
CS 477:

Advanced Operating Systems
Hard Disk & Log-structured file system

2

Administrivia

• Storage Device

• File System

• Log-Structured File Systems

3

This week

4

Memory hierarchy and storage devices

Registers

Processor
Cache

Main
Memory

NVM
Solid State Drives

Hard Disk Drives

Volatile

Persistent

faster
smaller

slower
larger

5

Hard-Disk Drives
• Storage devices has been the performance bottleneck for years

6

Hard-Disk Drives
• Disk is slow because of mechanical parts inside

• Random accesses may incur disk head movement

7

How to organize data stored on storage devices
• Block abstraction

o Split the storage device into

fixed-sized chunks (blocks)

o Number the blocks for access

o Mapping the block number to

the cylinder, header, sector

8

How to organize data stored on storage devices
• File abstraction

9

File system abstraction

• Addresses need for long-term information storage:

• Store large amounts of information

• Do it in a way that outlives the program

• Can support concurrent accesses from multiple processes

• Presents applications with persistent, named data

• Two main components:

• Files

• Directories

• A file is named collection of related information that is recorded in secondary

storage

• Or, a linear persistent array of bytes

• Has two parts:

• Data: what a user or application puts in it

• Array of bytes

• Metadata: Information added and managed by the OS

• Size, owner, security information, modification time, etc.

10

The file abstraction: File

• A special file that stores the mapping between human-friendly names of files

and their inode numbers

• Contains subdirectories:

• List of directories, files

• / indicates the root;

11

The file abstraction: Directory

$ tree /home

/

bin

ls

home

sanidhya

linuxbrew

• Links are file pointers, i.e., they do not contain data themselves but a reference

to another file

• Hardlinks: Maps a file’s path to the file’s inode number

• Mirror copy of the original file

• Same inode number as that of the original file

• Symbolic (soft) link: Logically maps a file’s path to a different file path

• Actual link to the original file

• New inode number allocated on using soft link

12

The file abstraction: Directory

• File system manages data for users

• Given: a large set (N) of blocks

• Need: data structures to encode file hierarchy and per file metadata

• Overhead (metadata vs file data size) should be low

• Internal fragmentation should be low

• Efficient access of file contents: external fragmentation, # metadata access

• Implement file system APIs

• Several choices are available (similar to virtual memory)

13

File system implementation

• File system is stored on disks

• Disk can be divided into one or more partitions

• Sector 0 of disk: master boot record (MBR), which contains:

• Bootstrap code (loaded and executed by the firmware)

• Partition table (addresses of where partition start and end)

• First block of each partition has a boot block

• Loaded by executing code in MBR and executed on boot

14

File system layout

Partition 1 Partition 2 Partition 3

Boot block Superblock
Free space

management
Inodes Files and directories

Entire disk

MBR Partition
table

15

Peeking inside a partition (storage block)

• Persistent storage modeled as a sequence of N blocks

• From 0 to N-1: 64 blocks, each of 4KB

• Some blocks store data

I I I I

0 7

I D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D

63

D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56

16

Peeking inside a partition (storage block)

• Persistent storage modeled as a sequence of N blocks

• From 0 to N-1: 64 blocks, each of 4KB

• Some blocks store data

Data blocks

I I I I

0 7

I D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D

63

D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56

Data blocks Data blocks Data blocks

Data blocksData blocksData blocks

17

Peeking inside a partition (storage block)

• Persistent storage modeled as a sequence of N blocks

• From 0 to N-1: 64 blocks, each of 4KB

• Some blocks store data

• Other blocks store metadata:

• An array of inodes

• At 256 bytes, 16 per block: with 5 blocks for inodes, file system can have up to 80 files

Data blocks

I I I I

0 7

I D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D

63

D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56

Data blocks Data blocks Data blocks

Data blocksData blocksData blocks

Inodes

Data blocks

18

Peeking inside a partition (storage block)

i d I I I I

0 7

I D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D

63

D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56

• Persistent storage modeled as a sequence of N blocks

• From 0 to N-1: 64 blocks, each of 4KB

• Some blocks store data

• Other blocks store metadata:

• An array of inodes

• At 256 bytes, 16 per block: with 5 blocks for inodes, file system can have up to 80 files

• Bitmap tracking free inodes and data blocks (free lists)

Data blocks Data blocks Data blocks

Data blocksData blocksData blocks

InodesFree lists

Data blocks

19

Peeking inside a partition (storage block)

B S i d I I I I

0 7

I D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D

63

D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56

• Persistent storage modeled as a sequence of N blocks

• From 0 to N-1: 64 blocks, each of 4KB

• Some blocks store data

• Other blocks store metadata:

• An array of inodes

• At 256 bytes, 16 per block: with 5 blocks for inodes, file system can have up to 80 files

• Bitmap tracking free inodes and data blocks (free lists)

• Boot block and superblock are at the beginning of the partition
Data blocks Data blocks Data blocks

Data blocksData blocksData blocks

InodesFree lists

20

Example: Updating a block in a file system

• Suppose we append a data block to a file

• Add new data block D2

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 0

data bitmap

–– Iv1 –– –– –– –– | –– –– –– –– D1 ––

Inode information data blocks

owner: sanidhya
permission: read-write
size: 1
pointer: 4
pointer: NULL
pointer: NULL

21

Example: Updating a block in a file system

• Suppose we append a data block to a file

• Add new data block D2

• Update inode

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 0

data bitmap

–– Iv1 –– –– –– –– | –– –– –– –– D1 D2

Inode information data blocks

owner: sanidhya
permission: read-write
size: 1
pointer: 4
pointer: NULL
pointer: NULL

22

Example: Updating a block in a file system

• Suppose we append a data block to a file

• Add new data block D2

• Update inode

• Update data bitmap

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 0

data bitmap

–– Iv2 –– –– –– –– | –– –– –– –– D1 D2

Inode information data blocks

owner: sanidhya
permission: read-write
size: 2
pointer: 4
pointer: 5
pointer: NULL

23

Example: Updating a block in a file system

• Suppose we append a data block to a file

• Add new data block D2

• Update inode

• Update data bitmap

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 1

data bitmap

–– Iv2 –– –– –– –– | –– –– –– –– D1 D2

Inode information data blocks

owner: sanidhya
permission: read-write
size: 2
pointer: 4
pointer: 5
pointer: NULL

What if a crash or power outage occurs between writes?

24

If only a single write is written to disk

• Data block (D2) is written to disk:

• Data is written; no way to get to it: D2 still appears as a free block

• Write is lost, but FS (meta)data structures are consistent

• Just the inode (Iv2) is written to disk:

• On following the block pointer, garabase is read

• Inconsistent FS: data bitmap says block is free, while inode says it is used

• Updated data bitmap is written to disk:

• Inconsistent FS: data bitmap says data block is used, but no inode points to it

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 1

data bitmap

–– Iv2 –– –– –– –– | –– –– –– –– D1 D2

Inode information data blocks

25

If two writes are written to disk

• Inode and data bitmap updates succeed

• Good news: file system is consistent

• Bad news: reading new block will return garbage

• Inode and data block updates succeed

• Inconsistent FS

• Data bitmap and data block succeed

• Inconsistent FS

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 1

data bitmap

–– Iv2 –– –– –– –– | –– –– –– –– D1 D2

Inode information data blocks

26

Consistency solution: Journaling
Goal: limit the amount of required work after crash

Goal: Get correct state, not just consistent state

Approach: Turns multiple disk updates into a single disk write

• “Write ahead” a short note to a “log”, specifying changes about to be made to

the FS data structures

• If a crash occurs while updating FS data structures, consult the log to determine

what to do

• No need to scan the entire disk

All states

Consistent states

empty A B

27

More on journaling

• A logbook to maintain significant events, decision, or change in course

• Historical record of the journey

• Reference in case if something goes wrong or unexpected situations arise

• Recording events on logbook → journaling in file systems

• Before making any changes to the data (read/write/delete etc.), record the

intended changes in special area called the “journal”

• Journal is a special area on the disk that stores data in a write-ahead fashion,

also called write-ahead logging

• Journaling uses transactions’ atomicity to provide crash consistency

28

Data journaling: an example

• Let’s add a new block D2 to the file

• Three easy steps:

• Write to the log, these 5 blocks: TxBeg | Iv2 | Bv2 | D2 | TxEnd

• Write each record to a block for ensuring atomicity

• Write the blocks Iv2, Bv2, D2 to the file system structure place (checkpoint)

• Bv2 is bitmap information

• Mark the transaction free in the journal (i.e., remove it)

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 0

data bitmap

–– Iv1 –– –– –– –– | –– –– –– –– D1 ––

Inode information data blocks

29

Data journaling: an example

• Let’s add a new block D2 to the file

• Three easy steps:

• Write to the log, these 5 blocks: TxBeg | Iv2 | Bv2 | D2 | TxEnd

• Write each record to a block for ensuring atomicity

• Write the blocks Iv2, Bv2, D2 to the file system structure place (checkpoint)

• Mark the transaction free in the journal (i.e., remove it)

• If crash happens before the log is updated: Ignore changes if no commit

• If crash happens after the log is updated: Replay changes in log back to the disk

0 1 0 0 0 0

Inode bitmap

0 0 0 0 1 0

data bitmap

–– Iv1 –– –– –– –– | –– –– –– –– D1 ––

Inode information data blocks

30

Improving file system performance for HDD
• Improving read performance

• Improving write performance

o DRAM size is now larger and larger

o Use DRAM to cache data from HDD to reduce disk access

o Use DRAM to buffer data is fine, but need to sync them to HDD

o Try batching data as much as possible to turn small random

updates into large sequential writes

31

Nature of disk writes in traditional file systems
• Appending a block to an existing file

o Update inode of that file

o Update inode bitmap

o Update data block bitmap

o Update data blocks

o Update journaling

Data blocks

B S i d I I I I

0 7

I D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D

63

D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56

Data blocks Data blocks

Data blocksData blocksData blocks

InodesFree lists

J

So many random accesses

might incur multiple seeks

inside HDD!

32

Log-structured file system (LFS)
• Key idea:

Instead of adding a log to the existing disk, use entire disk as a log

• Buffer all updates (including metadata) into an in-memory segment

• When a segment is full, write to the disk in a long sequential

transfer to unused part of the disk

• Never overwrite existing data

33

Writing to disk seqentially
• Write data blocks and metadata blocks sequentially

• New version of the inode keeps track of the latest data blocks

• Buffer the logs in DRAM, and write to disk when the log has

sufficient size

34

Finding inodes in LFS
• Inodes are scattered throughout the disk

• Each inode even has different versions

How to keep track of the versions of the inodes?

o No lingered kept in fixed region on the disk

o No fixed patterns on the disk to keep track of them

o Each update to a file need a separate version of inode

o Need to keep track of the latest version of each inode

35

The inode map (imap)
• Book-keeping the latest version of inodes on the disk

o Takes an inode number as input and produces the disk address of the
most recent version of the inode

o The imaps resides together in the log with inode and data block
updates

36

Finding imaps in LFS
• LFS has fixed region (Checkpoint Region) for imap lookup

o Maintaining pointers to the latest of the inode map

o Only updated periodically (For example, every tens of seconds)

37

Reading a file from the disk
• Read from the checkpoint region to get imaps

o Also cache imaps into DRAM

• Read the mode recent inode from the imap

• Read a block form the file with its direct or indirect pointers

38

What about directories
• Similar to traditional file systems

o A directory is a file whose data blocks contains file/subdirectory

names and their inode numbers as pairs

39

Garbage collection
• LFS keeps writing newer version of file and inode to new locations

o Leaving the old versions of both data blocks, inodes, and imaps all over

the places (garbage)

• Need to identify the obsolete data blocks, inodes, and imaps

o Keep the latest live version and periodically clean old versions

40

Garbage collection
• Case 1: Overwrite a data block

• Case 2: Append a new block to an existing file

41

Garbage collection
• How to collect the garbage and free up space?

o Only keep the latest live versions and periodically clean old versions

o Perform garbage collection in a segment-by-segment basis

• Possibility of extending LFS to support snapshot and versioning

o Keep some old verions of inode, imap, and data blocks

o Rollback to previous version of file by writing new imaps pointing to

previous versions of the inode

42

Garbage collection
• Determine which blocks are alive and which are dead

o A piece of per-segment metadata called Segment summary block (SS)

o Inode number and offset for each data block are recorded

43

Evaluation

44

LFS – Summary
• DRAM size is big enough to cache data on disk

• Write performance dominates file systems’ performance

• Put file systems as a big “log”, making writes in a sequential manner

• Imaps, checkpoint regions keeps track of the latest versions of the

file system

• Garbage collection periodically to free up space on the disk

