CS 477:

Advanced Operating Systems

Hard Disk & Log-structured file system

This week

- Storage Device
- File System

 Log-Structured File Systems

Memory hierarchy and storage devices

faster
S smaller

Processor
Cache
Main
Volatile Memory
Persistent NVM

Solid State Drives

Hard Disk Drives slower
larger

Hard-Disk Drives

« Storage devices has been the performance bottleneck for years

Calculations per 75

Processor:
second

Memeory
Memory (RAM): operations per 15
second

Desktop
Graphics: perfermance for 1.7
Windows Aero

3D business and Determined by
gaming 77 lowest subscore
graphics '

performance

Disk data
transfer rate

Gaming graphics:

Primary hard disk: 59

Hard-Disk Drives

« Disk is slow because of mechanical parts inside

Sealed chamber

Disk platters Sector Cluster
@Platte rsv

- Track F/Cyllnder
= &
& &
' =

) ===t

Mounting chassis

« Random accesses may incur disk head movement

How to organize data stored on storage devices

« Block abstraction

o Split the storage device into

Boom Head Sector Spindle Track Platter

fixed-sized chunks (blocks)

o Number the blocks for access

o Mapping the block number to \

the cylinder, header, sector

How to organize data stored on storage devices

« File abstraction

.
N =

B i - | = bl
| | <— arm asse moly
I

4

NN
b

N
1T
¢

1

File system abstraction

* Addresses need for long-term information storage:
» Store large amounts of information
Do it in a way that outlives the program
Can support concurrent accesses from multiple processes
* Presents applications with persistent, named data
 Two main components:
* Files

e Directories

The file abstraction: File

* Afileis named collection of related information that is recorded in secondary
storage
* Or, alinear persistent array of bytes
* Has two parts:
* Data: what a user or application puts in it

Array of bytes
« Metadata: Information added and managed by the OS

Size, owner, security information, modification time, etc.

10

The file abstraction: Directory

* A special file that stores the mapping between human-friendly names of files

and their inode numbers

/ /

* Contains subdirectories: home \
bin
* List of directories, files — \
sanidhya I
. / indicates the root; , >
linuxbrew

$ tree /home

/home

Linuxbrew
lost+found [error opening dir]

sanidhya

05-mvcc.pdf

1000coresfullstory.pdf

13-kernels.pptx

14360135-1080p.mp4.crdownload

17.pptx

1 eBPF Instruction Set Specification, v1.0 — The Linux Kernel documentation.pdf
2013_programming_massively_parallel_processors_a_hands-on_approach_2nd.pdf 11

The file abstraction: Directory

* Links are file pointers, i.e., they do not contain data themselves but a reference
to another file

* Hardlinks: Maps a file’s path to the file’s inode number

Mirror copy of the original file

Same inode number as that of the original file
« Symbolic (soft) link: Logically maps a file’s path to a different file path

Actual link to the original file

New inode number allocated on using soft link

12

File system implementation

* File system manages data for users
* Given: a large set (N) of blocks
* Need: data structures to encode file hierarchy and per file metadata
 Overhead (metadata vs file data size) should be low
Internal fragmentation should be low
Efficient access of file contents: external fragmentation, # metadata access
Implement file system APIs

» Several choices are available (similar to virtual memory)

13

File system layout

* File system is stored on disks
* Disk can be divided into one or more partitions

. Sector 0 of disk: master boot record (MBR), which contains:

« Bootstrap code (loaded and executed by the firmware)

« Partition table (addresses of where partition start and end)
- First block of each partition has a boot block

* Loaded by executing code in MBR and executed on boot
Entire disk

— Ll
Partiton == T e e
MBR .. — - T T==a
table @0 == T e
]
_— —

—
—
——

Free space . . .
management

14

Peeking inside a partition (storage block)

* Persistent storage modeled as a sequence of N blocks
* From O to N-1: 64 blocks, each of 4KB

- Some blocks store data

15

32

39

16

23

40

47

24

31

48

55

56

63

15

Peeking inside a partition (storage block)

* Persistent storage modeled as a sequence of N blocks

* From O to N-1: 64 blocks, each of 4KB

« Some blocks store data

Data blocks

0 Data blocks 7 8 Data blocks 15

40 47

32 39

Data blocks

16 Data blocks 23

48 55

Data blocks

24 Data blocks 31

56 63

Peeking inside a partition (storage block)

* Persistent storage modeled as a sequence of N blocks

* From O to N-1: 64 blocks, each of 4KB

« Some blocks store data

« Other blocks store metadata:

« An array of inodes

* At 256 bytes, 16 per block: with 5 blocks for inodes, file system can have up to 80 files

0 Data blocks 7

32 39

Inodes

Data blocks

8 Data blocks 15

40 47

Data blocks

16 Data blocks 23

48 55

Data blocks

24 Data blocks 31

56 63

Peeking inside a partition (storage block)

* Persistent storage modeled as a sequence of N blocks
* From O to N-1: 64 blocks, each of 4KB
- Some blocks store data

« Other blocks store metadata:

« An array of inodes
* At 256 bytes, 16 per block: with 5 blocks for inodes, file system can have up to 80 files

« Bitmap tracking free inodes and data blocks (free lists)

Free lists Inodes Data blocks Data blocks Data blocks

i(dp bl | DD D D(D|D|D DD DD/ D/ D|D|D D DD D D|D|D|D
0 Data blocks 7 8 Data blocks 15 16 Data blocks 23 24 Data blocks 31
D|D|/D|D|D|D|D|D D|D|D|(D|D|D|D|D D|D|D|{D|D|D|D|D D|D|/D|D|D|D|D|D

32 39 40 47 48 55 56 63

Peeking inside a partition (storage block)

* Persistent storage modeled as a sequence of N blocks
* From O to N-1: 64 blocks, each of 4KB

« Some blocks store data

« Other blocks store metadata:
* An array of inodes
* At 256 bytes, 16 per block: with 5 blocks for inodes, file system can have up to 80 files
* Bitmap tracking free inodes and data blocks (free lists)

* Boot block and superblock are at the beginning of the partition

Free lists Inodes Data blocks Data blocks Data blocks
B.idllll I\ D|D|D| D/ D|D|D DD D(D(D(D|(D|D D(D(D/ D(D|(D|{D|D
0 Data blocks 7 8 Data blocks 15 16 Data blocks 23 24 Data blocks 31
D DD DID(D|D|D D DD(D|DID|D|D D DD(D|DD|D|D D DD DID(D|D|D

32 39 40 47 48 55 56 63

19

Example: Updating a block in a file system

Inode bitmap

data bitmap

oj1(0|0|]0]|0 0

0

0

0

1

Inode information data blocks
—- IVl == -= —= —= | == == == —= D1 --

owner: sanidhya
permission: read-write
size: 1
pointer: 4
pointer: NULL
pointer: NULL

* Suppose we append a data block to a file

Add new data block D2

20

Example: Updating a block in a file system

Inode bitmap data bitmap Inode information data blocks
oj{1|/o|lo0|0]|0O ojojoflof1]0 -—-Ivl - —-- - —= | == == == —= D1 D2
owner: sanidhya
permission: read-write
size: 1
pointer: 4
pointer: NULL
pointer: NULL

* Suppose we append a data block to a file

e Add new data block D2

 Update inode

21

Example: Updating a block in a file system

Inode bitmap data bitmap Inode information data blocks
oj{1|/o|lo0|0]|0O ojojoflof1]0 -—- IvV2 == == —= —= | == == == —= D1 D2
owner: sanidhya
permission: read-write
size: 2
pointer: 4
pointer: 5
pointer: NULL

* Suppose we append a data block to a file

e Add new data block D2
 Update inode

 Update data bitmap

22

Example: Updating a block in a file system

Inode bitmap data bitmap Inode information data blocks
oj{1|/o|lo0|0]|0O ojofjofo|1]1 -—- IvV2 == == —= —= | == == == —= D1 D2
owner: sanidhya
permission: read-write
size: 2
pointer: 4
pointer: 5
pointer: NULL

* Suppose we append a data block to a file
* Add new data block D2
 Update inode

* Update data bitmap

What if a crash or power outage occurs between writes?

23

If only a single write is written to disk

Inode bitmap

data bitmap

0

1

0

0

0

0

0

0

0

0

1

Inode information data blocks

e Data block (D2) is written to disk:

Data is written; no way to get to it: D2 still appears as a free block

Write is lost, but FS (meta)data structures are consistent

e Just theinode (Iv2) is written to disk:

* On following the block pointer, garabase is read

« Inconsistent FS: data bitmap says block is free, while inode says it is used

* Updated data bitmap is written to disk:

* Inconsistent FS: data bitmap says data block is used, but no inode points to it

24

If two writes are written to disk

Inode and data bitmap updates succeed

* Good news: file system is consistent

Inode bitmap

data bitmap

0

1

0

0

0

0

0

0

0

0

1

1

Inode information data blocks

——@—— -— = = | - = - - D1

* Bad news: reading new block will return garbage

Inode and data block updates succeed

Data bitmap and data block succeed

Inconsistent FS

Inconsistent FS

25

Consistency solution: Journaling &

All states

Goal: limit the amount of required work after crash .
Consistent states

Goal: Get correct state, not just consistent state empty A B
|
Approach: Turns multiple disk updates into a single disk write e
 “Write ahead” a short note to a “log”, specifying changes about to be made to
the FS data structures
e |If a crash occurs while updating FS data structures, consult the log to determine
what to do

e No need to scan the entire disk

26

P oy

More on journaling S

A logbook to maintain significant events, decision, or change in course
* Historical record of the journey
Reference in case if something goes wrong or unexpected situations arise
* Recording events on logbook — journaling in file systems
* Before making any changes to the data (read/write/delete etc.), record the
intended changes in special area called the “journal”
* Journalis a special area on the disk that stores data in a write-ahead fashion,
also called write-ahead logging

* Journaling uses transactions’ atomicity to provide crash consistency

27

Data journaling: an example

Inode bitmap

data bitmap

0

1

0

0

0

0

0

0

0

0

1

0

 Let’s add a new block D2 to the file

* Three easy steps:

Inode information data blocks

— IVl = -—= —= —= | == == == —= D1 --

« Write to the log, these 5 blocks: TxBeg | Iv2 | Bv2 | D2 | TxEnd

e Write each record to a block for ensuring atomicity

Write the blocks Iv2, Bv2, D2 to the file system structure place (checkpoint)

Bv2 is bitmap information

Mark the transaction free in the journal (i.e., remove it)

28

Data journaling: an example

Inode bitmap

data bitmap

0

1

0

0

0

0

0

0

0

0

1

0

Let’s add a new block D2 to the file

Three easy steps:

Inode information data blocks

— IVl = -—= —= —= | == == == —= D1 --

« Write to the log, these 5 blocks: TxBeg | Iv2 | Bv2 | D2 | TxEnd

e Write each record to a block for ensuring atomicity

Write the blocks Iv2, Bv2, D2 to the file system structure place (checkpoint)

Mark the transaction free in the journal (i.e., remove it)

If crash happens before the log is updated: Ignore changes if no commit

If crash happens after the log is updated: Replay changes in log back to the disk

29

Improving file system performance for HDD

« Improving read performance

o DRAM size is now larger and larger

o Use DRAM to cache data from HDD to reduce disk access

« Improving write performance

o Use DRAM to buffer data is fine, but need to sync them to HDD
o Try batching data as much as possible to turn small random

updates into large sequential writes

30

Nature of disk writes in traditional file systems
« Appending a block to an existing file

o Update inode of that file

o Update inode bitmap

o Update data block bitmap

o Update data blocks

o Update journaling

Freetists Inodes
B ild

0 "Data blocks 7

32 39

Data blocks

8 Data blocks 15

40 47

So many random accesses
might incur multiple seeks

inside HDD!

Data blocks

16 Data blocks 23 24 Data blocks 31

56 63

48 55

31

Log-structured file system (LFS)

Key idea:

Instead of adding a log to the existing disk, use entire disk as a log

Buffer all updates (including metadata) into an in-memory segment
When a segment is full, write to the disk in a long sequential
transfer to unused part of the disk

Never overwrite existing data

32

Writing to disk segentially

« Write data blocks and metadata blocks sequentially

z A 4 v l

blOFAD b[0]:A5
Dio| Dj1| Dj2| Dja|of2[a2| Dko
b[3]:A3
A0 Al A2 A3 Inode | A5 Inode k

« New version of the inode keeps track of the latest data blocks

« Buffer the logs in DRAM, and write to disk when the log has

sufficient size

33

Finding inodes in LFS

« Inodes are scattered throughout the disk

o No lingered kept in fixed region on the disk

o No fixed patterns on the disk to keep track of them

« Each inode even has different versions

o Each update to a file need a separate version of inode

o Need to keep track of the latest version of each inode

How to keep track of the versions of the inodes?

34

The inode map (imap)

« Book-keeping the latest version of inodes on the disk

o Takes an inode number as input and produces the disk address of the
most recent version of the inode

o The imaps resides together in the log with inode and data block
updates

blk[0]:AO0 |map[k]:A1
D I[k] | imap

A0 A1

Finding imaps in LFS
« LFS has fixed region (Checkpoint Region) for imap lookup

o Maintaining pointers to the latest of the inode map

o Only updated periodically (For example, every tens of seconds)

F(irr;(a;?\l] blk[0]:A0 [map[Kk]:A1

.k+N]:

A2 D I[k] | imap
CR

Reading a file from the disk

« Read from the checkpoint region to get imaps

o Also cache imaps into DRAM

« Read the mode recent inode from the imap

« Read a block form the file with its direct or indirect pointers

37

What about directories

« Similar to traditional file systems

o Adirectory is a file whose data blocks contains file/subdirectory

names and their inode numbers as pairs

blk[0]:A0 (foo, k) blk[0]:A2 | map[k]:A1

Dyg | K] | Dygy| Ildir] |meetidas
imap

A0 A1 A2 A3

Garbage collection

« LFS keeps writing newer version of file and inode to new locations

o Leaving the old versions of both data blocks, inodes, and imaps all over

the places (garbage)

* Need to identify the obsolete data blocks, inodes, and imaps

o Keep the latest live version and periodically clean old versions

39

Garbage collection

« Case 1: Overwrite a data block

1

b[0]:A0 b[0]:A4
I[k] DO | I[K]

A0 (garbage) A4

« Case 2: Append a new block to an existing file

b[0]:A0 b[0]:AQ
DO | I[k] RE OL11:A4
I[K]

AOQ (garbage) A4

Garbage collection
« How to collect the garbage and free up space?

o Only keep the latest live versions and periodically clean old versions

o Perform garbage collection in a segment-by-segment basis

« Possibility of extending LFS to support snapshot and versioning

o Keep some old verions of inode, imap, and data blocks
o Rollback to previous version of file by writing new imaps pointing to

previous versions of the inode

Garbage collection

« Determine which blocks are alive and which are dead

o A piece of per-segment metadata called Segment summary block (SS)

o Inode number and offset for each data block are recorded

(N, T) = SegmentSummary[A];
inode = Read(imap|[N]);
blk[0]:AO0 |mapl[k]:A1 if (inode[T] :(: I)D[1)
D Ik] | imap // block D is alive
else

AO Al // block D is garbage

42

Evaluation

7
kilobytes/sec //// Sprite LFS SunOS

%

Q) [ooo-eresroreeeeranserescasasosnasassasasssatatsascaseassnscasrassnsessanstenssannes senssannansnnsans ne
800 |- %///// """"""""""""""""""""""""""""
700 |- R R R S T SO
w (18 | ——
500 | s B O R R BN L R R TRy S
VIR imaman it 7 R T i

300 |- A - I |- e et oo

200 v
100 ¢
0

7. %
Wl 1
. 7

Write Read Write Read Reread
Sequential Random Sequential

LEFS - Summary

DRAM size is big enough to cache data on disk

Write performance dominates file systems’ performance

Put file systems as a big “log”, making writes in a sequential manner

Imaps, checkpoint regions keeps track of the latest versions of the

file system

Garbage collection periodically to free up space on the disk

44

