CSD)
* F2FS

37

KV stores are commonly used at scale

amazon
&\ airbnb DynamoDB

ceph Netapp

ORakuten
[7/ —
Linked[l] (@ Pinterest e Bl 7% MyRocks

Machine
Learning
,+

Caffe2

" EVCache

npplo

@ M =

38

Samsung KVSSD

NGSFF KV SSD

oAMSUNG

S4LRO2D
SZ7HENKZ

Form factor: NGSFF/U.2
Capacity: 1-16TB
Interface: NVMe PCle Gen.3

39

Key idea

ﬁ
\ £
——

T é redis $mongo0s

B =

levelos

Host S/W

WIREDT |G N

Thin KV lerary

Block Device Driver

/s t ‘ WAF, RAF, Latency

A 4

Block Device

KV Device Driver

KV Device

Traditional KV Store

KV Stacks

KV

SAMSUNG

40

Key idea

ﬁ
\ £
——

T é redis $mongo0s

B =

levelos

Host S/W

WIREDT |G N

Thin KV lerary

Block Device Driver

/s t ‘ WAF, RAF, Latency

A 4

Block Device

KV Device Driver

KV Device

Traditional KV Store

KV Stacks

KV

SAMSUNG

41

Key idea

* Key size: 255B, value size: 2MB

Storage Server Key Value SSD
Lookup /
Check hash collision
] User/Device Hash Key
Read/Write User Data
i f $ Indanc::::cocci
Key Size Range ? Value Size Range ? - e — =
L g] : Physical Location / Offset
KeySize Value Size < NAND >
Key Value |/F Command NAND Page (32KB)
¢ Get(key) / Put(Key,Value) | | | e ——
KeyValuessDdevicedriver | || | e
f— Meta data Key Value

42

This week

* Solid state drives (SSDs)
* Flash memory basics

* SSD types
e Zoned namespace SSDs (ZNS)
e Key-value SSD (KVSSD)

 Computational storage (CSD)
* F2FS

43

Computational storage instances

FPGA to Multi-SSDs FPGA+SSD Controller FPGA Only

44

Samsung SmartSSD

* Offload computation directly to storage
* Data filtering, compression, analytics

* Minimizes data movement, saves CPU cycles, lower latency for data access

* Requires new storage stack design

FPGA + DRAM (Up to 8GB) SSD 1TB - PM983 SmartSSD

SSD
Read/Write

SSD
Controller
NAND

FPGA /| DRAM
Read/Write

P2P communication

PCle Gen3 x4

This week

* Solid state drives (SSDs)
* Flash memory basics

* SSD types
e Zoned namespace SSDs (ZNS)
e Key-value SSD (KVSSD)

 Computational storage (CSD)
* F2FS

46

Flash-friendly file system (F2FS)

* Based on log-structured file system (LFS)

* Design to handle random writes and fsync operations
* 150% and 70% for mobile and web applications over sequential writes

* Around 70% more fsync operations

* Leads toincreased device 10 latency and reduces device lifetime

* Several techniques used: flash-friendly layout, indexing, multi-head logging,

adaptive logging, and fsync acceleration with roll-forward recovery

47

Flash-friendly on-disk layout

* Flash awareness
* All the metadata located together for locality
- Start address of the Main area is aligned to the zone size
- Cleaning is done in a unit of section (FTL's GC unit)

* Cleaning cost reduction

- Multi-head logging for hot/cold data separation

Random writes Sequential writes

| Zone Zone | Zone \ Zone |

i Section | Section Section Section | Section | Section | Section | Section |
Segment Number o 1 2 ..
(1 segment = 2MB) | | \ | | | | | | \ | | | | | | | | | |

Superblock 0 Main Area
Segment Node
Info. Address

superblocid Table Table Hilwllc
(SIT) (NAT)

metadata data

Flash-friendly on-disk layout

CP: file system status, bitmaps for valid SIT/NAT sets, orphan inode lists & active seg
* Used for checkpointing pointing

e SIT: Information on valid segments of the main area
* NAT: Address table pointing to all node blocks in the main area
e SSA: Owner info of all blocks (parent inode no and its node/data offsets)

 Main area: 4KB blocks; node: inode or indices of data blocks, data: dir. or user file data

Random writes Sequential writes

| Zone Zone | Zone ‘ Zone |

{ Section | Section Section Section | Section | Section | Section | Section |
Segment Number 0 A o B
(1 segment = 2MB) i | \ | | \ \ | ! | | | | [| | 1 | | |

Superblock 0 Main Area

Segment Node

Info. Address
Superblock 1 Table Table suut H| W[C| .
(SIT) (NAT)

metadata data

49

Inode

* Unlike LFS, does not maintain inode map

* Uses node structure (unique node ID)

e Uses node ID to use as a physical location by
checking the NAT table

e (Contains:

* Metadata, file name, inode no, file size, etc.

* Inline data up to 3,692 bytes

* Inline extended attributes up to 200 bytes

Inode block

Metadata

direct pointers
or
inline data

Inline xattrs

Single-indirect

Y

Y

Y

[l Data

[l Direct node
[l Indirect node

Double-indirect

[EN

Triple-indirect

Y

¥

50

LFS index structure

Fixed location One big log
e S
H Wandering tree problem
B v when a file data is updated, the upper index
Inode /|> structures such as inode, inode map, and checkpoint
Map block are also updated recursively

-
Directory

File Inode
Segment File data File dataﬂ
Usage i
Segment Used for cleaning Indirect Direct
Summary Pointer block Pointer block

et
.
et
.
»
-
.
as”
.-
et
"""
.
.
.
.
et
v
e
ey
.
.

| I H Cleaning overhead

In order to serve new empty log space, it needs to
reclaim these obsolete blocks seamlessly to users

ray
ea
ae
e.
e
ae,
.......
.....
ea,
LEN
ay
"~
.
.
.

51

F2FS index structure

Fixed location w/ locality

Segment Info.
Table (SIT)

Multiple logs

-
Directory
File Inode
| File data

\ 4

Summary Used for cleaning Node
-Direct node blocks for dir -Dir data
-Direct node blocks for file -File data
-Indirect node blocks -Cleaning data

| Il—1IE

Ly
o
Q.
Q
~+
Q

.
ey
-
s
at®
-
.
.
.
.t
.
....
-
..
.
o
.
.
.
.
.
.
.

52

Multi-head logging

* F2FS maintains 6 major log areas: maximize hot and cold data separation

* Data temperature classification

Objects

Direct node blocks for directories

Direct node blocks [or regular (iles

Indirect node blocks

Directory entry blocks
Data blocks made by users

Type | Temp.

. Hot
Node > data Node | Warm

. . . Cold

* Direct node > indirect node Hior

) . Warm

* Directory > user file Data
- - Cold
e Separate multi-head logs in NAND flash

Data blocks moved by cleaning;
Cold data blocks specified by users:
Multimedia file data

* Zone aware log allocation for set-associative mapping FTL

e Multi-stream interface

53

Cleaning

* Cleaning performed at the level of section unit: aligned with FTL's GC unit
* Reclaim scattered and invalidated blocks for further logging
* Foreground cleaning (reactive) and background cleaning (periodic)
* 3 Step process:
* Victim selection based on greedy (foreground) or cost-benefit (background) policy

* Valid block identification and migration: uses validity bitmap in SIT and migrates

parent node blocks to free logs

* Background cleaning: loads blocks in page cache; marks them dirty; lazily
migrates them
* Post cleaning process: Section becomes pre-free section after migrating all valid

blocks; it becomes free only after a checkpoint is made

Adaptive logging

* Dynamic write policy, based on the availability of 5% of clean blocks:

* Append logging (logging to clean segments)

* Need cleaning operations if there is no free segment

« Cleaning causes mostly random read and sequential writes

- Threaded Iogging (Iogging to dirty segments) Threaded logging writes data

« Reuse invalid blocks in dirty segments it Imvicr ook segimert

v B v]v$v

* No need cleaning v v

« Causes random writes (
segment

Sudden power off recovery

* Checkpoint and rollback mechanism
* Maintains shadow copy of checkpoint, NAT, SIT blocks
Recovers the latest checkpoint

Keeps NAT/SIT journal in checkpoint to avoid NAT, SIT writes

Fixed location Multi-head logging

[¥

Cimn

|E

HO, #1
E 0
=|l

dirl filel file2

NAT/SIT
journaling

Shadow copy

Sudden power off recovery

Fsync handling

On fsync, checkpoint is not necessary

Direct node blocks are written with fsync mark

Roll-forward recovery procedure

Search marked direct node blocks

Per marked node block, identify old and new data blocks by checking the difference
between the current and the previous node block

Update SIT; invalidate old data

Replace new data block writes; update NAT, SIT accordingly

Create checkpoint

57

Mobile benchmark

* |n F2FS, more than 90% writes are sequential

* F2FS reduces writes amount per fsync by using roll-forward recovery
e Btrfs and Nilfs2 performed poorly than Ext4

« Btrfs: heavy indexing overhead; Nilfs2: periodic data flush

4 T T T T 3 T |
F2FS ™ EXT4 B BTRFS E==—=1 NILFS2 =3 F2FS ™ EXT4 E==EER BTRFS =3 NILFS2 =3
=
= a 2rF
5 -
5 2 { &
o e va
ﬁ b ///
g b4 L = '//,;
O 1 |= - / . A
= F : Pre W
/ : / /]
8¢ // :: // % //;
12t N o P k& " A
0 X " =] 0 ! "'\\:\\‘ // \\\\\\. // 68 \\\\\ //1
SR RW Insert Update Delete

(a) 10zone (b) SQLite

Server benchmark

F2FS better than Ext4 on SATA SSD than PCle SSD

Discard size matters in SATA SD due to interface overhead

Normalized Performance

2.5

15

0.5

| I 1 I
F2FS —1 EXT4 BTRFS NILFS2 ——A
——
1.005 g
=% 1 \f\
NS
0.935 oA rang
- danzarar ; f/
Y /]
~
m \‘-/ / \\.\f
LY ks)
Y g
N \:2:? \
o /] N g "
N o .
N\ g) \'d
N\ ‘:\:/ /]
videoserver fileserver varmail

filebench workloads

(a) SATA SSD

Normalized Performance

2'5 1 [| |
F2FS C— EXT4 BTRFS NILFS2 =]
2 L. 1.005 -
I i
\.:\ ¥

15 | :\:T & Ny
0.355 //
daszars I 4
//

i i A .
1/
R [/

05 - \S:x/’ ’/, =
N \/ A
::\ v "/
0 \\ o]

videoserver fileserver varmail

filebench workloads

(b) PCle SSD

59

Summary

* Flash is the widely-deployed storage media
* FTL helps in managing data operations to flash memory
» Suffers from endurance issues (wear leveling) and write amplification
* \Various types of SSDs present to cater various workload characteristics
* F2FS specifically designed for flash memory
* Minimizes random writes with flash-friendly on-disk layout

* Proposes several ways to maintain sequentiality and parallelism

