
CS 477:

Advanced Operating Systems
Processes & Threads
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Administrivia



• Sheet is up, please start signing up

• Lab 0 submission site is up

• Lab 1 will be released soon
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This week



• Each TA will announce their individual office hours from the next week

• You can meet me by appointment
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Office hours



• Process abstraction

• Thread abstraction

• Process management in Linux

• Another OS abstraction: Lightweight contexts

• Scheduler activations
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Focus of today’s lecture
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Programs 

• A program consists of code and data

• Specified in some programming 

language

• Typically stored in the file on the disk

• A program is (can be) an executable file
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“Executable” file
• An executable file contains:

• Executable code: CPU instructions

• Data: Information manipulated by these 

instructions

• Obtained by compiling a program

Compiler
Compiled 
program

Executable image:
instructions, and data
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From program to processes

• “Running a program” → creating a process

• When we run an executable, the OS creates a process

• A process is an instance of an executable
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What is a process

• A basic unit of protection

• Java analogy:

• Class → “program” (static)

• Object → “process” (dynamic)

• Every process has a unique ID (PID)
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What constitutes a process?

• A unique identifier: Process ID (PID)

• Memory image:

• Code and data (static)

• Stack and heap (dynamic)

• CPU context: registers

• Program counter, current operands, stack pointer

• Kernel resources (open files, pending signals etc.)

• Threads

stack

heap

data

text

PC SP

0x00000000

0xffffffff
Process memory

PC: Program counter; SP: Stack pointer



• Process abstraction

• Thread abstraction

• Process management in Linux

• Another OS abstraction: Lightweight contexts

• Scheduler activations
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Focus of today’s lecture



Fork: An abstraction for protection

Threads: An execution context

12
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Threads 

• An execution context: run sequence of instructions

• A thread has its own:

• Thread ID (TID)

• Set of registers including CP & SP

• Stack

• Threads share the address space

• Text, data, heap

• Separates the virtual concept of process from its 

execution state

Kernel

Thread

Process 1 Process 2 Process 3

Kernel

Threads

Process



14

Why do we need threads? 

0x0

max
Multi-threaded

stack
1

heap

data

text

free

free

stack
2

thread1

thread2

• Threads express the opportunity of concurrency and 

parallelism

• Improves program structure

• Divide large tasks across several cooperative threads

• Throughput

• By overlapping computation with IO operations

• Responsiveness

• Can handle concurrent events

• Resource sharing

• Utilization of multi-core architectures

• Allows building parallel programs
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Processes vs threads

• A thread is bound to a single process

• A process can have multiple threads

• Sharing data between threads is cheap

• All threads share the same address space

• Threads are the unit of scheduling

• Processes are containers in which threads execute

• PID, address space, user and group ID, open file 

descriptors, current working directory, etc.

Kernel

Thread

Process 1 Process 2 Process 3

Kernel

Threads

Process
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Kernel-level threads: OS managed

• OS manages threads and processes

• All thread operations are implemented in the kernel

• Thread creation/management requires system calls

• OS schedules all threads

• Creating threads is cheaper than creating processes

• Windows, Linux, Solaris, Mac OS, AIX, HP-AUX Kernel

ThreadsProcess

Process table Thread table
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User-level threads: Runtime/application managed

• A library linked into the program, which manages threads

• Threads are invisible to the OS

• All the thread operations are done via procedure calls

• (no kernel involvement)

• Small and fast:

• 10–100x faster than kernel-level threads

• Portable

• Tunable to meet application needs

• Java, go, erlang, Node.js, fibers in C++

Kernel

ThreadsProcess

Process
table

Thread
 tableRuntime 

system
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Threading model: 1:1

• Each user-level thread maps to a kernel thread

• Most popular design

• Windows XP/7/10, OS/2, Linux, Solaris v9+

User thread

Kernel thread

k k k k
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Threading model: N:1

• Many user-level threads map to a single kernel 

thread

• Used on systems that do not support kernel-level 

threads

• Solaris green threads, GNU portable threads

User thread

Kernel thread

k
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Threading model: N:1

• Allows many user-level threads to be mapped to 

several kernel-level threads

• Allows the OS to create a sufficient number of 

kernel threads 

• Solaris (before v9), IRIX, HP-UX, Tru64

User thread

Kernel thread

kk k



• Process abstraction

• Thread abstraction

• Process management in Linux

• Notifying applications with explicitly calls (Scheduler activations)

• Another OS abstraction: Lightweight contexts
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Focus of today’s lecture
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Process state transition

Running Ready

Blocked

Descheduled

Scheduled

I/O done

A process can be in one of several states during its life cycle:

• Running

• Ready

• Blocked

I/O start
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Process from applications’ view

fork()

exec()

exit()wait()

The parent process
continues to execute

A parent process 
executes

A child process is created, which is a 
copy of its parent

A child process may use exec() API 
to replace the parent process’ 
memory space with a new program

The child process uses the exit() 
API to terminate itself

The parent process uses fork() to 
create a new child process

The parent process may use wait() 
to wait for the child process to 
terminate

Parent

Child



24

fork(): Creating a copy of itself

• OS allocates data structures for the child process

• OS makes a copy of the caller’s address space

• OS also copies other states, such as file descriptors, 

from the parent process

• The state of the child process is set to READY

• Parent and child execute in their own separate 

copy of the memory (address space)

• fork is implemented by the OS

stack
heap
code 

Other 
resources 

stack
heap
code 

Other 
resources 

fork()

parent child

The child process is a copy of the 
parent process

fork()

exec()

exit()wait()
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• Parent’s memory can be huge

• Kernel adopts a lazy approach to copying memory: COW

• Kernel duplicates the parent’s page tables

• Changes the page table access bits to read-only

• When a page is accessed for write operations, that page is copied and the 

page table entry is changed to read-write

• fork() becomes fast by delaying or altogether preventing copying of data

• fork() saves memory by sharing read-only pages among descendants

fork()

exec()

exit()wait()
fork() uses copy-on-write (COW)
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exec(): Executing a new program

• After fork(), both parent and child execute the same program

• Suppose we want to run another program

• If only used fork(), we need to combine code for parent and child together

• Becomes difficult, as combining multiple code paths is not easy

• Ex: Shell program with your own program or existing ones (check /bin)

exec() loads a new program in the context of an already running process (child), 

replacing the previous executable program

fork()

exec()

exit()wait()
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exec(): Executing a new program (contd …)

• exec() replaces the memory (address space), 

loads new program from the disk

• Code, data, and heap and stack are replaced 

by the new program

• No new PID allocation

• STDIN, STDOUT, STDERR are kept that allows 

parent to redirect/rewire child’s output

• The new program can pass command line 

arguments and environment

fork()

exec()

exit()wait()

stack
heap
code 

Other 
resources 

new stack
new heap
new code 

New 
resources

exec()

child child

After exec, new image replaces the 
old image, except PID, STDIN, 

STDOUT, and STDERR
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Assume a user wants to start a different program. For that, the OS needs to 

create a new process and create a new address space to load the program

Let’s divide and conquer:

• fork() creates a new process (replica) with a copy of its own address space

• exec() replaces the old program image with a new program image

fork()

exec()

exit()wait()
Why do we need fork() and exec()?
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Multiple programs can run simultaneously

Better utilization of hardware resources

Users can perform various operations between fork() and exec() calls to enable 

various use cases:

• To redirect standard input/output:

• fork, close/open file descriptors, exec

• To switch users: 

• fork, setuid, exec

• To start a process with a different current directory:

• fork, chdir, exec

fork()

exec()

exit()wait()
Why do we need fork() and exec()?

open/close are special file-system calls 

Set user ID (change user who can be 
the owner of the process)

Go to a specified directory
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wait(): Waiting for a child process

• Child processes are tied to their parent

• There exists a hierarchy among processes on forking

A parent process uses wait() to suspend its execution until one of its children 

terminates. The parent process then gets the exit status of the terminated child

pid_t wait (int *status);

• If no child is running, then the wait() call has no effect at all

• Else, wait() suspends the caller until one of its children terminates

• Returns the PID of the terminated child process

fork()

exec()

exit()wait()



31

exit(): Terminating a process 

When a process terminates, it executes  exit(), either directly on its own, or 

indirectly via library code

void exit (int status);

• The call has no return value, as the process terminates after calling the function

• The exit() call resumes the execution of a waiting parent process

fork()

exec()

exit()wait()



Waiting for children to die …
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• Scenarios under which a process terminates

• By calling exit() itself

• OS terminates a misbehaving process

• Terminated process exists as a zombie

• When a parent process calls wait(), the zombie child is cleaned 

up or “reaped”

• If a parent terminates before child, the child becomes an orphan

• init (pid: 1) process adopts orphans and reaps them

fork()

exec()

exit()wait()

P1

init

C1

wait()

P1 reaps C1



Waiting for children to die …
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• Scenarios under which a process terminates

• By calling exit() itself

• OS terminates a misbehaving process

• Terminated process exists as a zombie

• When a parent process calls wait(), the zombie child is cleaned 

up or “reaped”

• If a parent terminates before child, the child becomes an orphan

• init (pid: 1) process adopts orphans and reaps them

fork()

exec()

exit()wait()

P1

init

C1

wait()

P1 reaps C1

P1 C1

init eventually 
reaps C1



A tree of processes
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• Each process has a parent process

• init is the first process (pid: 1) without any parent process

• A process can have many child processes

• Each process again can have child processes 



• Process abstraction

• Thread abstraction

• Process management in Linux

• Another OS abstraction: Lightweight contexts

• Scheduler activations
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Focus of today’s lecture



Linux process descriptor: task_struct
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thread_info

__state

stack

…

tasks

mm

files

…

signal

files

…

Kernel
stack

Task state

Thread flags 
and state

Task 
list

Virtual memory

● Tasks represent both processes and threads
● Each task is described using a task_struct structure
● It is more than 3.5 KB in size



• Linux implements all threads as standard processes

• A thread is just another process sharing some information with other 

processes 

• Each thread has its own task_struct

• clone() system call for creating processes and threads

• For threads: CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND for 

cloning the information from the parent process
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Threads in Linux (user space)



• Linux implements all threads as standard processes

• A thread is just another process sharing some information with other 

processes 

• Each thread has its own task_struct

• Uses 1:1 threading model

• clone() system call for creating processes and threads

• For threads: CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND for 

cloning the information from the parent process
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Threads in Linux (user space)



• One can define a type of thread one wants to create: 

• Setting the flags argument in the clone() system call

• CLONE_VM: parent and child share address space

• CLONE_FILES: parent and child share open files

• CLONE_FS: parent and child share file system information

• CLONE_SIGHAND … 

check clone system call: man 2 clone
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Threads in Linux (user space)



• A set of threads that act as a whole with regards to some system calls

• The first thread (task) in a process becomes the thread group leader

• A new thread created with CLONE_THREAD is placed in the same thread group as the 

calling thread

• Handing process-based system calls:

• getpid() returns the PIDI of the thread group leader (t->tgid)

• On exec(), all threads besides thread group leader are terminated, and the new program 

is executed in the thread group leader

• After all of the threads in a thread group terminate, a SIGCHLD signal is sent to the 

parent process

• Signals may be sent to a thread group as a whole

40

Thread group in Linux (user space)



• Runs entirely in the kernel space and performs background operations

• Very similar to user space threads

• Schedulable entities like regular processes, but never switch to user space

• They do not have their own address space (mm in task_struct is NULL)

• Kernel threads are all forked from the kthreadd thread (PID 2)

• Use cases (ps --ppid 2)

• Work queue (kworker)

• Load balancing among CPU (migration)
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Kernel Threads 



• Process abstraction

• Thread abstraction

• Process management in Linux

• Another OS abstraction: Lightweight contexts

• Scheduler activations
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Focus of today’s lecture



• Unit of isolation, privilege separation, and 

program states

• Threads for execution context

• Other resources:

• Memory

• Credentials

• Files 

• CPU register information 

• Attributes

43

Process basic OS abstraction
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Fork suffers from its own overhead

• Fork provides distinct isolation, privilege 

separation, and program state among 

processes

Cons:

• There is overhead on creating and scheduling 

processes



• Provides intra-process isolation of system 

resources

• Memory, credentials, files, CPU registers

45

New isolation abstraction: Light-weight contexts



• Provides intra-process isolation of system 

resources

• Memory, credentials, files, CPU registers
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New isolation abstraction: Light-weight contexts



• Own virtual address space, page-mappings, file 
descriptors and credentials

• Process starts with a root lwC: can create more 
and give it whatever it wants to give

• Referenced by descriptor; may have multiple 
such descriptors

• Terminates when last reference goes away
• Creating an lwC does not start "running" it:  it's 

just a context
• When a thread switches to it, it copies the 

thread state and starts running.
• Switching lwCs is akin to a coroutine yield.
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New isolation abstraction: Light-weight contexts



• Creating a child is kind of like clone: the parent 
gets to decide how resources are/are not 
shared with the child (using resource-spec)

• When a thread leaves an lwC, its state is 
remains in the original lwC, so that when it 
returns, it picks them up via arguments, as if it 
just made a switch into that lwC

• Capability-based system
• When you create an lwC, each descriptor can 

be COW, SHARED, or UNMAP.
• If allowed, you can map resources from one 

lwC into another using lwOverlay API

48

New isolation abstraction: Light-weight contexts
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New isolation abstraction: Light-weight contexts



• Common use cases:

• Snapshot
• Create a context to save initial state (the child 

holds the saved state)

• Handle a request

• Now use the new context, which in turn 

destroys the original one, creates a new one

• Lather, rinse, repeat
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New isolation abstraction: Light-weight contexts



• Common use cases:

• Server event-handling isolation (prevent 

information in different sessions from 

leaking to one another)
• Server creates a socket descriptor for each 

client.

• Uses different contexts to respond to each 

descriptor
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New isolation abstraction: Light-weight contexts



• Common use cases:

• Isolation of sensitive data (e.g., a signing 

key)
• Create a child who will have full rights to the 

key

• Parent relinquishes access to child's space

• Child enters infinite loop and everything gets a 

thread assigned maps in an argument buffer, 

signs it and unmaps it
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New isolation abstraction: Light-weight contexts



• Common use cases:

• Monitor child system calls
• Create a child indicating it should trap to parent

• Basically switch to the child context and only 

run on a system call trap

• If child is allowed to make the call do it and give 

the child the result, else error
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New isolation abstraction: Light-weight contexts



• Orthogonal to threads 

• Allows snapshot/restore 

• Privilege separation within a process

• No HW support

• No language/compiler support 

• Focus on privilege, not resources

• No dynamic, runtime checking
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New isolation abstraction: Light-weight contexts



• Evaluation: 

• Creation / destruction cost
• No pages dirtied: 87.7 microseconds 

• Additional COW cost per page dirtied
• 3.4 microseconds

• Switching cost (between):
• lWC: ~2 microsecond

• Process: ~4.3 microsecond

• k-thread: ~4.2 microsecond
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New isolation abstraction: Light-weight contexts



• Process abstraction

• Thread abstraction

• Process management in Linux

• Another OS abstraction: Lightweight contexts

• Scheduler activations
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Focus of today’s lecture



• Every thread operations are system calls

• 1:1 model
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Kernel-level threads: Implementation

Kernel

ThreadsProcess

Process table Thread table

PCB

TCB

User thread

Kernel thread

k k k k



• Pros

• Cheaper than processes

• Scheduling / management done by the kernel

• Possible to overlap IO with computation

• Can exploit multiple CPUs

• Cons

• Still too expensive (compared to user-level threads)

• Thread state in the kernel

• Need to be general to support the needs of all programmers, languages, 

runtimes, etc. 
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Kernel-level threads



• Managed by runtime 

library

• Views each process as a 

“virtual processor”

• N:1 model
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User-level threads: Implementation

Kernel

ThreadsProcess

Process
table

Thread
 tableRuntime 

system

User thread

Kernel thread

k



• Pros

• Fast

• Portable

• Flexible

• Cons

• Invisible to the OS; OS can make poor 

decisions

• Cannot exploit multiple CPUs
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User-level threads



• The performance and flexibility of user-level threads

• Performance of user-level systems in the common case

• Simplify application-specific customization: 

• Scheduling policy, concurrency models, etc. 

• The functionality of kernel threads

• No processor idles in the presence of ready threads

• No high priority thread waits for a processor while a low-priority thread 

runs

• Thread traps to the kernel to block, the processor can be used to run 

another thread from the same or from a different address space
61

Goals



• Use M:N threading model

• Problems:

• Preemption of lock holder?

• Scheduling an idle thread?

• Preempting a high-priority thread?

• Running out of kernel threads?
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A simple solution

User thread

Kernel thread

kk k



• Kernel threads are the wrong abstraction for supporting user-level thread 

management

• The kernel needs access to user-level scheduling information

• The user-level thread system needs to be aware of kernel events
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Observations



• Serves as a vessel, or execution context, for running user-level threads (as an 

extension of a kernel thread)

• Notifies the user-level thread system of a kernel event via upcall
• Requires two stacks:

• A kernel-level stack: used for system calls

• A user-level stack: used for upcalls

• Note: Each user-level thread has its own stack

• Activation control block

• Saves the processor context of the activation current user-level thread when 

the thread is stopped by the kernel
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Scheduler activation



• Serves as a vessel, or execution context, for running user-level threads (as an 

extension of a kernel thread)

• Notifies the user-level thread system of a kernel event via upcall
• Requires two stacks:

• A kernel-level stack: used for system calls

• A user-level stack: used for upcalls

• Note: Each user-level thread has its own stack

• Activation control block

• Saves the processor context of the activation current user-level thread when 

the thread is stopped by the kernel
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Scheduler activation
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Scheduler activation: Overview

Notifies the kernel when 
the application needs 
more or fewer processors

Notifies the user-level 
thread system whenever 
the kernel changes the 
number of processors 
assigned to it
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Example

• T1: the kernel allocates two processors (two kernel threads) 
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Example

• T2: Thread 1 blocks in the kernel for IO
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Example

• T3: Thread 1 completes the IO
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Example

• T4: Thread 1 resumes
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Example

• T5: Kernel wants to take a processor (kernel thread) away from address space A
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Example

• T6: Thread 3 is preempted and the processor is allocated to B
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Example

• T7: Thread 1 is preempted and kernel notifies to A



• Add this processor (processor #)

• Execute a runnable user-level thread

• Processor has been preempted (preempted SA# and its machine state)

• Return to the ready list of that user-level in the context of preempted SA

• Scheduler activation has been blocked (blocked SA#)

• The blocked SA is no longer using its processor

• Scheduler activation has unblocked (unblocked SA# and its machine state)

• Return to the ready list the user-level thread was executing in the context of 

the blocked SA
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Upcall: kernel → user



• Add more processors

• Allocate processors along with the SAs

• The processor is idle

• Preempt this processor if another address space needs it

• The user-level thread system need not tell the kernel about every thread 

operation
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System call: user → kernel



• What to do if a preempted or blocked thread is in the critical section?

• Poor performance or deadlock

• Solution based on “recovery”:

• Check whether the preempted thread was in a critical section

• If so, it is continued temporarily via a user-level context switch

• Performance enhancement

• Make a copy of each critical section

• Runtime checks using the section begin/end address

• Normal execution uses the original version

• The copy returns to the scheduler at the end of the critical section

• Imposes no overhead in the common case
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Critical sections



• The application can build any concurrency model

• The kernel needs no knowledge of the data structures used to represent 

parallelism at the user level

• Scheduler activations provide a “mechanism”, not a “policy”
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Application transparency



• Performance is slightly worse due to the cost:

• Maintaining a counter for number of busy threads

• Cost of checking whether a preempted thread is being resumed

• Upcall can contribute up to 5x slowdown

• Dynamic allocation/deallocation of SA and management of threads in user 

space 
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Basic performance



• M:N model is too complex:

• Signal handling

• Automatic concurrency management

• Poor scalability due to synchronization in the user-level thread 

• Advances in kernel thread scalability
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Issues with scheduler activation (Solaris 2)



• Process: An abstraction for protection

• Thread: An execution context

• Various process models: 1:1, N:1, M:N

• Intra-process isolation is also possible with lWC:

• Follow the same model of kernel resources entirely in the userspace

• Scheduler activation gives hints to the user space to make better scheduling / 

execution decisions

80

Summary


