CS 477:

Advanced Operating Systems

Scheduling li

This week

 EEVDF scheduling

* Delegating scheduling to user space with GhOSt

Focus of today’s lecture: Scheduling ...

333224
545104

root
root
root
rtkit
rtkit
rtkit
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhva

©® © © © © © © © © © © © © © © © O O O O O O O O 00 0 0 0 0 0 0 O O O

-
=
N

=
=
N

o ©o o o & » D b DO O O © © ©@ @

0:05.93
0:00.08
0:07.98
0:06.52
0:03.40
0:03.00
1:22.00
0:00.00
8:39.37
0:14.00
0:00.00

rtkit-daemon

systemd --user

(sd-pam)

appimagelauncherd

gnome-keyring-daemon --foreground --components=pkcsll,secrets --control-di

T2s
pool-spawner

0:00.00 ¢
0:07.08 ¢

0:00.00
1:57.66
0:00.00
0:00.00
0:00.00
0:00.00
0:00.06
0:00.60
0:00.00
0:00.00
0:00.31
0:00.01
0:00.00
0:00.00
0:00.00
0:00.00
0:00.00
0:00.00
0:00.16
0:00.00
0:00.,00
0:00.00
0:00.12
0:12.12
0:00.00
0:00.00
0:00.00

Cimer
dbus-daemon --session --address=systemd: --nofork --nopidfile --systemd-act]
gdm-x-session --run-script /usr/bin/gnome-session

gnome-session-binary
gvfsd

gvfsd-fuse /run/user/1000/gvfs -f

at-spi-bus-launcher

dbus-daemon --config-file=/usr/share/defaults/at-spi2/accessibility.conf -

Scheduler strives to achieve ...

* Fairness: Everyone should get some CPU
* Optimization: Make optimal use of system resources, minimize critical sections
* Low overhead: Should run for as short as possible

* Generalizable: Should work on every architecture, for every workload etc.

Issues with CFS

* Difficult to experiment: recompile + reboot + rewarm caches
* Very complex, often takes O(years) for people to fully understand

e Generalizable scheduler

e Often leaves some performance on the table for some workloads / architectures

* |Impossible to make everyone happy all the time

* Filled with heuristics

Issues with CFS

* CFS focuses mostly on fair allocation of CPUs time
* Does not properly considers:
* Task migration cost among CPUs
Power management

Hybrid scheduling: fast and slow cores

Latency requirement: requiring CPU time as fast as possible

No possible way to express latency requirements

EEVDEF scheduler

Earliest virtual deadline first
* Similar to earliest deadline first (EDF)

* Divides the available CPU time fairly among contending tasks

* Lag: expected virtual run time - actual running time of a task

* Positive lag: A task is owed CPU time

* Negative lag: A task has received more than its share
* Eligible task: lag>=0
* Maintains an invariant: sum of all the lag value in the system is zero

e Scheduler chooses a task from a set of eligible tasks

EEVDF scheduler

* Before running a task, scheduler computes virtual deadline
Add the time remaining in the timeslice to the time it became eligible
* Longer time slice: later virtual deadline (will run later)

* Shorter time slice: Run first (denotes latency sensitive tasks)

EEVDF scheduler: Example

3 CPU-bound tasks start at the same time
* Over those 30 ms, each task should run 10 ms

e Scheduler picks A and runs with a 30 ms timeslice

Lag:

10

EEVDF scheduler: Example

3 CPU-bound tasks start at the same time
 Over 30 ms, each task should run 10 ms
e Scheduler picks A and runs with a 30 ms timeslice

 Aisno longer eligible, B is picked up and runs 30 ms

11

EEVDF scheduler: Example

3 CPU-bound tasks start at the same time

Over 30 ms, each task should run 10 ms

Scheduler picks A and runs with a 30 ms timeslice

A is no longer eligible, B is picked up and runs 30 ms

Now, only Cis eligible, which will run next

12

EEVDF scheduler: Handling sleeping tasks

* Scheduler calculates lag only for runnable tasks
* Lag decays over virtual run time
* Uses deferred lag decay approach:
* Resetting immediately can affect fairness and introduce starvation
* Lag forgiveness for long sleeping tasks
* Long-sleeping tasks have their -ve lag forgiven as virtual time passes
Sleeping tasks with -ve lag are first placed in deferred queue without
scheduling them for execution, once zero/+ve, they are scheduled out

* Positive lag is retained indefinitely

13

EEVDF scheduler: Time-slice control

* Preemption based on virtual deadlines
* Enables running short time-slice tasks sooner
Short time-slice task can now preempt an already running task
e Tasks can specify desired time slice (100us—100ms)

* Use sched_setattr() system call

14

This week

 EEVDF scheduling

* Delegating scheduling to user space with GhOSt

15

Why does kernel scheduling matter?

* Performance
* Are processes getting fair share of CPU time?
Prioritize latency-sensitive applications (eg., kv store) over throughput oriented
apps (eg., video encoding, analytics, etc)
* Security
* Do not run two diff customers’ threads in parallel on the same physical core
(Spectre attack)
e System stability
e Periodically run system daemons to keep the system healthy (slab allocator,
garbage collector)

These daemons should not interfere with other workloads

16

What are the problems with existing schedulers?

* Kernel programming is difficult
* Low-level languages
Hard to debug
- Complicated synchronization (atomics, RCU, etc.)
- Slow development
Manually port to new kernels or upstreams to Linux (hard)

- Slow to upgrade production machines (restart required)

17

What are the problems with existing schedulers?

* Need to modify scheduling policies quickly

* New classes of workloads
Low-latency/user-facing workloads
* New hardware requires policy revamps
NUMA-awareness, hundreds of cores, GPUs, TPUs
Need to get upgraded policies onto machines quickly

But doing a machine reboot makes this impossible ...

18

What are the problems with existing schedulers?

» Offers flexibility in policy only at a per-CPU level

* Linux constrains policies to the per-CPU model
Does not support cross-CPU or cross-policy scheduling
* Need centralized model
Work-conserving policies for microsecond-scale workloads

Need per-socket models (per-NUMA node, per-CCX)
Support multiple tenants on machines (hard to do efficiently with per-CPU

models)

19

Per-CPU scheduling model in Linux

[CPUO

] [CPU 1

) (==

J [

CPUN

J

Run Queues

The scheduling policy is

implemented on each CPU in the

kernel.

Linux Code

20

Per-CPU scheduling model in Linux

Linux rebalances tasks every few
milliseconds, so it is impossible
to build work-conserving policies
for microsecond-scale apps.

\ (CPU N is idle.)

These tasks
are running.

Userspace

Kernel

Linux Code Linux Code Linux Code

O O
O

O = Task

Run Queues

21

Data planes to the rescue?

* Researchers move complexity into “container”-like data plane OSes

* Get the host kernel “out of the way”

Application
3 Data plane OS
Host OS
2
Hardware
1 .
Request Without a data plane OS

Data planes to the rescue?

* Researchers move complexity into “container”-like data plane OSes

* Get the host kernel “out of the way”

Application

Data plane OS

Host OS

Hardware

Request

With a data plane OS

23

Data planes to the rescue?

Need a data plane OS for every application and scheduling

Not feasible in a shared cloud environment

Need to make this research a practical to use in production

These applications

Application

depend on two OSes

Data plane OS

Host OS

Hardware

Request

Without a data plane OS

24

Requirements of an ideal scheduler

e Easy to implement policies and port across machines
* Optimize policies for a wide variety of targets

* Scheduling decision delegation

 Composition and partitioning

* Non-disruptive updates

25

Solution: ghOSt

* New Linux kernel scheduler
* Runs scheduling policies in a user space process
e Fast and flexible abstractions
e Supports a variety of scheduling policies
* Microsecond scale workloads
Co-locate latency-sensitive applications with batch ones
Multi-tenant workloads
Centralized, partitioned, and per-CPU policies

e Upgrades are quick: only a process restart

26

ghOSt in a nutshell

* Linux kernel scheduling class
* All scheduling policy runs in a user space process

 ghOSt is a scaffolding necessary to offload

Workload A

policies to user space

Optional scheduling hints

* The user space process receives notifications about Thread/CPU Messages
Kernel + Sequence Numbers '
» ghOSt agents
key events Status words
ghOSt >
scheduling class Transactions Q

* E.g, task block, task yield, CPU timer, tick, etc. . |
Syscalls CPU scheduling

< decisions

e Scheduling decisions committed to the kernel via

transactions

27

Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

o o [o

28

Per-CPU scheduling model

Agent 0 Agent 1 Agent 2 Agent N

N/

One agent thread per core.

Agents schedule their own core.

Agents implement the scheduling policy.
Agents maintain runqueues, task state, etc.

o o [o

Per-CPU scheduling model

The kernel generates
messages about task
state when an interesting
event occurs (e.g., a
thread block, a yield, etc.)

Agent 0 Agent 1 Agent 2 Agent N

(o0® ©0©® 000 0009 o]
[CPU 0 } [CPU 1 J { CPU 2 J [CPU N]

Task Messages: New, Blocked, Wakeup, Yield, Preempt, Departed, Dead

30

Per-CPU scheduling model

Messages are transmitted
to user space agents via

P " roont 2
gent gent gent Agent N shared memory queues

OO0 OO OO0 QOO0 -«
[CPU 0 } [CPU 1] { CPU 2] [CPU N]

31

Per-CPU scheduling model

Maps a task to the queue
its messages are added to

Agent 0 Agent 1 Agent 2 Agent N

Association layer
Msg src:: Queue

32

Per-CPU scheduling model

Determines which agent is
woken up when a message is

Agent 0 Agent 1 Agent 2 Agent N
gen gen gen gen added to a queue

Routing layer
Queue :: Agent

Queues
Userspace
Kernel

Association layer
Msg src:: Queue
O O @ -

33

Per-CPU scheduling model

Reminder: The agents
implement the scheduling
policy. They maintain

Agent 0 Agent 1 Agent 2 Agent N
gen gen gen gen runqueues, taSk State, etc.

Routing layer
Queues Queue :: Agent

Association layer
Msg src:: Queue

O @)) =Task

34

Per-CPU scheduling model

The agent commits its
scheduling decisions to the

Agent© Agent Agent2 AgentN \ kernel with a transaction

\ Routin er
Queues \ ue :: Agent
Userspace
S e

Association layer
Msg src:: Queue
O O = ask

35

Centralized scheduling model

Global Agent Satellite Agent Satellite Agent
/ \
Only the Global Quetie = agents The Satellite Agents
Agent implements are asleep and never
the scheduling policy. wake up.
Always awake and
spins.
Schedules all CPUs in
the machine. . pesociations iayer

b%

[CPUO CPU 1 CPUN }

36

Transactions

* Agent commits scheduling decisions to the kernel via transactions
* |n each transaction, specify TID of thread being scheduled and target CPU

- Atomics and retractable

« Atomic: Multiple agents may be making decisions, state cleanup of transaction failure

» Retractable: A decision could become invalid as OS state changes

TXN_CREATE() e C(Create a transaction

TXNS_COMMIT() e Commit one or more
transactions
e When >1 txns committed, use
batch inter-processor
interrupts (IPls)

TXNS_RETRACT() ® Retract one or more transactions

e May fail
37

Synchronizing agents with the kernel

e The kernel is the source of truth and our atomic store

e All task state live in the kernel
This state is ephemeral and lives between agent restarts
Many ghOSt scheduler interactions happen in a ctx where we do not synchronously invoke

an agent

* How can we keep agents in sync with the kernel?

* Seqguence numbers

e Each task has a sequence number
 When a task message is generated, increment the seq no and include in the message

* When an agent opens a transaction, it includes the most recent seq no

* |f the seq no in the transaction is outdated, then that transaction fails

38

Co-locating policies

Higher Priority

Layering within an agent (same as Linux)

Enclaves: Split CPUs into groups and let each agent schedule its own group

Policy 1

Policy 2

Policy 3

Layering

4)
CPU {CPU } {CPU J CPU

O J

_)

Policy 1

{CPU J {CPU } {CPU } CPU

O J

Enclaves

39

Quick upgrades and fault tolerance

 Upgrades are fast (< 1 second)
* Kill and restart agent in milliseconds
No machine reboot
e Schedules tasks seamlessly while the agent is down
e Use simple in-kernel FIFO policy to keep applications alive
Could also kick tasks to CFS

* Recover state when the agent restarts

40

ghOSt: A solution for large cloud providers

e Easy to implement policies and port across machines
* Optimize policies for a wide variety of targets

* Scheduling decision delegation

 Composition and partitioning

* Non-disruptive updates

41

Eval: Microbenchmark

 ghOSt API has similar overheads to other Linux schedulers

* Practical for production, scheduling, even for microsecond scale requests

Syscall overhead 72 ns

Message delivery overhead 265 ns
Local commit 888 ns
Context switch overhead with trivial 410 ns

single-task kernel scheduler

CFS context switch overhead 599 ns

Eval: Microbenchmark

* ghOSt has fairly low overheads for remote scheduling, practical for workloads

with microsecond-scale

Remote Transaction Commit

Committer Overhead 668 ns
Target CPU Overhead 1064 ns
End-to-End Latency 1772 ns

Remote Transactions Batch Commit (10 transactions)

Committer Overhead 3964 ns (= 396 ns/transaction)

Target CPU Overhead 1821 ns

End-to-End Latency 5688 ns s

Google Snap

* Snap is Google’s internal low-latency packet processing framework

* One main polling thread that processes network traffic

* Additional worker threads are spawned as needed when traffic increases

* Snap uses a microsecond-scale real-time Linux kernel scheduler (MicroQuanta)

 Compared with centralized FIFO policy

e Eval setup:
* One server and six clients

Five clients send 64 kB messages, one client sends 64 B messages

Centralized scheduling model

I | S]

Global Agent Satellite Agent Satellite Agent

Routing layer
> Queue :: Agents

Userspace

Associations layer
Msg src :: Queue

oo bb \Q

{ CPUO CPU 1 CPUN

45

Centralized model accelerates network workloads

No centralized scheduling model exists in Linux

Centralized model is much more responsive to network load changes

Faster rebalancing across cores (us-scale rather than ms-scale)

Highly effective for us-scale workloads

46

Google Snap results

3000
42500
§ 2000
g 1500
5 1000
S 500

0

a) Only networking load (quiet test) II
EE—T] | l.ll IIII II
50% 90% 99% 99.9% 99.99% 99.999%

M real-time 64B MW ghOSt 64B Mreal-time 64kB m ghOSt 64kB
b) With additional load (loaded test)

50% 90% 99% 99.9% 99.99% 99.999%

M real-time 64B MW ghOSt 64B Mreal-time 64kB ™ ghOSt 64kB

a7

Future work:

« Memory management

* New policies

* Tighter integration with other system stacks (e.g., networking stack)
 Formal verification

* Policy is isolated from complicated mechanisms

48

ghOSt Summary

* Runs scheduling policies in a user space process
* Fast and flexible abstractions

e Supports a variety of scheduling policies with good performance on production

workloads

* Upgrades are quick: only a process restart required

49

Another alternative: sched ext

50

sched_ext: Scheduling policies as eBPF programs

* Write a scheduling policy in BPF; compile it; and load
* New sched class, at a lower priority than CFS
* Safe cannot crash the kernel
* \erifier ensures the kernel integrity
- Watchdog boosts sched ext scheduler if a runnable task isn’t scheduled
within some timeout
BPF programs implement a set of callbacks:
 Wakeup, enqueue/dequeue, state change, rebalancing, cgroup integration
- Timeouts, # of tasks that can be dispatched

51

