
CS 477:

Advanced Operating Systems
Scheduling I

2

Administrivia

• Scheduling overview

• Linux CFS

• Issues with Linux CFS

3

This week

4

Focus of today’s lecture: Scheduling …

5

OS scheduler

• Decides which process runs next, when, and for how long

• Responsible for making the best use of processor (CPU)

• E.g., Do not waste CPU cycles for waiting processes

• E.g., Give higher priority to higher-priority processes

• E.g., Do not starve low-priority processes

• OS scheduler has two parts:

• Mechanism to stop one running process and star running another process

• Policy to pick up which process to run

6

Context switch

A context switch is a mechanism that allows the OS to store the current

process state and switch to some other, previously stored context.

• The context of the process is represented in the process control block (PCB)

• The OS maintains the PCB for each process

• The process context includes hardware registers

• Ex: All x86 registers and the memory registers for process-specific memory

region

7

Context switch procedure

The OS does the following operations

during the context switch:

1. Saves the running process’

execution state in the PCB

2. Selects the next thread

3. Restores the execution state of

the next process

4. Passes the control using return

from trap to resume next

process

Process 0 OS (CPU0) Process 1
Interrupt / system call

Save state into PCB0

Reload state into PCB1

Save state into PCB1

Reload state into PCB0

Interrupt / system call

executing

executing

idle executing

idle

idle

Context

switch

Context

switch

PCB: Process control block

8

IO vs. CPU-bound tasks

• Scheduling policy: a set of rules determining what runs when

• IO-bound processes

• Spend most time waiting for IO: disk, network, keyboard, mouse, etc.

• Runs only for a short duration

• Response time is important

• CPU-bound processes

• Heavy use of the CPU: MATLAB, scientific computation, etc.

• Caches stay hot when they run for a long time

9

Multitasking

• Simultaneously interleave execution of more than one process

• Single core

• The OS scheduler gives illusion of multiple processes running concurrently

• Multi-core

• The processor scheduler enables true parallelism

10

Types of multitasking OS

• Cooperative multitasking: old OSes (e.g., Windows 3.1) and few language

runtimes (e.g., Go runtime)

• A process does not stop running until it decides to yield CPU

• The OS cannot enforces fair scheduling

• Preemptive multitasking: almost all modern OSes

• The OS can interrupt the execution of a process (i.e., preemption)

after the process expires its timeslice,

which is decided by process priority

Q. How can the preemptive scheduler take the control of infinite loop?

11

Types of multitasking OS

12

Preemption for process scheduling

• Preemptive scheduler relies on hardware timer

• OS sets a timer before scheduling a process

• Hardware generates an interrupt after the timer expires

• It interrupts process execution

• Interrupts lead to switching to the kernel mode

• OS decides if the process may continue

13

Process priority

• Priority-based scheduling

• Rank processes based on their worth and need for processor time

• Processes with a higher priority run before those with a lower priority

14

Linux process priority

• Linux has two priority ranges

• Nice value: ranges from -20 to +19 (default 0)

• High values of nice means lower priority

• Real-time priority: ranges from 0 to 99

• Higher values mean higher priority

• Real-time processes always execute before standard process (nice) processes

ps ax -eo pid,ni,rtprio,cmd

15

Linux process priority

• Linux has two priority ranges

• Nice value: ranges from -20 to +19 (default 0)

• High values of nice means lower priority

• Real-time priority: ranges from 0 to 99

• Higher values mean higher priority

• Real-time processes always execute before standard process (nice) processes

ps ax -eo pid,ni,rtprio,cmd

• How much time a process should execute before being preempted

• Defining the default time slice in an absolute way is tricky:

• Too long → bad interactive performance

• Too short → high context switch overhead

16

Scheduling policy: timeslice

• Two tasks in the system:

• Text editor: IO-bound, latency sensitive (interactive)

• Video encoder: CPU-bound, background job

• Scheduling goal

• Text editor: when ready to run, need to preempt the video encoder for good

interactive performance

• Video encoder: run as long as possible for better CPU cache utilization

17

Scheduling policy: example

• Two tasks in the system:

• Text editor: IO-bound, latency sensitive (interactive)

• Video encoder: CPU-bound, background job

• Gives higher priority to the text editor

• Not because it needs a lot of processor but because we want it to always have

processor time available when it needs

18

Scheduling policy: example in UNIX systems

• Linux CFS does not use an absolute timeslice

• The timeslice a process receives is a function of the load of the system (i.e.,

a proportion of the CPU)

• In addition, that timeslice is weighted by the process priority

• When a process P becomes runnable:

• P will preempt the currently running process C if P consumed a smaller proportion of

the CPU than C

19

Scheduling policy: timeslice in Linux CFS

• CFS guarantees the text editor a specific proportion of CPU time

• CFS keeps track of the actual CPU time used by each program

• E.g., text editor: video encode = 50% : 50%

• The text editor mostly sleeps, waiting for user’s input and the video encoder

keeps running until preempted

• When the text editor wakes up

• CFS sees that the text editor actually used less CPU time than the video encoder

• The text editor preempts the video encoder

20

Scheduling policy: example in Linux CFS

• Good interactive performance

• Good background, CPU-bound performance

21

Scheduling policy: example in Linux CFS

• Completely fair scheduler (CFS)

• At each moment, each process of the same priority has received an exact same

amount of the CPU time

• If we could run n tasks in parallel on the CPU, give each 1/n of the CPU

processing power

• CFS runs a process for some time, then swaps it for the runnable process that

has run the least

22

Linux CFS design

• Goal:

• Fairly divide a CPU evenly among all competing processes with a clean

implementation

• Basic idea:

• Virtual runtime (vruntime): When a process runs, it accumulates “virtual

time.” If priority is high, virtual time accumulates slowly. If priority is low,

virtual time accumulates quickly

• It is a “catch up” policy—processes with smallest amount of virtual time

gets to run next

23

Linux CFS design

• No default timeslice, CFS calculates how long a process should run according to

the number of runnable processes

• That dynamic timeslice is weighted by the process priority (nice)

• timeslice = weight of the task / total weight of the runnable tasks

• To calculate the actual timeslice, CFS sets a targeted latency

• Targeted latency: period during which all runnable processes should be

scheduled at least once

• Minimum granularity: floor at 1 ms (default)

24

Linux CFS design

25

Linux CFS design

• Example: process with same priority

• Example: process with different priorities

• Scheduler maintains a red-black tree where nodes are ordered according to

received virtual execution time

• Node with smallest virtual execution time is picked next

• Priorities determine accumulation rate of virtual execution time

• Higher priority → slower accumulation rate

26

Linux CFS design

• Three processes A, B, C accumulate virtual time at a rate 1, 2, and 3 respectively

• What is the expected share of the CPU that each process gets?

27

Linux CFS example

• Three processes A, B, C accumulate virtual time at a rate 1, 2, and 3 respectively

• What is the expected share of the CPU that each process gets?

28

Linux CFS example

• Strategy: How many quantums required for

all clocks to be equal?

• Lowest common multiple: 6

• To reach VT = 6 …

• A is scheduled 6 times

• B is scheduled 3 times

• C is scheduled 2 times

• A => 6 / 11 of CPU time

• B => 3 / 11 of CPU time

• C => 2 / 11 of CPU time

• Three processes A, B, C accumulate virtual time at a rate 1, 2, and 3 respectively

• What is the expected share of the CPU that each process gets?

29

Linux CFS example

• Strategy: How many quantums required for

all clocks to be equal?

• Lowest common multiple: 6

• To reach VT = 6 …

• A is scheduled 6 times

• B is scheduled 3 times

• C is scheduled 2 times

• A => 6 / 11 of CPU time

• B => 3 / 11 of CPU time

• C => 2 / 11 of CPU time

Q01: A => {A:1, B:0, C:0}

Q02: B => {A:1, B:2, C:0}

Q03: C => {A:1, B:2, C:3}

Q04: A => {A:2, B:2, C:3}

Q05: B => {A:2, B:4, C:3}

Q06: A => {A:3, B:4, C:3}

Q07: A => {A:4, B:4, C:3}

Q08: C => {A:4, B:4, C:6}

Q09: A => {A:5, B:4, C:6}

Q10: B => {A:5, B:6, C:6}

Q11: A => {A:6, B:6, C:6}

30

Linux CFS: Red-black tree

• CFS maintains a red-black tree for processes running on a local CPU:

• An RB tree is a BST with constraints:

1. Each node is red or black

2. Root node is black

3. All leaves (NIL) are black

4. If node is red, both children are black

5. Every path from a given node to its descendent NIL leaves contains the

same number of black number of black nodes

31

Linux CFS: Red-black tree

In an RB tree, the path from the root to the farthest leafs no more than
twice as long as the path from the root to the nearest leaf

• CFS maintains a red-black tree for processes running on a local CPU:

• An RB tree is a BST with constraints:

1. Each node is red or black

2. Root node is black

3. All leaves (NIL) are black

4. If node is red, both children are black

5. Every path from a given node to its descendent NIL leaves contains the

same number of black number of black nodes

32

Linux CFS: Red-black tree
• Benefits over run queue:

• O(1) access to the leftmost node

• Can access process with lowest virtual time

• O(log n) insert

• O(log n) delete

• Self-balancing data structure

• More like symmetric multi processing: each CPU is self-scheduling

• Two general approaches to balancing:

• Push migration: Process routinely checks the load on each CPU and

redistributes processes between CPUs on detecting imbalance

• Pull migration: Idle CPU can actively pull waiting tasks from a busy CPU

• In multi-core environment:

• Each CPU has its own runqueue

33

Load balancing

NUMA: Non-uniform memory access• Load balancing works at the level of scheduling

domains

• Creates the hierarchy in a bottom up manner

• Cores, core pairs, socket, collection of sockets

• Linux creates these domains when it boots up

• The scheduling algorithm works hierarchically,

balancing from among cores, to sockets, to other

scheduling domains

• Also keeps track of caches when a process is

woken up

34

Load balancing

Cache

Memory

Cache

Memory

Socket 1 Socket 2

Local
Access

Remote
Access

Accessing local socket data is faster

than remote socket data

• Kernel sets the need_resched() flag (per CPU variable) at various locations

• scheduler_tick(): a process used up its timeslice

• try_to_wake_up(): higher priority process woken up

• Kernel checks need_reched() at certain points, if safe, schedule() is invoked

• User preemption:

• Return to user space from a system call or from an interrupt handler

• Kernel preemption:

• A process in the kernel explicitly calls schedule()

• A process in the kernel blocks on events (which internally calls schedule())

35

How / when to preempt?

• In most UNIX-like OSes, kernel code is non-preemptive

• In Linux, the kernel code can also be preemptive

• A process can be preempted in the kernel as long as execution is in a safe

state without holding any lock

• Kernel maintains preemption count information as well as thread_info in the

task_struct to figure out if a lock is held

36

Kernel preemption

• Linux also exposes some soft real-time scheduling policies:

• SCHED_FIFO, SCHED_RR, SCHED_DEADLINE

• Best effort, no guarantee

• Real-time process of any scheduling policy will always run before non-realtime

ones (CFS, SCHED_BATCH)

37

Real-time scheduling policies

• SCHED_FIFO:

• Task run until it blocks / yields

• Only a higher priority RT task can preempt it

• Round-robin for tasks of same priority

• SCHED_RR:

• Same as SCHED_FIFO, but with a fixed timeslice

38

Real-time scheduling policies

• SCHED_DEADLINE:

• Real-time policies for predictable RT scheduling

• Early deadline first (EDF) scheduling based on a period of activation and a

worst case execution time (WCET) for each task

• SCHED_BATCH:

• Non-real time, low priority background jobs

• SCHED_IDLE:

• Non-real time, very low priority background jobs

39

Real-time scheduling policies

• 64 core machine

• Run 2 CPU intensive processes in two terminals and run kernel compilation

• Two NUMA nodes with

many idle cores (white)

40

Consider a case

• 64 core machine

• Run 2 CPU intensive processes in two terminals and run kernel compilation

• Two NUMA nodes with

many idle cores (white)

• Other NUMA nodes with

many overloaded cores (orange,

red)

41

Consider a case

• 64 core machine

• Run 2 CPU intensive processes in two terminals and run kernel compilation

• Two NUMA nodes with

many idle cores (white)

• Other NUMA nodes with

many overloaded cores (orange,

red)

42

Consider a case

Scheduler is not work conserving!

• A scheduler always tries to make full use of system resources by ensuring that if

any task that can be executed, it will not let system resources such as CPU to sit

idle

• Pros:

• Better resource utilization

• No artificial idleness in the system

CFS is designed with work-conservation in mind!

43

Work conserving scheduler

• CFS violates the basic invariant for work conservation:

No idle cores if some cores have several threads in their runqueues

• Can actually happen in transient situations

44

CFS is non work conserving

• One runqueue per core to avoid contention

• CFS periodically balances loads:

• Load(task) = weight1 x % CPU use2

• 1. Lower niceness = higher weight

• 2. Prevent high-priority thread from taking

whole CPU just to sleep

• Hierarchical approach to balancing tasks

45

CFS in practice

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

46

CFS load balancing

L=2000 L=3000 L=6000 L=1000

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

47

CFS load balancing

L=6000 L=1000

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=2000 L=3000

48

CFS load balancing

L=6000 L=1000

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=2000 L=3000

49

CFS load balancing

L=6000 L=1000

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=2000 L=3000
Balanced!

50

CFS load balancing

L=6000 L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 2 Core 3

L=1000

L=1000

L=3000

Core 0 Core 1

L=2000 L=3000
Balanced!

51

CFS load balancing

L=1000

L=1000

L=3000

Core 0 Core 1

L=2000 L=3000
Balanced!

L=4000 L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 2 Core 3

L=1000

L=1000

Balanced!

52

CFS load balancing

AVG(L)=3500
L=4000 L=3000

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

AVG(L)=2500
L=2000 L=3000

L=1000

L=1000

L=1000

53

CFS load balancing

AVG(L)=3000
L=3000 L=3000

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

AVG(L)=3000
L=3000 L=3000

L=1000

L=1000L=1000

54

CFS load balancing

AVG(L)=3000
L=3000 L=3000

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

AVG(L)=3000
L=3000 L=3000

L=1000

L=1000L=1000

Balanced!

• Load calculations are actually more complicated, relies on heuristics

• One of them aims to increase fairness between “sessions”

• Idea: Ensure a tty cannot eat up all resources by spawning several threads

55

CFS load balancing

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000 L=1000

L=1000

50% of a
core

150%

• Load calculations are actually more complicated, relies on heuristics

• One of them aims to increase fairness between “sessions”

• Solution: Divide the load of a task by the number of threads in tty!

56

CFS load balancing

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000
L=250

L=250

L=250

100% of a
core

100% of a
core

Does this balancing work?

57

CFS load balancing: BUG #1

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Se
ss

io
n

(t
ty

)
1 Se

ss
io

n
(t
ty

)
2 Se

ss
io

n
(t
ty

)
2

58

CFS load balancing: BUG #1

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

59

CFS load balancing: BUG #1

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced!

60

CFS load balancing: BUG #1

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced! Balanced!

61

CFS load balancing: BUG #1

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500
AVG(L)=500 AVG(L)=500

L=250

L=250

L=250

L=250

Balanced! Balanced!

!!!
Issue with the load metric!

62

CFS load balancing: BUG #1

63

CFS load balancing: BUG #1

Load 1 = avg(R thread
with high load + a few
make threads with low
load)

Load 2 = avg(many
make threads with low
load)

• At the level of cores, pairs of cores, dies, CPUs, NUMA nodes …

• Bug #2: on complex machines, incorrect hierarchy representation

• At the last level, groups in the hierarchy are “not disjoint”

• Can break load balancing: whole app

running on a single node

• Bug #3: disabling/reenabling a core breaks the hierarchy completely

64

More bugs in hierarchical load balancing

AMD machine hierarchy

• Bug #4: slow phases with idle cores with popular commercial DBs

• In addition to periodic load balancing, thread pick where they wake up

• Only local CPUs are considered for wakeups due to locality “optimization”

• Intuition: periodic load balancing global, wakeup balancing local

65

More bugs: wakeups

• Scheduling is usually considered to be well-explored and solved problem

• CFS periodically balances, using a metric named load

↑ Issue here... appeared with tty-balancing heuristic for multithreaded apps

• CFS balances threads among groups of cores in a hierarchy

↑ Issue here... added with support of complex NUMA hierarchies

• In addition, thread balance the load by selecting the core where to wake up

↑ Issue here... added with locality optimization for multicore architectures

66

What went wrong?

• Scheduling is usually considered to be well-explored and solved problem

• CFS periodically balances, using a metric named load

↑ Issue here... appeared with tty-balancing heuristic for multithreaded apps

• CFS balances threads among groups of cores in a hierarchy

↑ Issue here... added with support of complex NUMA hierarchies

• In addition, thread balance the load by selecting the core where to wake up

↑ Issue here... added with locality optimization for multicore architectures

CFS was simple: but became complex due to new hardware and usecases

67

What went wrong?

• Sanity checker detects invariant violations to find bugs

• Detect suspicious situations, monitor them and produce them if they last

• Exact traces are necessary to understand complex problems

68

How to detect such bugs or issues?

• Bug #1: minimum load balancing than using average (weird!)

• Bug #2–#3: Build the hierarchy differently and dynamically (seems to work)

• Bug #4: Wake up on cores that are idle for longest time (bad for energy)

• Difficult to gauge the fixes, can worsen performance

• Scheduler is too complex, many competing heuristics added empirically

• Is redesign possible?

• EEVDF (next class)

• Relax work conservation for concurrent case (Ipanema, Eurosys 2020)

69

Fixing these scheduling bugs

• Simple idea: Logically a queue of runnable tasks, ordered by who has had the

least CPU time

• Implemented with a tree for fast lookup, reinsertion

• Timer counts the virtual ticks

• Tweaks to virtual runtime allows us to implement various priorities

• Load balancing is quite difficult in actual scenarios and can lead to non-work

conserving situation

70

Summary

