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Administrivia



• EEVDF scheduling

• Delegating scheduling to user space with GhOSt
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This week
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Focus of today’s lecture: Scheduling …



• Fairness: Everyone should get some CPU

• Optimization: Make optimal use of system resources, minimize critical sections

• Low overhead: Should run for as short as possible

• Generalizable: Should work on every architecture, for every workload etc. 
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Scheduler strives to achieve … 



• Difficult to experiment: recompile + reboot + rewarm caches

• Very complex, often takes O(years) for people to fully understand

• Generalizable scheduler

• Often leaves some performance on the table for some workloads / architectures

• Impossible to make everyone happy all the time

• Filled with heuristics

6

Issues with CFS



• CFS focuses mostly on fair allocation of CPUs time 

• Does not properly considers:

• Task migration cost among CPUs

• Power management

• Hybrid scheduling: fast and slow cores

• Latency requirement: requiring CPU time as fast as possible

• No possible way to express latency requirements
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Issues with CFS



• Earliest virtual deadline first

• Similar to earliest deadline first (EDF)

• Divides the available CPU time fairly among contending tasks

• Lag: expected virtual run time - actual running time of a task

• Positive lag: A task is owed CPU time

• Negative lag: A task has received more than its share

• Eligible task: lag >= 0

• Maintains an invariant: sum of all the lag value in the system is zero

• Scheduler chooses a task from a set of eligible tasks
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EEVDF scheduler



• Before running a task, scheduler computes virtual deadline

• Add the time remaining in the timeslice to the time it became eligible

• Longer time slice: later virtual deadline (will run later)

• Shorter time slice: Run first (denotes latency sensitive tasks) 
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EEVDF scheduler



• 3 CPU-bound tasks start at the same time

• Over those 30 ms, each task should run 10 ms

• Scheduler picks A and runs with a 30 ms timeslice
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EEVDF scheduler: Example 

A B C

Lag: 0 0 0



• 3 CPU-bound tasks start at the same time

• Over 30 ms, each task should run 10 ms

• Scheduler picks A and runs with a 30 ms timeslice

• A is no longer eligible, B is picked up and runs 30 ms
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EEVDF scheduler: Example 

A B C

Lag: -20 10 10



• 3 CPU-bound tasks start at the same time

• Over 30 ms, each task should run 10 ms

• Scheduler picks A and runs with a 30 ms timeslice

• A is no longer eligible, B is picked up and runs 30 ms

• Now, only C is eligible, which will run next 
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EEVDF scheduler: Example 

A B C

Lag: -10 -10 20



• Scheduler calculates lag only for runnable tasks

• Lag decays over virtual run time 

• Uses deferred lag decay approach:

• Resetting immediately can affect fairness and introduce starvation

• Lag forgiveness for long sleeping tasks

• Long-sleeping tasks have their -ve lag forgiven as virtual time passes

• Sleeping tasks with -ve lag are first placed in deferred queue without 

scheduling them for execution, once zero/+ve, they are scheduled out

• Positive lag is retained indefinitely
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EEVDF scheduler: Handling sleeping tasks



• Preemption based on virtual deadlines

• Enables running short time-slice tasks sooner

• Short time-slice task can now preempt an already running task

• Tasks can specify desired time slice (100us–100ms)

• Use sched_setattr() system call
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EEVDF scheduler: Time-slice control



• EEVDF scheduling

• Delegating scheduling to user space with GhOSt
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This week
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Why does kernel scheduling matter?

• Performance

• Are processes getting fair share of CPU time?

• Prioritize latency-sensitive applications (eg., kv store) over throughput oriented 

apps (eg., video encoding, analytics, etc)

• Security

• Do not run two diff customers’ threads in parallel on the same physical core 

(Spectre attack)

• System stability

• Periodically run system daemons to keep the system healthy (slab allocator, 

garbage collector)

• These daemons should not interfere with other workloads
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What are the problems with existing schedulers?

• Kernel programming is difficult

• Low-level languages

• Hard to debug

• Complicated synchronization (atomics, RCU, etc.)

• Slow development

• Manually port to new kernels or upstreams to Linux (hard)

• Slow to upgrade production machines (restart required)
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What are the problems with existing schedulers?

• Need to modify scheduling policies quickly

• New classes of workloads

• Low-latency/user-facing workloads

• New hardware requires policy revamps

• NUMA-awareness, hundreds of cores, GPUs, TPUs

• Need to get upgraded policies onto machines quickly

• But doing a machine reboot makes this impossible …
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What are the problems with existing schedulers?

• Offers flexibility in policy only at a per-CPU level

• Linux constrains policies to the per-CPU model

• Does not support cross-CPU or cross-policy scheduling

• Need centralized model

• Work-conserving policies for microsecond-scale workloads

• Need per-socket models (per-NUMA node, per-CCX)

• Support multiple tenants on machines (hard to do efficiently with per-CPU 

models)
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Per-CPU scheduling model in Linux

Userspace

Kernel

= Task

...

Linux Code Linux Code Linux Code Linux Code

The scheduling policy is 
implemented on each CPU in the 

kernel.

Run Queues

CPU 1 CPU 2 CPU NCPU 0
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Per-CPU scheduling model in Linux

Userspace

Kernel

(CPU N is idle.)

Linux rebalances tasks every few 
milliseconds, so it is impossible 
to build work-conserving policies 
for microsecond-scale apps.

= Task

Linux Code Linux Code Linux Code Linux Code

Run Queues

These tasks 
are running.

CPU 1 CPU 2CPU 0 CPU N



• Researchers move complexity into “container”-like data plane OSes

• Get the host kernel “out of the way”

22

Data planes to the rescue?

Request

Hardware

Host OS

Data plane OS

Application

Without a data plane OS

3

2

1



• Researchers move complexity into “container”-like data plane OSes

• Get the host kernel “out of the way”
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Data planes to the rescue?

Request

Hardware

Host OS

Data plane OS

Application

With a data plane OS

3

2

1



• Need a data plane OS for every application and scheduling

• Not feasible in a shared cloud environment

• Need to make this research a practical to use in production
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Data planes to the rescue?

Request

Hardware

Host OS

Data plane OS

Application

Without a data plane OS

These applications 
depend on two OSes



• Easy to implement policies and port across machines

• Optimize policies for a wide variety of targets

• Scheduling decision delegation

• Composition and partitioning

• Non-disruptive updates
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Requirements of an ideal scheduler



• New Linux kernel scheduler 

• Runs scheduling policies in a user space process

• Fast and flexible abstractions

• Supports a variety of scheduling policies

• Microsecond scale workloads

• Co-locate latency-sensitive applications with batch ones

• Multi-tenant workloads

• Centralized, partitioned, and per-CPU policies

• Upgrades are quick: only a process restart
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Solution: ghOSt



• Linux kernel scheduling class

• All scheduling policy runs in a user space process

• ghOSt is a scaffolding necessary to offload 

policies to user space

• The user space process receives notifications about 

key events

• E.g, task block, task yield, CPU timer, tick, etc.

• Scheduling decisions committed to the kernel via 

transactions
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ghOSt in a nutshell

Transactions

Syscalls

Thread/CPU Messages
+ Sequence Numbers

ghOSt agents

CPU scheduling 
decisions

Kernel

Workload

Status words

Optional scheduling hints

Kernel    User
space    space

ghOSt 
scheduling class
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

CPU 0 CPU 1 CPU 2 CPU N...



29

Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

One agent thread per core.
Agents schedule their own core.
Agents implement the scheduling policy. 
Agents maintain runqueues, task state, etc.

CPU 0 CPU 1 CPU 2 CPU N...
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

CPU 0 CPU 1 CPU 2 CPU N...

The kernel generates 
messages about task 
state when an interesting 
event occurs (e.g., a 
thread block, a yield, etc.)

Task Messages: New, Blocked, Wakeup, Yield, Preempt, Departed, Dead

= Task
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

CPU 0 CPU 1 CPU 2 CPU N...

Messages are transmitted 
to user space agents via 
shared memory queues

Queues

= Task
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

CPU 0 CPU 1 CPU 2 CPU N...

= Task

Maps a task to the queue 
its messages are added to

Queues

Association layer
Msg src:: Queue 
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

CPU 0 CPU 1 CPU 2 CPU N...

= Task

Determines which agent is 
woken up when a message is 
added to a queue

Queues

Association layer
Msg src:: Queue 

Routing layer
Queue :: Agent
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

CPU 0 CPU 1 CPU 2 CPU N...

= Task

Reminder: The agents 
implement the scheduling 
policy. They maintain 
runqueues, task state, etc. 

Queues

Association layer
Msg src:: Queue 

Routing layer
Queue :: Agent
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Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

Userspace

Kernel

...

CPU 0 CPU 1 CPU 2 CPU N...

= Task

The agent commits its 
scheduling decisions to the 
kernel with a transaction

Queues

Association layer
Msg src:: Queue 

Routing layer
Queue :: Agent
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Centralized scheduling model

CPU 0 CPU 1 CPU N

Global Agent Satellite Agent Satellite Agent

Associations layer
Msg src :: Queue

Routing layer
Queue :: Agents

Userspace

Kernel

...

...

...

Only the Global 
Agent implements 

the scheduling policy.
Always awake and 

spins.
Schedules all CPUs in 

the machine.

The Satellite Agents 
are asleep and never 

wake up.



• Agent commits scheduling decisions to the kernel via transactions

• In each transaction, specify TID of thread being scheduled and target CPU

• Atomics and retractable

• Atomic: Multiple agents may be making decisions, state cleanup of transaction failure

• Retractable: A decision could become invalid as OS state changes
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Transactions

TXN_CREATE() ● Create a transaction

TXNS_COMMIT() ● Commit one or more 
transactions

● When >1 txns committed, use 
batch inter-processor 
interrupts (IPIs)

TXNS_RETRACT() ● Retract one or more transactions
● May fail



• The kernel is the source of truth and our atomic store

• All task state live in the kernel

• This state is ephemeral and lives between agent restarts

• Many ghOSt scheduler interactions happen in a ctx where we do not synchronously invoke 

an agent

• How can we keep agents in sync with the kernel? 

• Sequence numbers

• Each task has a sequence number

• When a task message is generated, increment the seq no and include in the message

• When an agent opens a transaction, it includes the most recent seq no

• If the seq no in the transaction is outdated, then that transaction fails
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Synchronizing agents with the kernel



• Layering within an agent (same as Linux)

• Enclaves: Split CPUs into groups and let each agent schedule its own group
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Co-locating policies

Policy 1

Policy 1

Policy 2

Policy 3

H
ig

he
r P

rio
rit

y

CPU CPUCPU CPU

Enclaves

CPU CPUCPU CPU

Layering



• Upgrades are fast (< 1 second)

• Kill and restart agent in milliseconds

• No machine reboot

• Schedules tasks seamlessly while the agent is down

• Use simple in-kernel FIFO policy to keep applications alive

• Could also kick tasks to CFS

• Recover state when the agent restarts 
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Quick upgrades and fault tolerance



• Easy to implement policies and port across machines

• Optimize policies for a wide variety of targets

• Scheduling decision delegation

• Composition and partitioning 

• Non-disruptive updates
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ghOSt: A solution for large cloud providers 



• ghOSt API has similar overheads to other Linux schedulers

• Practical for production, scheduling, even for microsecond scale requests
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Eval: Microbenchmark

Syscall overhead 72 ns

Message delivery overhead 265 ns

Local commit 888 ns

Context switch overhead with trivial 
single-task kernel scheduler

410 ns

CFS context switch overhead 599 ns



• ghOSt has fairly low overheads for remote scheduling, practical for workloads 

with microsecond-scale
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Eval: Microbenchmark

Remote Transaction Commit

Committer Overhead 668 ns

Target CPU Overhead 1064 ns

End-to-End Latency 1772 ns

Remote Transactions Batch Commit (10 transactions)

Committer Overhead 3964 ns (= 396 ns/transaction)

Target CPU Overhead 1821 ns

End-to-End Latency 5688 ns



• Snap is Google’s internal low-latency packet processing framework

• One main polling thread that processes network traffic

• Additional worker threads are spawned as needed when traffic increases

• Snap uses a microsecond-scale real-time Linux kernel scheduler (MicroQuanta)

• Compared with centralized FIFO policy 

• Eval setup:

• One server and six clients

• Five clients send 64 kB messages, one client sends 64 B messages
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Google Snap
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Centralized scheduling model
CPU 0 CPU 1 CPU N

Global Agent Satellite Agent Satellite Agent
...

CPU 0 CPU 1 CPU N

Routing layer
Queue :: Agents

Userspace

Kernel

Associations layer
Msg src :: Queue

...

...



• No centralized scheduling model exists in Linux

• Centralized model is much more responsive to network load changes

• Faster rebalancing across cores (us-scale rather than ms-scale)

• Highly effective for us-scale workloads
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Centralized model accelerates network workloads
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Google Snap results



• Memory management

• New policies

• Tighter integration with other system stacks (e.g., networking stack)

• Formal verification

• Policy is isolated from complicated mechanisms
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Future work: 



• Runs scheduling policies in a user space process

• Fast and flexible abstractions

• Supports a variety of scheduling policies with good performance on production 

workloads

• Upgrades are quick: only a process restart required

49

ghOSt Summary
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Another alternative: sched_ext



• Write a scheduling policy in BPF; compile it; and load

• New sched_class, at a lower priority than CFS

• Safe cannot crash the kernel

• Verifier ensures the kernel integrity

• Watchdog boosts sched_ext scheduler if a runnable task isn’t scheduled 

within some timeout

• BPF programs implement a set of callbacks:

• Wakeup, enqueue/dequeue, state change, rebalancing, cgroup integration

• Timeouts, # of tasks that can be dispatched
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sched_ext: Scheduling policies as eBPF programs 


