CS 477:

Advanced Operating Systems

Scheduling li






This week

 EEVDF scheduling

* Delegating scheduling to user space with GhOSt



Focus of today’s lecture: Scheduling ...
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gvfsd-fuse /run/user/1000/gvfs -f
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dbus-daemon --config-file=/usr/share/defaults/at-spi2/accessibility.conf -




Scheduler strives to achieve ...

* Fairness: Everyone should get some CPU
* Optimization: Make optimal use of system resources, minimize critical sections
* Low overhead: Should run for as short as possible

* Generalizable: Should work on every architecture, for every workload etc.



Issues with CFS

* Difficult to experiment: recompile + reboot + rewarm caches
* Very complex, often takes O(years) for people to fully understand

e Generalizable scheduler

e Often leaves some performance on the table for some workloads / architectures

* |Impossible to make everyone happy all the time

* Filled with heuristics



Issues with CFS

* CFS focuses mostly on fair allocation of CPUs time
* Does not properly considers:
* Task migration cost among CPUs
Power management

Hybrid scheduling: fast and slow cores

Latency requirement: requiring CPU time as fast as possible

No possible way to express latency requirements



EEVDEF scheduler

Earliest virtual deadline first
* Similar to earliest deadline first (EDF)

* Divides the available CPU time fairly among contending tasks

* Lag: expected virtual run time - actual running time of a task

* Positive lag: A task is owed CPU time

* Negative lag: A task has received more than its share
* Eligible task: lag>=0
* Maintains an invariant: sum of all the lag value in the system is zero

e Scheduler chooses a task from a set of eligible tasks



EEVDF scheduler

* Before running a task, scheduler computes virtual deadline
Add the time remaining in the timeslice to the time it became eligible
* Longer time slice: later virtual deadline (will run later)

* Shorter time slice: Run first (denotes latency sensitive tasks)



EEVDF scheduler: Example

3 CPU-bound tasks start at the same time
* Over those 30 ms, each task should run 10 ms

e Scheduler picks A and runs with a 30 ms timeslice

Lag:
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EEVDF scheduler: Example

3 CPU-bound tasks start at the same time
 Over 30 ms, each task should run 10 ms
e Scheduler picks A and runs with a 30 ms timeslice

 Aisno longer eligible, B is picked up and runs 30 ms
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EEVDF scheduler: Example

3 CPU-bound tasks start at the same time

Over 30 ms, each task should run 10 ms

Scheduler picks A and runs with a 30 ms timeslice

A is no longer eligible, B is picked up and runs 30 ms

Now, only Cis eligible, which will run next
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EEVDF scheduler: Handling sleeping tasks

* Scheduler calculates lag only for runnable tasks
* Lag decays over virtual run time
* Uses deferred lag decay approach:
* Resetting immediately can affect fairness and introduce starvation
* Lag forgiveness for long sleeping tasks
* Long-sleeping tasks have their -ve lag forgiven as virtual time passes
Sleeping tasks with -ve lag are first placed in deferred queue without
scheduling them for execution, once zero/+ve, they are scheduled out

* Positive lag is retained indefinitely
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EEVDF scheduler: Time-slice control

* Preemption based on virtual deadlines
* Enables running short time-slice tasks sooner
Short time-slice task can now preempt an already running task
e Tasks can specify desired time slice (100us—100ms)

* Use sched_setattr() system call
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This week

 EEVDF scheduling

* Delegating scheduling to user space with GhOSt
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Why does kernel scheduling matter?

* Performance
* Are processes getting fair share of CPU time?
Prioritize latency-sensitive applications (eg., kv store) over throughput oriented
apps (eg., video encoding, analytics, etc)
* Security
* Do not run two diff customers’ threads in parallel on the same physical core
(Spectre attack)
e System stability
e Periodically run system daemons to keep the system healthy (slab allocator,
garbage collector)

These daemons should not interfere with other workloads
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What are the problems with existing schedulers?

* Kernel programming is difficult
* Low-level languages
Hard to debug
- Complicated synchronization (atomics, RCU, etc.)
- Slow development
Manually port to new kernels or upstreams to Linux (hard)

- Slow to upgrade production machines (restart required)
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What are the problems with existing schedulers?

* Need to modify scheduling policies quickly

* New classes of workloads
Low-latency/user-facing workloads
* New hardware requires policy revamps
NUMA-awareness, hundreds of cores, GPUs, TPUs
Need to get upgraded policies onto machines quickly

But doing a machine reboot makes this impossible ...
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What are the problems with existing schedulers?

» Offers flexibility in policy only at a per-CPU level

* Linux constrains policies to the per-CPU model
Does not support cross-CPU or cross-policy scheduling
* Need centralized model
Work-conserving policies for microsecond-scale workloads

Need per-socket models (per-NUMA node, per-CCX)
Support multiple tenants on machines (hard to do efficiently with per-CPU

models)

19



Per-CPU scheduling model in Linux

[ CPUO

] [ CPU 1
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Run Queues

The scheduling policy is

implemented on each CPU in the

kernel.

Linux Code
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Per-CPU scheduling model in Linux

Linux rebalances tasks every few
milliseconds, so it is impossible
to build work-conserving policies
for microsecond-scale apps.

\ (CPU N is idle.)

These tasks
are running.

Userspace

Kernel

Linux Code Linux Code Linux Code

O O
O

O = Task

Run Queues
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Data planes to the rescue?

* Researchers move complexity into “container”-like data plane OSes

* Get the host kernel “out of the way”

Application
3 Data plane OS
Host OS
2
Hardware
1 .
Request Without a data plane OS




Data planes to the rescue?

* Researchers move complexity into “container”-like data plane OSes

* Get the host kernel “out of the way”

Application

Data plane OS

Host OS

Hardware

Request

With a data plane OS
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Data planes to the rescue?

Need a data plane OS for every application and scheduling

Not feasible in a shared cloud environment

Need to make this research a practical to use in production

These applications

Application

depend on two OSes

Data plane OS

Host OS

Hardware

Request

Without a data plane OS
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Requirements of an ideal scheduler

e Easy to implement policies and port across machines
* Optimize policies for a wide variety of targets

* Scheduling decision delegation

 Composition and partitioning

* Non-disruptive updates
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Solution: ghOSt

* New Linux kernel scheduler
* Runs scheduling policies in a user space process
e Fast and flexible abstractions
e Supports a variety of scheduling policies
* Microsecond scale workloads
Co-locate latency-sensitive applications with batch ones
Multi-tenant workloads
Centralized, partitioned, and per-CPU policies

e Upgrades are quick: only a process restart
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ghOSt in a nutshell

* Linux kernel scheduling class
* All scheduling policy runs in a user space process

 ghOSt is a scaffolding necessary to offload

Workload A

policies to user space

Optional scheduling hints

* The user space process receives notifications about Thread/CPU Messages
Kernel + Sequence Numbers '
»  ghOSt agents
key events Status words
ghOSt >
scheduling class Transactions Q

* E.g, task block, task yield, CPU timer, tick, etc. . |
Syscalls CPU scheduling

< decisions

e Scheduling decisions committed to the kernel via

transactions
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

o o [ o
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

N/

One agent thread per core.

Agents schedule their own core.

Agents implement the scheduling policy.
Agents maintain runqueues, task state, etc.

o o [ o




Per-CPU scheduling model

The kernel generates
messages about task
state when an interesting
event occurs (e.g., a
thread block, a yield, etc.)

Agent 0 Agent 1 Agent 2 Agent N

(o0® ©0©® 000 0009 o]
[ CPU 0 } [ CPU 1 J { CPU 2 J [ CPU N ]

Task Messages: New, Blocked, Wakeup, Yield, Preempt, Departed, Dead
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Per-CPU scheduling model

Messages are transmitted
to user space agents via

P " roont 2
gent gent gent Agent N shared memory queues

OO0 OO OO0 QOO0 -«
[ CPU 0 } [ CPU 1 ] { CPU 2 ] [ CPU N ]
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Per-CPU scheduling model

Maps a task to the queue
its messages are added to

Agent 0 Agent 1 Agent 2 Agent N

Association layer
Msg src:: Queue
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Per-CPU scheduling model

Determines which agent is
woken up when a message is

Agent 0 Agent 1 Agent 2 Agent N
gen gen gen gen added to a queue

Routing layer
Queue :: Agent

Queues
Userspace
Kernel

Association layer
Msg src:: Queue
O O @ -
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Per-CPU scheduling model

Reminder: The agents
implement the scheduling
policy. They maintain

Agent 0 Agent 1 Agent 2 Agent N
gen gen gen gen runqueues, taSk State, etc.

Routing layer
Queues Queue :: Agent

Association layer
Msg src:: Queue

O @) ) =Task
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Per-CPU scheduling model

The agent commits its
scheduling decisions to the

Agent© Agent Agent2 AgentN \ kernel with a transaction

\ Routin er
Queues \ ue :: Agent
Userspace
S e

Association layer
Msg src:: Queue
O O = ask
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Centralized scheduling model

Global Agent Satellite Agent Satellite Agent
/ \
Only the Global Quetie = agents The Satellite Agents
Agent implements are asleep and never
the scheduling policy. wake up.
Always awake and
spins.
Schedules all CPUs in
the machine. . pesociations iayer

b%

[ CPUO CPU 1 CPUN }
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Transactions

* Agent commits scheduling decisions to the kernel via transactions
* |n each transaction, specify TID of thread being scheduled and target CPU

- Atomics and retractable

« Atomic: Multiple agents may be making decisions, state cleanup of transaction failure

» Retractable: A decision could become invalid as OS state changes

TXN_CREATE() e C(Create a transaction

TXNS_COMMIT() e Commit one or more
transactions
e When >1 txns committed, use
batch inter-processor
interrupts (IPls)

TXNS_RETRACT() ® Retract one or more transactions

e May fail
37



Synchronizing agents with the kernel

e The kernel is the source of truth and our atomic store

e All task state live in the kernel
This state is ephemeral and lives between agent restarts
Many ghOSt scheduler interactions happen in a ctx where we do not synchronously invoke

an agent

* How can we keep agents in sync with the kernel?

* Seqguence numbers

e Each task has a sequence number
 When a task message is generated, increment the seq no and include in the message

* When an agent opens a transaction, it includes the most recent seq no

* |f the seq no in the transaction is outdated, then that transaction fails
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Co-locating policies

Higher Priority

Layering within an agent (same as Linux)

Enclaves: Split CPUs into groups and let each agent schedule its own group

Policy 1

Policy 2

Policy 3

Layering

4 )
CPU {CPU } {CPU J CPU

O J

_ )

Policy 1

{CPU J {CPU } {CPU } CPU

O J

Enclaves
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Quick upgrades and fault tolerance

 Upgrades are fast (< 1 second)
* Kill and restart agent in milliseconds
No machine reboot
e Schedules tasks seamlessly while the agent is down
e Use simple in-kernel FIFO policy to keep applications alive
Could also kick tasks to CFS

* Recover state when the agent restarts
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ghOSt: A solution for large cloud providers

e Easy to implement policies and port across machines
* Optimize policies for a wide variety of targets

* Scheduling decision delegation

 Composition and partitioning

* Non-disruptive updates
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Eval: Microbenchmark

 ghOSt API has similar overheads to other Linux schedulers

* Practical for production, scheduling, even for microsecond scale requests

Syscall overhead 72 ns

Message delivery overhead 265 ns
Local commit 888 ns
Context switch overhead with trivial 410 ns

single-task kernel scheduler

CFS context switch overhead 599 ns



Eval: Microbenchmark

* ghOSt has fairly low overheads for remote scheduling, practical for workloads

with microsecond-scale

Remote Transaction Commit

Committer Overhead 668 ns
Target CPU Overhead 1064 ns
End-to-End Latency 1772 ns

Remote Transactions Batch Commit (10 transactions)

Committer Overhead 3964 ns (= 396 ns/transaction)

Target CPU Overhead 1821 ns

End-to-End Latency 5688 ns s



Google Snap

* Snap is Google’s internal low-latency packet processing framework

* One main polling thread that processes network traffic

* Additional worker threads are spawned as needed when traffic increases

* Snap uses a microsecond-scale real-time Linux kernel scheduler (MicroQuanta)

 Compared with centralized FIFO policy

e Eval setup:
* One server and six clients

Five clients send 64 kB messages, one client sends 64 B messages



Centralized scheduling model

I | S ]

Global Agent Satellite Agent Satellite Agent

Routing layer
> Queue :: Agents

Userspace

Associations layer
Msg src :: Queue

oo bb \Q

{ CPUO CPU 1 CPUN
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Centralized model accelerates network workloads

No centralized scheduling model exists in Linux

Centralized model is much more responsive to network load changes

Faster rebalancing across cores (us-scale rather than ms-scale)

Highly effective for us-scale workloads
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Google Snap results
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Future work:

« Memory management

* New policies

* Tighter integration with other system stacks (e.g., networking stack)
 Formal verification

* Policy is isolated from complicated mechanisms
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ghOSt Summary

* Runs scheduling policies in a user space process
* Fast and flexible abstractions

e Supports a variety of scheduling policies with good performance on production

workloads

* Upgrades are quick: only a process restart required

49



Another alternative: sched ext
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sched_ext: Scheduling policies as eBPF programs

* Write a scheduling policy in BPF; compile it; and load
* New sched class, at a lower priority than CFS
* Safe cannot crash the kernel
* \erifier ensures the kernel integrity
- Watchdog boosts sched ext scheduler if a runnable task isn’t scheduled
within some timeout
BPF programs implement a set of callbacks:
 Wakeup, enqueue/dequeue, state change, rebalancing, cgroup integration
- Timeouts, # of tasks that can be dispatched
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