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Advanced Operating Systems

Scheduling |






This week

e Scheduling overview
* Linux CFS

e |Issues with Linux CFS



Focus of today’s lecture: Scheduling ...
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OS scheduler

e Decides which process runs next, when, and for how long
e Responsible for making the best use of processor (CPU)
 E.g., Do not waste CPU cycles for waiting processes
E.g., Give higher priority to higher-priority processes
E.g., Do not starve low-priority processes
e OS scheduler has two parts:
* Mechanism to stop one running process and star running another process

 Policy to pick up which process to run



Context switch

A context switch is a mechanism that allows the OS to store the current

process state and switch to some other, previously stored context.

* The context of the process is represented in the process control block (PCB)
* The OS maintains the PCB for each process
* The process context includes hardware registers
* Ex: All x86 registers and the memory registers for process-specific memory

region



Context switch procedure

The OS does the following operations e 0s (CPUO) Process 1
executin Interrupt / system call
during the context switch: i I v ‘\,@b‘
: ) ) Save state into PCBO NI
1. Saves the running process idleﬁgﬁx’&
execution state in the PCB Reload Stat‘le 1D FLIEL /_
Selects the next thread . .
. sidle Thterrupt / system call executing
Restores the execution state of { ~~ N
. g
the next process Save state into PCB1 Qpﬁ\‘&
idle
4. Passes the control using return ) Reload state into PCBO S
from trap to resume next executing |
process

PCB: Process control block



10 vs. CPU-bound tasks

e Scheduling policy: a set of rules determining what runs when
* |0-bound processes
* Spend most time waiting for 10: disk, network, keyboard, mouse, etc.
Runs only for a short duration
Response time is important
* CPU-bound processes
* Heavy use of the CPU: MATLAB, scientific computation, etc.

Caches stay hot when they run for a long time



Multitasking

e Simultaneously interleave execution of more than one process

* Single core
« The OS scheduler gives illusion of multiple processes running concurrently
- Multi-core

* The processor scheduler enables true parallelism



Types of multitasking OS

e Cooperative multitasking: old OSes (e.g., Windows 3.1) and few language
runtimes (e.g., Go runtime)
* A process does not stop running until it decides to yield CPU
 The OS cannot enforces fair scheduling
e Preemptive multitasking: almost all modern OSes
 The OS can interrupt the execution of a process (i.e., preemption)
after the process expires its timeslice,

which is decided by process priority

10



Types of multitasking OS

Process #1600 Process #300
long count = 0,

void foo(void) { void baz(void) {

while(1) {
count++;

}
}

while(1) {
printf(“hi?):
}

}

Operating system: scheduler

CPUO

Q. How can the preemptive scheduler take the control of infinite loop?
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Preemption for process scheduling

e Preemptive scheduler relies on hardware timer
e (S sets a timer before scheduling a process
 Hardware generates an interrupt after the timer expires
It interrupts process execution
Interrupts lead to switching to the kernel mode

OS decides if the process may continue

12



Process priority

e Priority-based scheduling
* Rank processes based on their worth and need for processor time

Processes with a higher priority run before those with a lower priority

13



Linux process priority

e Linux has two priority ranges

* Nice value: ranges from -20 to +19 (default 0)
« High values of nice means lower priority
. Real-time priority: ranges from 0 to 99

» Higher values mean higher priority

« Real-time processes always execute before standard process (nice) processes

ps ax -eo pid,ni,rtprio,cmd

14



Linux process priority

e Linux has two priority ranges
* Nice value: ranges from -20 to +19 (default 0)
« High values of nice means lower priority

. Real-time priority: ranges from 0 to 99

» Higher values mean higher priority

« Real-time processes always execute before standard process (nice) processes

ps ax -eo pid,ni,rtprio,cmd

User space view: [0 99][-20 +20]

Real-time | Non-real-time i

Kernel view: L’

15



Scheduling policy: timeslice

* How much time a process should execute before being preempted
* Defining the default time slice in an absolute way is tricky:
* Too long — bad interactive performance

- Too short — high context switch overhead

16



Scheduling policy: example

* Two tasks in the system:
* Text editor: I0-bound, latency sensitive (interactive)
- Video encoder: CPU-bound, background job
* Scheduling goal
* Text editor: when ready to run, need to preempt the video encoder for good
interactive performance

* Video encoder: run as long as possible for better CPU cache utilization

17



Scheduling policy: example in UNIX systems

* Two tasks in the system:
* Text editor: I0-bound, latency sensitive (interactive)
- Video encoder: CPU-bound, background job
* Gives higher priority to the text editor
* Not because it needs a lot of processor but because we want it to always have

processor time available when it needs

18



Scheduling policy: timeslice in Linux CFS

e Linux CFS does not use an absolute timeslice

* The timeslice a process receives is a function of the load of the system (i.e.,

a proportion of the CPU)

In addition, that timeslice is weighted by the process priority

When a process P becomes runnable:

P will preempt the currently running process C if P consumed a smaller proportion of
the CPU than C

19



Scheduling policy: example in Linux CFS

e CFS guarantees the text editor a specific proportion of CPU time
* CFS keeps track of the actual CPU time used by each program
* E.g., text editor: video encode = 50% : 50%
* The text editor mostly sleeps, waiting for user’s input and the video encoder
keeps running until preempted

When the text editor wakes up

* CFS sees that the text editor actually used less CPU time than the video encoder

* The text editor preempts the video encoder

20



Scheduling policy: example in Linux CFS

Time >
Theoretically:

Text editor Video encoder

In practice:

A A A A A
Keystroke Text editor waiting for 1/O

* Good interactive performance

* Good background, CPU-bound performance
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Linux CFS design

 Completely fair scheduler (CFS)

At each moment, each process of the same priority has received an exact same
amount of the CPU time

* If we could run n tasks in parallel on the CPU, give each 1/n of the CPU
processing power

* CFS runs a process for some time, then swaps it for the runnable process that

has run the least

22



Linux CFS design

* Goal:

* Fairly divide a CPU evenly among all competing processes with a clean

implementation
* Basicidea:

e Virtual runtime (vruntime): When a process runs, it accumulates “virtual
time.” If priority is high, virtual time accumulates slowly. If priority is low,
virtual time accumulates quickly

* |tis a “catch up” policy—processes with smallest amount of virtual time

gets to run next



Linux CFS design

* No default timeslice, CFS calculates how long a process should run according to
the number of runnable processes

 That dynamic timeslice is weighted by the process priority (nice)

timeslice = weight of the task / total weight of the runnable tasks

* To calculate the actual timeslice, CFS sets a targeted latency
* Targeted latency: period during which all runnable processes should be
scheduled at least once

Minimum granularity: floor at 1 ms (default)



Linux CFS design

 Example: process with same priority

TL =20ms
-
A: 10ms B: 10ms
(Anice = Bnice

 Example: process with different priorities

TL =20ms
-

-
A: 15ms |B: 5ms|
=0;B__=05)

nice

(A

nice

TL =20ms
- _
A B C D
= Cnice = Dnice)
TL =20ms
-

B
A: 15ms lB: 5ms|

(A

nice

=10;B__=15)

nice
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Linux CFS design

e Scheduler maintains a red-black tree where nodes are ordered according to

received virtual execution time
* Node with smallest virtual execution time is picked next
* Priorities determine accumulation rate of virtual execution time

* Higher priority — slower accumulation rate

26



Linux CFS example

* Three processes A, B, C accumulate virtual time at a rate 1, 2, and 3 respectively

 What is the expected share of the CPU that each process gets?

27



Linux CFS example

* Three processes A, B, C accumulate virtual time at a rate 1, 2, and 3 respectively

 What is the expected share of the CPU that each process gets?
e Strategy: How many quantums required for

all clocks to be equal?
* Lowest common multiple: 6
Toreach VT =6 ...
« Aisscheduled 6 times
« Bisscheduled 3 times
« Cisscheduled 2 times
A=>6/11of CPU time
B=>3/11 of CPU time
C=>2/11of CPU time
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Linux CFS example

* Three processes A, B, C accumulate virtual time at a rate 1, 2, and 3 respectively

 What is the expected share of the CPU that each process gets?

e Strategy: How many quantums required for

all clocks to be equal?
* Lowest common multiple: 6
Toreach VT =6 ...
« Aisscheduled 6 times
« Bisscheduled 3 times
« Cisscheduled 2 times
A=>6/11of CPU time
B=>3/11 of CPU time
C=>2/11of CPU time

QO01:
Q02:
QO03:
Q04:
QO05:
QO6:
QO07:
Q08:
QO009:
Q10:
Q11:

A =>{A:1, B:0, C:0}
B =>{A:1, B:2, C:0}
C=>{A:1, B:2, C:3}
A =>{A:2,B:2, C:3}
B =>{A:2, B:4, C:3}
A =>{A:3, B:4, C:3}
A =>{A:4, B:4, C:3}
C=>{A:4, B:4, C:6}
A =>{A:5, B:4, C:6}
B => {A:5, B:6, C:6}
A =>{A:6, B:6, C:6}
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Linux CFS: Red-black tree

* CFS maintains a red-black tree for processes running on a local CPU:

e An RB treeis a BST with constraints:

o &~ N

Nodes represent

sched_entity(s)

indexed by their
virtual runtime

Each node is red or black
Root node is black

All leaves (NIL) are black
If node is red, both children are black Virtual runtine

Most need of CPU Least need of CPU

Every path from a given node to its descendent NIL leaves contains the

same number of black number of black nodes

30



Linux CFS: Red-black tree

* CFS maintains a red-black tree for processes running on a local CPU:

e An RB treeis a BST with constraints:

o &~ N

Each node is red or black

Root node is black

All leaves (NIL) are black

If node is red, both children are black Virtual runtime

Most need of CPU Least need of CPU

Every path from a given node to its descendent NIL leaves contains the

same number of black number of black nodes

In an RB tree, the path from the root to the farthest leafs no more than
twice as long as the path from the root to the nearest leaf

31



Linux CFS: Red-black tree

Benefits over run queue:

- Self-balancing data structure

O(1) access to the leftmost node

e (Can access process with lowest virtual time

O(log n) insert
O(log n) delete

Nodes represent

sched_entity(s)

indexed by their
virtual runtime

virtual runtime

Most need of CPU Least need of CPU

32



Load balancing

* More like symmetric multi processing: each CPU is self-scheduling
 Two general approaches to balancing:
* Push migration: Process routinely checks the load on each CPU and
redistributes processes between CPUs on detecting imbalance
 Pull migration: Idle CPU can actively pull waiting tasks from a busy CPU
* In multi-core environment:

* Each CPU has its own runqueue



Load balancing

* Load balancing works at the level of scheduling

domains

Socket 1

* Creates the hierarchy in a bottom up manner
- Cores, core pairs, socket, collection of sockets
* Linux creates these domains when it boots up
* The scheduling algorithm works hierarchically,

balancing from among cores, to sockets, to other

Memory

scheduling domains
* Also keeps track of caches when a process is

woken up

Remote
Access

NUMA: Non-uniform memory access

Socket 2

Memory

Cach Cache
Local t i

Access

Accessing local socket data is faster

than remote socket data
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How / when to preempt?

* Kernel sets the need_resched() flag (per CPU variable) at various locations
* scheduler_tick(): a process used up its timeslice

. try_to_wake_up(): higher priority process woken up

Kernel checks need_reched() at certain points, if safe, schedule() is invoked
* User preemption:

e Return to user space from a system call or from an interrupt handler
* Kernel preemption:
* A process in the kernel explicitly calls schedule()

A process in the kernel blocks on events (which internally calls schedule())

35



Kernel preemption

* In most UNIX-like OSes, kernel code is non-preemptive
* In Linux, the kernel code can also be preemptive
* A process can be preempted in the kernel as long as execution is in a safe
state without holding any lock
* Kernel maintains preemption count information as well as thread _info in the

task_struct to figure out if a lock is held

36



Real-time scheduling policies

* Linux also exposes some soft real-time scheduling policies:
e SCHED_FIFO, SCHED_RR, SCHED_DEADLINE

e Best effort, no guarantee
e Real-time process of any scheduling policy will always run before non-realtime

ones (CFS, SCHED_BATCH)

37



Real-time scheduling policies

e SCHED_FIFO:
e Task run until it blocks / yields
- Only a higher priority RT task can preempt it
Round-robin for tasks of same priority
e SCHED_RR:

e Same as SCHED_FIFO, but with a fixed timeslice

38



Real-time scheduling policies

e SCHED_DEADLINE:
Real-time policies for predictable RT scheduling
Early deadline first (EDF) scheduling based on a period of activation and a
worst case execution time (WCET) for each task

e SCHED_BATCH:

* Non-real time, low priority background jobs
e SCHED_IDLE:

* Non-real time, very low priority background jobs

39



Consider a case

* 64 core machine

* Run 2 CPU intensive processes in two terminals and run kernel compilation

Number of threads in run queue: | 0 . . . .
T R e g

e Two NUMA nodes with

many idle cores (white)

NUMA node #

:Oms 1755
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Consider a case

* 64 core machine

* Run 2 CPU intensive processes in two terminals and run kernel compilation

e Two NUMA nodes with

many idle cores (white)

Number of threads in run queue 0 . . - .

e Other NUMA nodes with

many overloaded cores (orange,

red)

NUMA node #

:Oms 17.5s
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Consider a case

* 64 core machine

* Run 2 CPU intensive processes in two terminals and run kernel compilation

Number of threads in run queue: | 0 . . . .
0

— - - oy e T i S s Py e
e N e e T T i
 Two NUMA nodes with NS '

90

R W

many idle cores (white)

¢
- 1
- 8 —_————

NUMA node #

~N OO O

e Other NUMA nodes with

many overloaded cores (orange,

Gine 17 55
wa Al

Scheduler is not work conserving!
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Work conserving scheduler

* A scheduler always tries to make full use of system resources by ensuring that if

any task that can be executed, it will not let system resources such as CPU to sit

idle
* Pros:
e Better resource utilization

No artificial idleness in the system

CFS is designed with work-conservation in mind!

43



CFS is non work conserving

CFS violates the basic invariant for work conservation:

No idle cores if some cores have several threads in their runqueues

* Can actually happen in transient situations
Numpber of threads in run qugue: .-..

2R

NUMA node #
~NN OO O AW NN - O

17.5s

Oms
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CFS in practice

* One runqueue per core to avoid contention . N . .

* CFS periodically balances loads:
 Load(task) = weight! x % CPU use?

« 1. Lower niceness = higher weight

« 2. Prevent high-priority thread from taking

whole CPU just to sleep

* Hierarchical approach to balancing tasks

45



CFS load balancing

L=2000

L=3000

L=1000




CFS load balancing

L=2000 < > L=3000 | | L=6000 < > L=1000




CFS load balancing

L=2000 <« > L=3000

L=3000
\— J . J
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CFS load balancing

L=2000 < > L=3000
e ) Balanced! | [ )
[=ro00 \

s



CFS load balancing

| L=6000 < > L=1000
” S ” S

\_ J . J

-



CFS load balancing

r N\ | Balanced! | A




CFS load balancing

AVG(L)=2500 -« > AVG(L)=3500




CFS load balancing

AVG(L)=3000 -« » AVG(L)=3000
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CFS load balancing

AVG(L)=3000 -« » AVG(L)=3000
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CFS load balancing

Load calculations are actually more complicated, relies on heuristics

One of them aims to increase fairness between “sessions”

|Idea: Ensure a tty cannot eat up all resources by spawning several threads

Session (tty) 1

Session (tty) 2

r

r

~N

r

-

| L=1000_

L=1000

J




CFS load balancing

* Load calculations are actually more complicated, relies on heuristics
e One of them aims to increase fairness between “sessions”

* Solution: Divide the load of a task by the number of threads in tty!

100% of a f I g )
Session (tty) 1
core °°
0
100% of a
Caccinan [#+./)\ D

Does this balancing work?
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CFS load balancing: BUG #1

L=0 L=1000 | | L=500 L=500
> N N
. o 4
3] e e
c c c
0 9 9
o o O
N — N N N N

57



CFS load balancing: BUG #1

L=0 < > L=1000 | | L=500 < > L=500

. J . J . J \— J

-
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CFS load balancing: BUG #1

L=0 < > L=1000 |

Y | Balanced!

. J . J
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CFS load balancing: BUG #1

| L=500 < > L=500
a Y | Balanced! | ( b
\_ J \_ J

-



CFS load balancing: BUG #1

AVG(L)=500 AVG(L)=500
L=0 < > L=1000 | | L=500 < > L=500 |

Balanced!

Balanced!

I I I 1=250

| 1=250
00
. J
—

. J . J . J

Issue with the load metric!
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CFS load balancing: BUG #1

Number of threads in run queue:

o ‘u-’Fr e

e ahh'l"hﬁ'

wl’ . w-‘.--l--h‘lll

-;.. .L. G'El:!'-_i.u——.r.'-_.‘l_ q.r-l." L. e WU

NUMA node #
N OO O AW NN =+ O

Oms 17.5s
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CFS load balancing: BUG #1

I'-l'l;l'l-_'- ) T 5 . % o
: ot TP Suegkr i o 2l Load 1 = avg(R thread
" . ' ' with high load + a few
- - : - : ' make threads with low
B load)
SR v . At il
LV A, 1_'. e
Oms 17.5s
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More bugs in hierarchical load balancing

* At the level of cores, pairs of cores, dies, CPUs, NUMA nodes ...
* Bug #2: on complex machines, incorrect hierarchy representation

* At the last level, groups in the hierarchy are “not disjoint”

———————— e
O | O o O
| O
* (Can break load balancing: whole app ><
. . L] \IZICII [ | Y |
running on a single node o o o o o
i |

AMD machine hierarchy

e Bug #3: disabling/reenabling a core breaks the hierarchy completely
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More bugs: wakeups

* Bug #4: slow phases with idle cores with popular commercial DBs
* |n addition to periodic load balancing, thread pick where they wake up

« Only local CPUs are considered for wakeups due to locality “optimization”

« Intuition: periodic load balancing global, wakeup balancing local
Number of threads in run queue: @ . . .

s Thread wake-up on a non-idle core
225ms 450ms

Oms

NUMA node #
7 6 5 4 3 2 10

Slowed down execution
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What went wrong?

e Scheduling is usually considered to be well-explored and solved problem

* CFS periodically balances, using a metric named load

1 Issue here... appeared with t ty-balancing heuristic for multithreaded apps

* CFS balances threads among groups of cores in a hierarchy

1 Issue here... added with support of complex NUMA hierarchies

* |n addition, thread balance the load by selecting the core where to wake up

1 Issue here... added with locality optimization for multicore architectures

66



What went wrong?

e Scheduling is usually considered to be well-explored and solved problem

* CFS periodically balances, using a metric named load

1 Issue here... appeared with t ty-balancing heuristic for multithreaded apps

* CFS balances threads among groups of cores in a hierarchy

1 Issue here... added with support of complex NUMA hierarchies

* |n addition, thread balance the load by selecting the core where to wake up

1 Issue here... added with locality optimization for multicore architectures

CFS was simple: but became complex due to new hardware and usecases
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N o ok WD =+ O

How to detect such bugs or issues?

* Sanity checker detects invariant violations to find bugs

* Detect suspicious situations, monitor them and produce them if they last

* Exact traces are necessary to understand complex problems

Number of threads in run queue: @ . . . .

N o ok, WD =+ O

Number of threads in run queue: @ . . . .

Thread wake-up on a non-idle core: s— g

Slowed down execution

Oms 0.7s

Oms

Load: [0] 1 1024
o = —_— .
...... _ S e
*
Oms 17.5;

500ms
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Fixing these scheduling bugs

* Bug #1: minimum load balancing than using average (weird!)
* Bug #2-#3: Build the hierarchy differently and dynamically (seems to work)
* Bug #4: Wake up on cores that are idle for longest time (bad for energy)
* Difficult to gauge the fixes, can worsen performance

* Scheduler is too complex, many competing heuristics added empirically
* |s redesign possible?

 EEVDF (next class)

Relax work conservation for concurrent case (Ipanema, Eurosys 2020)
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Summary

Simple idea: Logically a queue of runnable tasks, ordered by who has had the
least CPU time

* Implemented with a tree for fast lookup, reinsertion

* Timer counts the virtual ticks

* Tweaks to virtual runtime allows us to implement various priorities

* Load balancing is quite difficult in actual scenarios and can lead to non-work

conserving situation



