
CS 477:

Advanced Operating Systems
Virtual Memory & Super Pages

2

Administrivia

• Virtual Memory and Paging

• TLB (Translation Lookaisde Buffer)

• Super Pages

3

This week

Focus of today’s lecture: Virtual Memory …
Applications share the physical memory as if they are the only owner

4

• Provide isolation and protection across processes

5

Why Virtual Memory

o Each process has its own

address space for the

physical memory

o Each process cannot

directly access memory via

physical address

• Enlarge the physical memory capacity with external storage in

a transparent way

6

Why Virtual Memory

o OS swaps unused data from

physical memory to external

storage (e.g., disk or remote

memory)

• Modern processors provide two mechanisms to separate virtual

memory space from physical memory

7

Virtual Memory – Hardware Mechanism

o Segmentation: Split physical memory into varied sized segments, and each

processes can only access memory within its segments

o Paging: Split physical memory into fixed size frames, and dynamically

mapping physical page frame to virtual pages within each process

• Each Segment specifies a base

address and size

8

Segmentation – Hardware Mechanism

• The memory within a segment

needs to be contiguous

• Suffer from external

fragmentation over time

Segment 1

Segment 2

Segment 3

base

base

base
Fragmentation

9

Paging – Hardware Mechanism

Physical
Memory

Virtual
Memory

Process 1 Process 2

• Physical memories are

partitioned into chunks of fixed

sizes (Physical Page Frames)

Virtual
Memory

• Eliminates the need for

contiguous physical memory

• Paging is used more often than

segmentation in modern OSes

• OS maps applications’ Virtual pages to the actual physical page

frames by maintaining data structure called Page Table

10

Paging – Hardware Mechanism

• Simplest model: Array PPN Valid?

1501 1

12 1

434 1

51 1

52 1

VPN (index)

0

1

2

3

4

63463 0

376 1

1048574

1048575

…

Virtual Page number (VPN) as index

Physical Page number (PPN) as value

• VPN -> PPN translation

11

Paging – Address Translation
LD [VA], R1

VPN Page OFFSET

CR3 PPN

• Page Table size are fixed even a process uses very little memory

12

Paging – Limitation and Overhead

PPN Valid?

1501 1

12 1

434 1

51 1

52 1

VPN (index)

0

1

2

3

4

63463 0

376 1

1048574

1048575

…

o 32-bit system with 4KB page size,

o We need 232/212 = 220 = 1048576

entries for page table

o 4MB required for page table

only for each process

13

Paging – Multi-level Page Table
LD [VA], R1

Directory Table Page OFFSET

CR3

14

Paging – Multi-level Page Table
LD [VA], R1

Directory Table Page OFFSET

CR3

Page table walk needs multiple

memory access for a load/store

• A hardware cache for page table entries

15

Paging – TLB (Translation Lookaside Buffer)

VPN PPN

202 1501

76 12

5 434

67 51

13 52

• VPN -> PPN translation

• Each CPU core has its own TLB

• OS maintain the TLB coherence

16

Paging –Example with TLB

PGD PTE OFFSET

TLB

Core
0

CPU

TLB TLB

Core
1

Core
55

LD [VA0], R1

ST [VA1], R2

LD [VA2], R3

Page Table

17

Paging – TLB Coherence

• OS maintain the TLB coherence across CPU cores

• TLB Flush

• TLB Shootdown

o Clear TLB entries of its own CPU core

o Clear TLB entries of other CPU cores who have the same mapping

o Requires expensive point to point IPI operations to deliver TLB

shootdown

18

Page Fault

Directory Table Page OFFSET

CR3

Page
Fault

• No corresponding PPN for a VPN

• During load/store instruction when MMU walking the page table

19

Page Fault
• Page Fault: no corresponding page table entry for a virtual address

• A fault signal was raised, and the control is taken over from user

space process to the OS to handle the page fault

20

• Major Page Faults

o The data was previously swapped to external memory (e.g., Storage)

o Need slow I/O operations to swap the data to DRAM

o Very slow because it involves I/O

Major Page Fault

21

Paging –Example with Major Page Fault

PGD PTE OFFSET

TLB

Core
0

CPU

TLB TLB

LD [VA0], R1

Core
1

Core
55

Page Table

External
StoragePhysical

Memory

Page
Fault

Read from
Storage

22

• Minor Page Faults

o No mapping in page table

o No need to load data from external storage

Minor Page Fault

• Case 1: data is in DRAM, but no mapping

o Shared Memory (e.g., shared libraries)

o Copy-on-Write (e.g., fork)

• Case 2: mapping is created, but physical memory is not allocated

o Deferred allocation in mmap() with ANONYMOUS flag

23

Paging –Example with Minor Page Fault

PGD PTE OFFSET

TLB

Core
0

CPU

TLB TLB

LD [VA0], R1

Core
1

Core
55

Page Table

External
StoragePhysical

Memory

Page
Fault

Allocate
physical
memory

• Smaller page size

24

Trade-offs of Page Sizes

• Larger page size

o Less internal fragmentation

o Overhead in managing pages with larger page table sizes

o Low TLB coverage

o more internal fragmentation

o smaller page table sizes

o High TLB coverage

TLB with 512 entries:

o cover 2MB physical memory with 4KB page

o cover 1GB physical memory with 2MB page

25

Superpage – The art of balancing
• Pages with varied sizes

Directory Table Page OFFSET

CR3

Directory Page OFFSET

Base Pages

Super Pages

26

Superpage – The art of balancing
• Goal 1: Increase TLB coverage

• Goal 2: Reduce fragmentation

o Larger size of pages

o Break large pages into smaller one if necessary

TLB

…

27

Superpage – Hardware Constraints
• Constraint 1: Only several options are available for page sizes

• Constraint 2: A superpage is required to be contiguous both virtually

and physically

• Constraint 3: All base pages share the same attributes (protection,

dirty bits) within a super page in the page table and TLB

28

Superpage – Reservation in Allocation
• Allocating a superpage instead of a base page

• All consequent allocations falling into the range covered by this

superpage do not need to consume a dedicated page table entry

• Improves TLB coverage by extending the size of each page

29

Superpage – Reservation List

• One reservation list for each page size

• Tracking the reserved physical pages

• Reservations in each list are sorted in LRU order

4MB

512KB

64KB

Least Recent Used Most Recent Used

30

Superpage – Reservation List
• Preempting a reservation

4MB

512KB

64KB

Select from the head

8KB

31

Superpage – Reservation List
• Preempting a reservation

4MB

512KB

64KB

Break into chunks of next-level size

8KB

…

32

Superpage – Reservation List
• Preempting a reservation

4MB

512KB

64KB

Insert to next level list

8KB

…

33

Superpage – Population Map
• Tracking the base page usage within each memory object

o How many base pages are used

o Helps promotion decision

• The population map is queried for a page fault

o <memory object id, offset in object> to locate the population map

o Round down the faulting address to align with the largest page size

34

Superpage – Population Map
• Radix Tree Data Structure

o Each level is corresponding to a size

o Bookkeeps number of children

partially populated or fully populated

35

Superpage – Determine the Page Size
• Static approach for fixed-size memory objects

• Dynamic approach for varying-size memory objects

o Code segments, memory-mapped files are of large and fixed sizes

o Allocate the largest, aligned superpages for them

o Dynamically allocated memory (on stack or heap)

o Allocate the smallest size of super page to hold this object

36

Superpage – Fragmentation Control
• Preempting existing reservations

• Buddy allocator

o Preempting a reservation if the memory are not used within a

superpage

o Coalescing available memory regions whenever possible

• Page replacement Daemon

o Contiguity-aware page replacement

37

Superpage – Page Promotion
• Incremental Promotion

• When to promote

o Promotion occurs to the smallest superpage size next to the current

one

o The population count within a superpage reaches a certain fraction

of the size

38

Superpage – Page Demotion
• Case 1: During page replacement (eviction)

o A superpage is demoted when a base page within it is selected as victim

o mprotect system call

• Case 2: Attributes of a base page changes (e.g., protection)

• Case 3: Periodically performed in background

o To determine if the superpage is still being actively used

39

Superpage – Swapping
• No individual dirty information for each base page

o High I/O cost for swapping if only part of the superpage is dirty

o Compute the hashing value of each base page content

o Recompute the new hash value before evicting

o If the old hash value and new one are same, it means the base page

is not dirty. Hence no I/O is required.

• Tracking the dirty information while reserving the superpage

40

Superpage – Evaluation
• Best-case benefits without fragmentation

41

Superpage – Evaluation
• Sensitivity to different superpage sizes

Performance Speedups TLB miss reductions

42

Superpage – Summary
• Varied sizes of page to improve TLB coverage

• Promote base pages to a larger one to adapt to dynamic workload

• Demote a larger page to smaller ones to reduce fragmentation

• Hashing base page contents to identify the fine-grained dirty

information for each base page within a super page

43

THP in Linux
• THP (Transparent Huge Page) is a feature in Linux MM

o Share some similarities with the idea of superpages

o Smaller pages can be promoted to a larger page

o Larger pages can be demoted to smaller pages

• Promotion and Demotion in an automatic manner

o Promotion is based on access patterns (e.g., sequential access)

o Demotion is based on the memory fragmentation situation

