
CS 477:

Advanced Operating Systems
Flash Memory & Today’s LFS

2

Administrivia

3

Midterm marks distribution

Min Avg Max

Percentage 41% 62% 94%

• Solid state drives (SSDs)

• Flash memory basics

• SSD types

• Zoned namespace SSDs (ZNS)

• Key-value SSD (KVSSD)

• Computational storage (CSD)

• F2FS

4

This week

5

SSD vs. HDD

Storage interfaces

6

7

Operations inching closer to the processor speed

8

NVMe (NVM Express)

• The industry standard interface for high-performance NVM storage

• NVMe 1.0 in 2011 by NVM Express Workgroup

• NVMe 1.2 in 2014

• PCIe-based

• Lower latency

• Direct connection to CPU

• Scalable bandwidth

• 1 GB/s per lane (PCI Gen 3); 2 for PCIe Gen 4

9

NVMe SSD form factors

10

SSD internals

11

The unwritten contract

Several assumptions are no longer valid

• Solid state drives (SSDs)

• Flash memory basics

• SSD types

• Zoned namespace SSDs (ZNS)

• Key-value SSD (KVSSD)

• Computational storage (CSD)

• F2FS

12

This week

• Data is stored in memory cells

• Cells have floating-gate transistors that can capture

electrons for an extended period, but not indefinitely

• Chip pushes electrons into the oxide layer and into the

“silicone” gate

• Float gate ensures that electricity keeps circulating

even if the power is switched off

• Floating gate selects the zero or one state based on

the memory’s state before it was turned off

13

Flash memory basics: NAND transistor

• A collection of blocks

• Each block has a number of pages

• The size of a page or block depends on the technology in use

14

Logical view of NAND flash

• Each plane has its own plane register or cache register

• Pages can be reprogrammed or read at once

• Optional feature: 1, 2, 4, 8 .. planes

15

Plane

16

Chip/die

• Each chip has multiple dies (can be stacked)

• + extra circuits, chip enable signal, ready/busy signal

• SLC NAND: Single level cell (1 bit/cell)

• Most expensive, used in servers

• MLC NAND: multi-level cell (2 bits/cell)

• Used where endurance is not important

• TLC NAND: triple-level cell (3 bits/cell)

• Cheapest option on the market

• QLC NAND: quad-level cell (4 bits/cell)

17

NAND flash types

https://www.kingston.com/en/blog/pc-performance/difference-between-slc-mlc-tlc-3d-nand#:~:text=MLC%20has%20a%20higher%20data,lower%20endurance%20compared%20to%20SLC.

• In-place update (overwrite) not allowed

• Pages must be erased before programming new data

• The erase unit is much larger than the read/write unit

• Read/write unit: page (4KB, 8KB, 16KB, …)

• Erase unit: block (64-512 pages)

• Handling live pages in a block marked for deletion?

18

Flash memory characteristics: erase-before-write

• In-place update (overwrite) not allowed

• Pages must be erased before programming new data

• The erase unit is much larger than the read/write unit

• Read/write unit: page (4KB, 8KB, 16KB, …)

• Erase unit: block (64-512 pages)

• Handling live pages in a block marked for deletion?

• Copy the live pages to a spare area and then mark the

block for garbage collection

19

Flash memory characteristics: erase-before-write

• NAND flash blocks has limited programmed and erased (P/E) cycle:

• SLC: 50,000 – 100,000

• MLC: 3,000 – 10,000

• eMLCs (enterprise MLCs): 10,000 – 30,000

• TLCs: 1,000 – 3,000

• QLC: 100 – 1,000

• High voltage applied to cell degrades the oxide layer

• Electrons trapped in oxide; break down of the oxide layer

20

Flash memory characteristics: limited lifetime

• Reading a page is faster than programming it

• Usually more than 10x

• MLC: read 45us, program 1350us, erase 4ms

• Programming a page should go through multiple steps of program and verify steps

• With shrinking technology, read/write latency tends to increase

• MLC and TLC make it even worse

21

Flash memory characteristics: asymmetric rd/wr lat

How does storage stack interact with SSDs?

22

• Abstraction given by block device drivers:

• Operations:

• Identify(): returns N

• Read (start sector #, # of sectors, buffer address)

• Write (start sector #, # of sectors, buffer address)

23

Storage abstraction

A flash layer that makes NAND flash fully emulate the traditional block devices

24

FTL: flash translation layer

• Sector translation layer

• Address mapping

• Garbage collection

• Wear levelling

• Block management layer

• Bad block management

• Error handling

• Low level driver

• Flash interface

25

NAND flash types

26

Address mapping

27

Address mapping: cannot overwrite the same page

• Page mapping

• Fine-granularity page-level mapping table

• Huge amount of memory space required for the map table

• Block mapping

• Coarse-granular block-level map table

• Small amount of memory space required for the map table

• Hybrid mapping

• Use both page-level and block-level map tables

• Higher algorithm complexity

28

Mapping scheme

• Garbage collection (GC)

• Eventually, FTL will run out of blocks to write to

• GC reclaims free space

• Actual GC procedure depends on the mapping table

• GC in page-mapping FTL

• Select victim block(s)

• Copy all valid pages of victim block(s) to free block

• Erase victim block(s)

• Note: At least one free block should be reserved for GC

29

Garbage collection

• Ratio of data written to flash to data written on host

• Write amplification factor (WAF)

= Bytes written to flash / bytes written from host

= (Bytes written from host + bytes written during GC) / bytes written from host

• Generally, WAF > 1

• Due to valid page copies made from victim block to free block during GC

• WAF is one of the metrics showing the efficiency of GC

30

Write amplification

• Select a block with largest amount of invalid data

• A block with the min. utilization u

u = # valid pages in a block / # pages in a block

• Pros:

• Least valid data copying costs

• Simple

• Cons

• Performs worse when there is a high locality among writes

• Does not consider wear leveling

31

Victim selection policy: Greedy

• Select a block with the maximum

Benefit / cost = (1 - u)/2u x age

• u: utilization

• age: the time since the last modification

• Pros:

• Performs well with locality

• Somehow also maintains wear-leveling

• Cons:

• Computation/data overhead

32

Victim selection policy: Cost-benefit

• Solid state drives (SSDs)

• Flash memory basics

• SSD types

• Zoned namespace SSDs (ZNS)

• Key-value SSD (KVSSD)

• Computational storage (CSD)

• F2FS

33

This week

• Zones are laid out sequentially in an NVMe namespace

• The zone size is fixed and applies to all zones in the

namespace (e.g., 512 MB)

• Inherits the base NVMe command set

• Built upon the conventional block interface

(read, write, flush, and other commands)

• Adds rules to collaborate with host and device data

placement

34

Zoned storage model

35

Writing to a zone

• Only supports sequential writing

• Either write sequentially or reset if written again

• Each zone has a set of associated attributes:

• Write pointer

• Zone starting LBA

• Zone capacity

• Zone state

• Writes are required to be sequential within a zone

• Reads may be issued to any LBA within a zone and in any order

36

Reading from a zone

• Solid state drives (SSDs)

• Flash memory basics

• SSD types

• Zoned namespace SSDs (ZNS)

• Key-value SSD (KVSSD)

• Computational storage (CSD)

• F2FS

37

This week

38

KV stores are commonly used at scale

39

Samsung KVSSD

40

Key idea

41

Key idea

42

Key idea

• Key size: 255B, value size: 2MB

• Solid state drives (SSDs)

• Flash memory basics

• SSD types

• Zoned namespace SSDs (ZNS)

• Key-value SSD (KVSSD)

• Computational storage (CSD)

• F2FS

43

This week

44

Computational storage instances

45

Samsung SmartSSD

• Offload computation directly to storage

• Data filtering, compression, analytics

• Minimizes data movement, saves CPU cycles, lower latency for data access

• Requires new storage stack design

• Solid state drives (SSDs)

• Flash memory basics

• SSD types

• Zoned namespace SSDs (ZNS)

• Key-value SSD (KVSSD)

• Computational storage (CSD)

• F2FS

46

This week

• Based on log-structured file system (LFS)

• Design to handle random writes and fsync operations

• 150% and 70% for mobile and web applications over sequential writes

• Around 70% more fsync operations

• Leads to increased device IO latency and reduces device lifetime

• Several techniques used: flash-friendly layout, indexing, multi-head logging,

adaptive logging, and fsync acceleration with roll-forward recovery

47

Flash-friendly file system (F2FS)

48

Flash-friendly on-disk layout

• Flash awareness

• All the metadata located together for locality

• Start address of the Main area is aligned to the zone size

• Cleaning is done in a unit of section (FTL’s GC unit)

• Cleaning cost reduction

• Multi-head logging for hot/cold data separation

49

Flash-friendly on-disk layout

• CP: file system status, bitmaps for valid SIT/NAT sets, orphan inode lists & active seg

• Used for checkpointing pointing

• SIT: Information on valid segments of the main area

• NAT: Address table pointing to all node blocks in the main area

• SSA: Owner info of all blocks (parent inode no and its node/data offsets)

• Main area: 4KB blocks; node: inode or indices of data blocks, data: dir. or user file data

50

Inode

• Unlike LFS, does not maintain inode map

• Uses node structure (unique node ID)

• Uses node ID to use as a physical location by

checking the NAT table

• Contains:

• Metadata, file name, inode no, file size, etc.

• Inline data up to 3,692 bytes

• Inline extended attributes up to 200 bytes

51

LFS index structure

52

F2FS index structure

53

Multi-head logging
• F2FS maintains 6 major log areas: maximize hot and cold data separation

• Data temperature classification

• Node > data

• Direct node > indirect node

• Directory > user file

• Separate multi-head logs in NAND flash

• Zone aware log allocation for set-associative mapping FTL

• Multi-stream interface

54

Cleaning
• Cleaning performed at the level of section unit: aligned with FTL’s GC unit

• Reclaim scattered and invalidated blocks for further logging

• Foreground cleaning (reactive) and background cleaning (periodic)

• 3 Step process:

• Victim selection based on greedy (foreground) or cost-benefit (background) policy

• Valid block identification and migration: uses validity bitmap in SIT and migrates

parent node blocks to free logs

• Background cleaning: loads blocks in page cache; marks them dirty; lazily

migrates them

• Post cleaning process: Section becomes pre-free section after migrating all valid

blocks; it becomes free only after a checkpoint is made

55

Adaptive logging
• Dynamic write policy, based on the availability of 5% of clean blocks:

• Append logging (logging to clean segments)

• Need cleaning operations if there is no free segment

• Cleaning causes mostly random read and sequential writes

• Threaded logging (logging to dirty segments)

• Reuse invalid blocks in dirty segments

• No need cleaning

• Causes random writes

56

Sudden power off recovery
• Checkpoint and rollback mechanism

• Maintains shadow copy of checkpoint, NAT, SIT blocks

• Recovers the latest checkpoint

• Keeps NAT/SIT journal in checkpoint to avoid NAT, SIT writes

57

Sudden power off recovery
• Fsync handling

• On fsync, checkpoint is not necessary

• Direct node blocks are written with fsync mark

• Roll-forward recovery procedure

• Search marked direct node blocks

• Per marked node block, identify old and new data blocks by checking the difference

between the current and the previous node block

• Update SIT; invalidate old data

• Replace new data block writes; update NAT, SIT accordingly

• Create checkpoint

58

Mobile benchmark
• In F2FS, more than 90% writes are sequential

• F2FS reduces writes amount per fsync by using roll-forward recovery

• Btrfs and Nilfs2 performed poorly than Ext4

• Btrfs: heavy indexing overhead; Nilfs2: periodic data flush

59

Server benchmark
• F2FS better than Ext4 on SATA SSD than PCIe SSD

• Discard size matters in SATA SD due to interface overhead

60

Summary
• Flash is the widely-deployed storage media

• FTL helps in managing data operations to flash memory

• Suffers from endurance issues (wear leveling) and write amplification

• Various types of SSDs present to cater various workload characteristics

• F2FS specifically designed for flash memory

• Minimizes random writes with flash-friendly on-disk layout

• Proposes several ways to maintain sequentiality and parallelism

