CS 477:

Advanced Operating Systems

Virtual Memory & Super Pages

This week

. Virtual Memory and Paging
- TLB (Translation Lookaisde Buffer)

- Super Pages

Focus of today’s lecture: Virtual Memory ...

Applications share the physical memory as if they are the only owner

16.0 GB Processes

15.7GB

3% 14% 0%
Name Status CPU Memory < Network
Apps (8)
4 Adobe Acrobat (2) 0.1% 130.8 MB 0 MB/s
Firefox (25) Efficie... 09% 1561.5MB 0.1 MB/s
#) Microsoft PowerPoint 2) 0.1% 2213 MB 0.1 MB/s

E Notepad.exe 0% 12.3 MB 0 MB/s

@ slack (7) Efficie... 0% 3191 MB 0.1 MB/s

Task Manager 0.3% 89.2 MB 0 MB/s

13.1GB (909 MB) 26 GB ° . @& WecChat 0.1% 70.3 MB 0 MB/s

19.4/35.7 GB 2.2 GB A
o e e e ™ windows Explorer (3) 0% 190.1 MB 0 MB/s
521 MB 1.0 GB

Why Virtual Memory

« Provide isolation and protection across processes

o Each process has its own
address space for the

physical memory

o Each process cannot
directly access memory via

physical address

1000

1000

Virtual Memory Process #1

Virtual Memory Process #2

2000

Physical Memory

T 1000

Why Virtual Memory

« Enlarge the physical memory capacity with external storage in
a transparent way

Operating
o OS swaps unused data from System

physical memory to external

storage (e.g., disk or remote S—

User
memory) ol

Swapped In

Process 2

Main Memory Secondary Memory

Virtual Memory - Hardware Mechanism

« Modern processors provide two mechanisms to separate virtual
memory space from physical memory

o Segmentation: Split physical memory into varied sized segments, and each

processes can only access memory within its segments

o Paging: Split physical memory into fixed size frames, and dynamically

mapping physical page frame to virtual pages within each process

Segmentation - Hardware Mechanism

« Each Segment specifies a base
~— base

address and size
Segment 1

el - — base
« The memory within a segment
Segment 2
needs to be contiguous
___ N ..
« Suffer from external SEEMETE

fragmentation over time

Paging - Hardware Mechanism

« Physical memories are

partitioned into chunks of fixed
sizes (Physical Page Frames) Process 1 Process 2
/
« Eliminates the need for
contiguous physical memory =
Virtual / Virtual
Memory Memory
« Paging is used more often than Physical
Memory

segmentation in modern OSes

Paging - Hardware Mechanism

« OS maps applications’ Virtual pages to the actual physical page

frames by maintaining data structure called Page Table

. VPN (index)
« Simplest model: Array .
Virtual Page number (VPN) as index 1
Physical Page number (PPN) as value 2
3
4
« VPN -> PPN translation
1048574
1048575

PPN

Valid?

1501

12

434

51

_—] | e | e | -

52

63463

376

10

Paging - Address Translation

LD [VA], R1

VPN

Page OFFSET

CR3

PPN

11

Paging - Limitation and Overhead

« Page Table size are fixed even a process uses very little memory

o 32-bit system with 4KB page size,
o We need 23%/212 =229 = 1048576

entries for page table

o 4MB required for page table

only for each process

VPN (index)
0

A W N =

1048574
1048575

PPN

Valid?

1501

12

434

51

52

_—] | e | e | -

63463

376

12

Paging - Multi-level Page Table

LD [VA], R1
Directory Table Page OFFSET
R/
>
CR3
>
—

13

Paging - Multi-level Page Table

LD [VA], R1
Directory Table Page OFFSET
>
CR3 [---]. 7
////_>

Page table walk needs multiple

memory access for a load/store

14

Paging - TLB (Translation Lookaside Buffer)

A hardware cache for page table entries

VPN -> PPN translation

Each CPU core has its own TLB

OS maintain the TLB coherence

VPN

PPN

202

1501

76

12

5

434

67

51

13

52

N

G

e

15

Paging ~-Example with TLB

LD [VAO], R1
ST [VA1], R2
LD [VA2], R3

CPU : Page Table :
L PGD PTE OFFSET :

Core Core Core
0 1 55 L /

Paging - TLB Coherence

e 0OS maintain the TLB coherence across CPU cores

« TLB Flush

o Clear TLB entries of its own CPU core

« TLB Shootdown

o Clear TLB entries of other CPU cores who have the same mapping
o Requires expensive point to point IPl operations to deliver TLB

shootdown

17

Page Fault

« No corresponding PPN for a VPN

Directory

Table

Page OFFSET

CR3

g

s
4
7
/ .
/
4
4
/

18

Page Fault

« Page Fault: no corresponding page table entry for a virtual address

« During load/store instruction when MMU walking the page table

« A fault signal was raised, and the control is taken over from user

space process to the OS to handle the page fault

19

Major Page Fault

« Major Page Faults

O

O

The data was previously swapped to external memory (e.g., Storage)
Need slow I/O operations to swap the data to DRAM

Very slow because it involves 1/0

20

Paging -Example with Major Page Fault

LD [VAO], R1

Page Table :

PGD

PTE

OFFSET

Physical
Memory

_—

Read from
Storage

External
Storage

21

Minor Page Fault

* Minor Page Faults

o No mapping in page table

o No need to load data from external storage

e Case 1: datais in DRAM, but no mapping

o Shared Memory (e.g., shared libraries)

o Copy-on-Write (e.g., fork)

e Case 2: mapping is created, but physical memory is not allocated

o Deferred allocation in mmap() with ANONYMOUS flag

22

Paging -Example with Minor Page Fault

LD [VAO], R1

------------------ k““--------%------------------------éﬁ-u---: Physical
ey
: Allocate
T8 _TLB TLB ; physical
i, memory
Page Table :
PGD PTE OFFSET :

External
Storage

23

Trade-offs of Page Sizes

« Smaller page size
o Less internal fragmentation

o Overhead in managing pages with larger page table sizes

o Low TLB coverage

« Larger page size

o more internal fragmentation , _
TLB with 512 entries:

o smaller page table sizes O cover 2MB physical memory with 4KB page

o High TLB coverage O cover 1GB physical memory with 2MB page

24

Superpage - The art of balancing

« Pages with varied sizes

Base Pages

Directory Table Page OFFSET
,t
/1 P - g -
7/ ”
y -
rd // >
7/ /7
/7/—> //
CR3 4

——» 000 e m————- >

—»
Super Pages

Directory Page OFFSET

25

Superpage - The art of balancing

« Goal 1: Increase TLB coverage

o Larger size of pages __—

TLB \

« Goal 2: Reduce fragmentation

o Break large pages into smaller one if necessary

26

Superpage - Hardware Constraints

e Constraint 1: Only several options are available for page sizes

e Constraint 2: A superpage is required to be contiguous both virtually

and physically

e Constraint 3: All base pages share the same attributes (protection,

dirty bits) within a super page in the page table and TLB

27

Superpage - Reservation in Allocation

« Allocating a superpage instead of a base page

« All consequent allocations falling into the range covered by this

superpage do not need to consume a dedicated page table entry

« Improves TLB coverage by extending the size of each page

28

Superpage - Reservation List

Tracking the reserved physical pages
One reservation list for each page size

Reservations in each list are sorted in LRU order

4MB

512KB

64KB

f 1

Least Recent Used Most Recent Used

29

Superpage - Reservation List

* Preempting a reservation

4MB

512KB Q - . Select from the head

64KB

8KB

Superpage - Reservation List

* Preempting a reservation

4MB
512KB C‘?K Break into chunks of next-level size
64KB

8KB

31

Superpage - Reservation List

* Preempting a reservation

4MB

512KB

Insert to next level list

<01

64KB

8KB

32

Superpage - Population Map
« Tracking the base page usage within each memory object

o How many base pages are used

o Helps promotion decision

« The population map is queried for a page fault
o <memory object id, offset in object> to locate the population map

o Round down the faulting address to align with the largest page size

33

Superpage - Population Map
- Radix Tree Data Structure

o Each level is corresponding to a size
(somepop, fullpop) =10

2 o Bookkeeps number of children

partially populated or fully populated

]

3.1

T

34

Superpage - Determine the Page Size

 Static approach for fixed-size memory objects

o Code segments, memory-mapped files are of large and fixed sizes

o Allocate the largest, aligned superpages for them

« Dynamic approach for varying-size memory objects
o Dynamically allocated memory (on stack or heap)

o Allocate the smallest size of super page to hold this object

35

Superpage - Fragmentation Control

* Preempting existing reservations
o Preempting a reservation if the memory are not used within a

superpage

« Buddy allocator

o Coalescing available memory regions whenever possible

« Page replacement Daemon

o Contiguity-aware page replacement

36

Superpage - Page Promotion
* Incremental Promotion

o Promotion occurs to the smallest superpage size next to the current

one

« When to promote
o The population count within a superpage reaches a certain fraction

of the size

37

Superpage - Page Demotion
e Case 1: During page replacement (eviction)

o A superpage is demoted when a base page within it is selected as victim

e Case 2: Attributes of a base page changes (e.g., protection)

o mprotect system call

e Case 3: Periodically performed in background

o To determine if the superpage is still being actively used

38

Superpage - Swapping
« No individual dirty information for each base page

o High I/O cost for swapping if only part of the superpage is dirty

« Tracking the dirty information while reserving the superpage

o Compute the hashing value of each base page content
o Recompute the new hash value before evicting
o If the old hash value and new one are same, it means the base page

is not dirty. Hence no I/O is required.

39

Superpage - Evaluation

« Best-case benefits without fragmentation

Superpage usage Miss

Bench- 8 64 512 4 reduc Speed-
mark KB KB KB | MB (%) up

Web 30623 5| 143 1 16.67 1.019
Image 163 | 17 7 || 75.00 1.228
Povray 136 6 17 14 97.44 1.042
Linker 6317 | 29 7 (| 83.71 326
C4 76 2 9 0 || 95.65 1.360
Tree 207 6 14 1]| 97.14 1.503
SP 151 103 15 0 || 99.55] 195
FFTW 160 5 7 60 99.59 1.549
Matrix 198 12 5 3 || 99.47 7.546

Superpage - Evaluation

« Sensitivity to different superpage sizes

Benchmark 64KB | 512KB | 4MB All
CFP2000 1.02 1.08 1.06 112

galgel 128 1.28 1.01 129

lucas 1.04 128 | 1.24 1.28

apsl 1.04 1.79 1.83 1.83
Image 1:19 119 | 1.16 || 1:23
Linker 1.16 1.26 1.19 132
C4 1.30 1.34 | 098 1.36
SP 1.19 1.17 | 0.98 1.19
FFTW 1.01 10D | 1385 1:55
Matrix 3.83 7.17 | 6.86 7.54

Benchmark 64KB 512KB | 4MB All
CFP2000

galgel 98.51 98.71 0.00 || 99.80

lucas 12.79 9698 | 87.61 99.90

apsl 9.69 98.70 | 99.98 || 99.98
Image 50.00 50.00 | 50.00 75.00
Linker 57.14 85.71 | 57.14 || 85.71
C4 95.65 95.65 0.00 || 95.65
SP 99.11 93.75 0.00 || 99.55
FFTW 7.41 7.41 | 99.59 || 99.59
Matrix 90.43 90.47 | 99.47 || 99.47

Performance Speedups

TLB miss reductions

41

Superpage - Summary

Varied sizes of page to improve TLB coverage

* Promote base pages to a larger one to adapt to dynamic workload

« Demote a larger page to smaller ones to reduce fragmentation

« Hashing base page contents to identify the fine-grained dirty

information for each base page within a super page

42

THP in Linux

« THP (Transparent Huge Page) is a feature in Linux MM

o Share some similarities with the idea of superpages
o Smaller pages can be promoted to a larger page

o Larger pages can be demoted to smaller pages

« Promotion and Demotion in an automatic manner

o Promotion is based on access patterns (e.g., sequential access)

o Demotion is based on the memory fragmentation situation

