CS 477:

Advanced Operating Systems

Processes & Threads

This week

* Sheet is up, please start signing up
* Lab O submission site is up

e Lab 1 will be released soon

Office hours

e Each TA will announce their individual office hours from the next week
* You can meet me by appointment

Focus of today’s lecture

* Process abstraction

* Thread abstraction

* Process management in Linux

* Another OS abstraction: Lightweight contexts

e Scheduler activations

Programs

* A program consists of code and data
* Specified in some programming
language
* Typically stored in the file on the disk

A program is (can be) an executable file

“Executable” file

* An executable file contains:
* Executable code: CPU instructions
e Data: Information manipulated by these
instructions

* Obtained by compiling a program

Compiler .
Compiled
program

Executable image:
instructions, and data

From program to processes

 “Running a program” — creating a process
 When we run an executable, the OS creates a process

* A process is an instance of an executable

What is a process

* A basic unit of protection

Java analogy:
e Class — “program” (static)
Object — “process” (dynamic)

Every process has a unique ID (PID)

What constitutes a process?

Process memory
OxFFfffff

A unique identifier: Process ID (PID)

Memory image:
* Code and data (static)

e Stack and heap (dynamic)

CPU context: registers

* Program counter, current operands, stack pointer

Kernel resources (open files, pending signals etc.) text

e Threads

0x00000000

PC: Program counter; SP: Stack pointer

10

Focus of today’s lecture

* Process abstraction

* Thread abstraction

* Process management in Linux

* Another OS abstraction: Lightweight contexts

e Scheduler activations

11

Fork: An abstraction for protection

Threads: An execution context

Threads

Process 1 Process 2 Process 3
* An execution context: run sequence of instructions
 Athread has its own:
e Thread ID (TID) Thread
Kernel
Set of registers including CP & SP
Stack Process
|
* Threads share the address space
e Text, data, heap
. . Threads
e Separates the virtual concept of process from its carnal
erne

execution state

13

Why do we need threads?

Multi-threaded

max

Threads express the opportunity of concurrency and

parallelism
* |mproves program structure
.« Nivi K | ive thread thread
Divide large tasks across several cooperative threads 1

 Throughput

* By overlapping computation with IO operations

, thread,
* Responsiveness

e (Can handle concurrent events

* Resource sharing

text

e Utilization of multi-core architectures

0x0

* Allows building parallel programs

14

Processes vs threads

 Athread is bound to a single process
* A process can have multiple threads
* Sharing data between threads is cheap
* All threads share the same address space
 Threads are the unit of scheduling
* Processes are containers in which threads execute
* PID, address space, user and group ID, open file

descriptors, current working directory, etc.

Process 1

Process 2

Process 3

Thread

Kernel

Process

%

Threads

Kernel

15

Kernel-level threads: OS managed

 OS manages threads and processes

* All thread operations are implemented in the kernel
* Thread creation/management requires system calls
* OS schedules all threads

* Creating threads is cheaper than creating processes

 Windows, Linux, Solaris, Mac OS, AIX, HP-AUX

Process

Threads

Kernel

ad X

Process table

Thread table

16

User-level threads: Runtime/application managed

e Alibrary linked into the program, which manages threads

Process Threads

* Threads are invisible to the OS \

* All the thread operations are done via procedure calls

* (no kernel involvement) gg gg

=] =
e Small and fast:
e 10-100x faster than kernel-level threads Kernel -
Thread
e Portable cunime Process hrea
system table

 Tunable to meet application needs

e Java, go, erlang, Node.js, fibers in C++

17

Threading model: 1:1

* Each user-level thread maps to a kernel thread

= \
=\

(\ (\ User thread

* Most popular design

 Windows XP/7/10, OS/2, Linux, Solaris vO+ @ g g @ kernel thread
k k

18

Threading model: N:1

* Many user-level threads map to a single kernel < -
\ User threa

thread

e Used on systems that do not support kernel-level

threads

* Solaris green threads, GNU portable threads g Kernel thread

19

Threading model: N:1

* Allows many user-level threads to be mapped to < User thread
\ ser threa

several kernel-level threads

e Allows the OS to create a sufficient number of

kernel threads

* Solaris (before v9), IRIX, HP-UX, Tru64 g Kernel thread

20

Focus of today’s lecture

* Process abstraction

* Thread abstraction

* Process management in Linux

* Notifying applications with explicitly calls (Scheduler activations)

* Another OS abstraction: Lightweight contexts

21

Process state transition

A process can be in one of several states during its life cycle:
Descheduled

e Running — -
* Ready Running Ready
* Blocked Scheduled
/O done
|/O start

Blocked

22

Process from applications’ view

A parent process
executes

v

The parent process uses fork() to fork() A child process is created, which is a
create a new child process copy of its parent

Nhild
[A child process may use exec () API

exec () } to replace the parent process’
memory space with a new program

Parent

The parent process may use wait()
to wait for the child process to [wait ()

terminate *

The parent process
continues to execute

[exit() } The child process uses the exit ()
API to terminate itself

23

fork(): Creating a copy of itself

e OS allocates data structures for the child process

* OS makes a copy of the caller’s address space

* OS also copies other states, such as file descriptors,
from the parent process

* The state of the child process is set to READY

* Parent and child execute in their own separate
copy of the memory (address space)

 fork is implemented by the OS

parent child
e I 4 I
stack stack
heap heap
code fork() code
Other Other
Qesou \rces) Qes:: rces)

The child process is a copy of the
parent process

24

fork() uses copy-on-write (COW)

* Parent’s memory can be huge
* Kernel adopts a lazy approach to copying memory: COW
* Kernel duplicates the parent’s page tables
Changes the page table access bits to read-only
When a page is accessed for write operations, that page is copied and the
page table entry is changed to read-write
 fork() becomes fast by delaying or altogether preventing copying of data

 fork() saves memory by sharing read-only pages among descendants

25

exec (): Executing a new program

e After fork(), both parent and child execute the same program

e Suppose we want to run another program
. If only used fork(), we need to combine code for parent and child together

* Becomes difficult, as combining multiple code paths is not easy

« Ex: Shell program with your own program or existing ones (check /bin)

exec() loads a new program in the context of an already running process (child),

replacing the previous executable program

26

exec (): Executing a new program (contd ...)

exec () replaces the memory (address space),
loads new program from the disk

* Code, data, and heap and stack are replaced

by the new program

No new PID allocation
STDIN, STDOUT, STDERR are kept that allows
parent to redirect/rewire child’s output
The new program can pass command line

arguments and environment

child child
e I 4 I
stack new stack
heap new heap
code exec() new code
Other New
Qesou \rces) Q‘GS:J rces)

After exec, new image replaces the
old image, except PID, STDIN,
STDOUT, and STDERR

27

Why do we need fork() and exec()?

Assume a user wants to start a different program. For that, the OS needs to

create a new process and create a new address space to load the program

Let’s divide and conquer:

 fork() creates a new process (replica) with a copy of its own address space

* exec() replaces the old program image with a new program image

28

Why do we need fork() and exec()?

(wait() J-{ exit()]

Multiple programs can run simultaneously
Better utilization of hardware resources

Users can perform various operations between fork() and exec() calls to enable

various use cases:

e To redirect standard input/output:

open/close are special file-system calls

« fork, close/open file descriptors, exec

* TO SWItCh users: Set user ID (change user who can be
the owner of the process)

« fork, setuid, exec
* To start a process with a different current directory: o o drect
O 1O a specirtie irectory

« fork, chdir, exec

29

wait(): Waiting for a child process :

(Iv;it(-; J M exit())

— -

* Child processes are tied to their parent
* There exists a hierarchy among processes on forking
A parent process uses wait() to suspend its execution until one of its children

terminates. The parent process then gets the exit status of the terminated child

pid_t wait (int *status);

* |f no child is running, then the wait() call has no effect at all
* Else, wait() suspends the caller until one of its children terminates

* Returns the PID of the terminated child process

30

exit(): Terminating a process

When a process terminates, it executes exit(), either directly on its own, or

indirectly via library code

void exit (int status);

* The call has no return value, as the process terminates after calling the function

e The exit() call resumes the execution of a waiting parent process

31

Waiting for children to die ... g
e Scenarios under which a process terminates
wait()
 Bycalling exit() itself 7T
OS terminates a misbehaving process @ G
* Terminated process exists as a zombie el
e When a parent process calls wait(), the zombie child is cleaned P1reaps C1

up or “reaped”
* |f a parent terminates before child, the child becomes an orphan

 init (pid: 1) process adopts orphans and reaps them

32

Waiting for children to die ... i

Scenarios under which a process terminates wait()

e By calling exit() itself ’
-
- OS terminates a misbehaving process e

Terminated process exists as a zombie
P1 reaps C1
When a parent process calls wait(), the zombie child is cleaned

up or “reaped”

If a parent terminates before child, the child becomes an orphan @—)@
e 1nit (pid: 1) process adopts orphans and reaps them 4 el
" “init eventually
reaps C1

33

A tree of processes

* Each process has a parent process
* initis the first process (pid: 1) without any parent process
* A process can have many child processes

* Each process again can have child processes

udisksd
chread |udisksd
sksd
r ludisksd
--user
chrome_crashpad_handler --monitor-self-annotation=ptype=
chrome_crashpad_handler --monitor-self-annotation=pty
chrome_crashpad_handler --monitor-self-annotation=pty
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome
xdg-desktop-portal-gnome

sanidhya
sanidhya
sanidhya
sanidhya

sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya
sanidhya

(oo o Mo B o B o o Mo B oMo B o Bl o B ool o B B ol ol o B o o)

[S S = = O = B SR =
L O S = T = T = = S RS

Focus of today’s lecture

* Process abstraction

* Thread abstraction

* Process management in Linux

* Another OS abstraction: Lightweight contexts

e Scheduler activations

35

Linux process descriptor: task_struct

e Tasks represent both processes and threads
® FEach taskis described using a task_struct structure
® |tis morethan 3.5KB in size

/* linux/include/linux/sched.h */
struct task_struct {

struct

thread_info

volatile long

void
int

struct sched_entity

cpumask_t

struct
struct
struct
struct
struct
struct
struct
L¥ a=

list_head
mm_struct
task_struct
list_head
list_head
files_struct

thread_info;
__state;

*stack;
prio;
se;

cpus_mask;

tasks;
*mm;
*parent;
children;
sibling;
*files;

signal_struct *signal;

2

/)(—
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/)(-
/*

/* NOTE: In Linux kernel, process and
}; /7* TODO: Let's check ‘pstree’ output.

.74

Thread flags .
4 st tg thread_info Kernel
and state stack
Task state __state
stack
Task
. tasks
thread information */ list

task status: TASK _RUNNING, etc */
stack of this task */

task priority */

information for processor scheduler */
bitmask of CPUs allowed to execute */
a global task list */

memory mapping of this task */
parent task */

a list of child tasks */

siblings of the same parent */

open file information */

signal handlers */

Virtual memory

task are interchangably used. */

36

Threads in Linux (user space)

* Linux implements all threads as standard processes
* Athread is just another process sharing some information with other

processes
Each thread has its own task_struct

* clone() system call for creating processes and threads
* For threads: CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND for

cloning the information from the parent process

37

Threads in Linux (user space)

* Linux implements all threads as standard processes
* Athread is just another process sharing some information with other

processes

Each thread has its own task_struct
® Uses 1:1 threading model
* clone() system call for creating processes and threads
* For threads: CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND for

cloning the information from the parent process

38

Threads in Linux (user space)

* One can define a type of thread one wants to create:

* Setting the flags argument in the clone() system call
CLONE_VM: parent and child share address space
CLONE_FILES: parent and child share open files
CLONE_FS: parent and child share file system information
CLONE_SIGHAND ...

check clone system call: man 2 clone

39

Thread group in Linux (user space)

* Aset of threads that act as a whole with regards to some system calls
e The first thread (task) in a process becomes the thread group leader
* A new thread created with CLONE_THREAD is placed in the same thread group as the
calling thread
 Handing process-based system calls:
- getpid() returns the PIDI of the thread group leader (t->tgid)
On exec(), all threads besides thread group leader are terminated, and the new program
is executed in the thread group leader
After all of the threads in a thread group terminate, a SIGCHLD signal is sent to the
parent process

Signals may be sent to a thread group as a whole

40

Kernel Threads

* Runs entirely in the kernel space and performs background operations
* \Very similar to user space threads
* Schedulable entities like regular processes, but never switch to user space
* They do not have their own address space (mm in task_struct is NULL)
e Kernel threads are all forked from the kthreadd thread (PID 2)
e Use cases (ps --ppid 2)

 Work queue (kworker)

Load balancing among CPU (migration)

Focus of today’s lecture

* Process abstraction

* Thread abstraction

* Process management in Linux

* Another OS abstraction: Lightweight contexts

e Scheduler activations

42

Process basic OS abstraction

* Unit of isolation, privilege separation, and
program states
* Threads for execution context

« Other resources:

« Memory

« Credentials

* Files

* CPU register information

e Attributes

| attributes |

threads

;

memory |

creds

files

registers |

process”

43

Fork suffers from its own overhead

* Fork provides distinct isolation, privilege
separation, and program state among

processes

Cons:
 There is overhead on creating and scheduling

processes

LI

)
o

|

.

;
attributes

threads

g3

—

(

attributes

threads

22

4

C

=

.‘
(1]
Q

|

P
attributes

threads

VAAAVAVAVAVAVAVAN

memory
creds

files

process’

New isolation abstraction: Light-weight contexts

Provides intra-process isolation of system

resources

Memory, credentials, files, CPU registers

attributes

- e e e e e o

threads

root lwc

memory

creds

files

registers

— o - - - - -

process”

45

New isolation abstraction: Light-weight contexts

Provides intra-process isolation of system

resources

Memory, credentials, files, CPU registers

attributes

- e e e . -

threads

root lwc

memory

creds

files

registers

— o - - - - -

oo T mm mm mm = =

child lwc 1

memory

creds

files

registers

[
[
[
[
[
[
I

process”

46

New isolation abstraction: Light-weight contexts

 Own virtual address space, page-mappings, file

descriptors and credentials (]
. attributes threads
* Process starts with a root IwC: can create more
and give it whatever it wants to give % §
* Referenced by descriptor; may have multiple
such descriptors —— ST s
R T T T I e vt el ey \ NS - P . s \
* Terminates when last reference goes away | [memory |+ ' [memory |
I]
* Creating an IwC does not start "running" it: it's , [_creds : , (s T
. t text : files | : files ,
Just a contex 1 [registers ; [registers ;
\

- When a thread switches to it, it copiesthe | ‘'--------"‘--------
thread state and starts running. \ process-
* Switching IwCs is akin to a coroutine yield.

47

New isolation abstraction: Light-weight contexts

* Creating a child is kind of like clone: the parent
gets to decide how resources are/are not
shared with the child (using resource-spec)

* When a thread leaves an IwC, its state is
remains in the original IwC, so that when it
returns, it picks them up via arguments, as if it
just made a switch into that lwC

* (Capability-based system

* When you create an lwC, each descriptor can
be COW, SHARED, or UNMAP.

* If allowed, you can map resources from one
lwC into another using IwOverlay API

~

attributes

- e e e e e o

threads

root lwc

memory

creds

files

registers

— o - - - - -

child Iwc 1

memory

creds

I
|
I
i
files |
registers ;

process”

48

New isolation abstraction: Light-weight contexts

attributes

Create IwC
new,caller,args «— IwCreate(spec, options)
Switch to IwC
caller,args «— IwSwitch(target, args)
Resource Access
status — IwRestrict(lwc, spec)
status — IwOverlay(lwc, spec)
status « lwSyscall(target, mask,

syscall, args)

- e e e e e o

threads

root lwc

memory

creds

files

registers

— o - - - - -

oo T mm mm mm = =

child lwc 1

memory

creds

files

registers

[
[
[
[
[
[
I

process”

49

New isolation abstraction: Light-weight contexts

* Common use cases:

a N\
[J
Sna Ps h ot attributes threads
« Create a context to save initial state (the child
holds the saved state)
« Handle a request
* Now use the new context, which in turn
. - - footlwe_ _ _ _childlwe 1 _
destroys the original one, creates a new one ' T memory | 1 [memory |
« Lather, rinse, repeat : creds : : creds :
: files : : files :
1 | registers | ' [registers |
, N e ae ,

\ process”

50

New isolation abstraction: Light-weight contexts

* Common use cases:

« Server event-handling isolation (prevent [: j
attributes threads
information in different sessions from
leaking to one another) % %
* Server creates a socket descriptor for each
client. - - footlwe_ _ _ _childlwe _
* Uses different contexts to respond to each . [__memory ! . |__memory :
descriptor E creds ! : creds :
| files I : files |
I | registers ; | registers ;
N = s s e

\ process”

51

New isolation abstraction: Light-weight contexts

* Common use cases:

. o, ® . o da A
* [solation of sensitive data (e.g., a signing TR r—
key)

* Create a child who will have full rights to the § %
key

* Parent relinquishes access to child's space T Al T

e Child enters infinite loop and everything gets a :_ : :n;n:o;y- 1| :_ : ;n_en_m_ry_ 1
thread assigned maps in an argument buffer, : creds : : creds :
signs it and unmaps it : hiles : : bles :

|‘ registers ; |\ registers ;

\ process”

52

Create IwC

new,caller,args — lwCreate(spec, options)
Switch to IwC
caller,args — lwSwitch(target, args)

Resource Access

status — lwRestrict(lwc, spec)
status — lwOverlay(lwc, spec)
status — lwSyscall(target, mask,

syscall, args)

New isolation abstraction: Light-weight contexts

e Orthogonal to threads

e Allows snapshot/restore

e Privilege separation within a process
e No HW support

e No language/compiler support

e Focus on privilege, not resources

e No dynamic, runtime checking

attributes

threads

root lwc

memory

creds

files

- e e e e e o

registers

— o - - - - -

o T mm mm wm = =

child lwc 1

memory

creds

files

registers

[
[
[
[
[
[
I

process”

54

New isolation abstraction: Light-weight contexts

Evaluation:

* Creation / destruction cost

- Additional COW cost per page dirtied

No pages dirtied: 87.7 microseconds

3.4 microseconds

Switching cost (between):

IWC: ~2 microsecond
Process: ~4.3 microsecond
k-thread: ~4.2 microsecond

attributes

- e e e e e o

threads

root lwc

memory

creds

files

registers

— o - - - - -

o T mm mm wm = =

child lwc 1

memory

creds

files

registers

[
[
[
[
[
[
I

process”

55

Focus of today’s lecture

* Process abstraction

* Thread abstraction

* Process management in Linux

* Another OS abstraction: Lightweight contexts

e Scheduler activations

56

Kernel-level threads: Implementation

e Every thread operations are system calls

Process Threads
e 1:1 model
{\ {\ {S {S User thread
TCB
Kernel
g g g g Kernel thread Process table Thread table

k k k k
PCB

57

Kernel-level threads

* Pros
* Cheaper than processes

e Scheduling / management done by the kernel

* Possible to overlap 10 with computation

e Can exploit multiple CPUs

e Cons

 Still too expensive (compared to user-level threads)

e Thread state in the kernel

 Need to be general to support the needs of all programmers, languages,

runtimes, etc.

58

User-level threads: Implementation

* Managed by runtime

<\ User thread Process Threads

library \

* Views each process as a

“virtual processor” gg gg

=]
e N:1 model

Kernel

P
_ Thread
Kernel thread Runtime Process table
system table
k

59

User-level threads

* Pros
Overation FastThreads | Topaz threads Ultrix
e Fast P (User-level) | (Kernel-level) | processes

Null Fork 34us 948us 11300pus
- Portable
Signal-Wait 37us 441pus 1840us
- Flexible
* Cons

- Invisible to the OS; OS can make poor
decisions

- Cannot exploit multiple CPUs

Goals

* The performance and flexibility of user-level threads
* Performance of user-level systems in the common case
* Simplify application-specific customization:
* Scheduling policy, concurrency models, etc.

* The functionality of kernel threads
* No processor idles in the presence of ready threads
* No high priority thread waits for a processor while a low-priority thread
runs
* Thread traps to the kernel to block, the processor can be used to run

another thread from the same or from a different address space

A simple solution

* Use M:N threading model

* Problems:

Preemption of lock holder?
Scheduling an idle thread?
Preempting a high-priority thread?

Running out of kernel threads?

User thread

Kernel thread

62

Observations

* Kernel threads are the wrong abstraction for supporting user-level thread

management

* The kernel needs access to user-level scheduling information

* The user-level thread system needs to be aware of kernel events

63

Scheduler activation

* Serves as a vessel, or execution context, for running user-level threads (as an
extension of a kernel thread)
* Notifies the user-level thread system of a kernel event via upcall
* Requires two stacks:
* A kernel-level stack: used for system calls
* A user-level stack: used for upcalls
* Note: Each user-level thread has its own stack
e Activation control block
e Saves the processor context of the activation current user-level thread when

the thread is stopped by the kernel

64

Scheduler activation

* Serves as a vessel, or execution context, for running user-level threads (as an
extension of a kernel thread)
* Notifies the user-level thread system of a kernel event via upcall
* Requires two stacks:
* A kernel-level stack: used for system calls
* A user-level stack: used for upcalls
* Note: Each user-level thread has its own stack
* Activation control block
e Saves the processor context of the activation current user-level thread when

the thread is stopped by the kernel

65

Scheduler activation: Overview

Notifies the user-level
thread system whenever
the kernel changes the
number of processors
assigned to it

55 55§

User-level Thread System

Control the number of threads to
run on its allocated processors

upcall'

P W
.

lsystem call

Kernel

Control the number of processors
given to each address space

CPU

CPU CPU

CPU

Notifies the kernel when
the application needs
more or fewer processors

66

Example

* T1: the kernel allocates two processors (two kernel threads)

User
Program

(1)] ‘/(zyj/ \\ o

4 'Y AL e

User-Level
Runtime
System

-——

\
-~

N
-~ -

(A) (B)
Add Add
Processor Processor

Operating
System
Kernel

Processors

Example

T2: Thread 1 blocks in the kernel for IO

User
Program

User-Level
Runtime
System

Operating
System
Kernel

Processors

\
!

\

(A) (B) (C)
A’s thread has blocked

-
~~~~~~
————————————

68



Example

* T3:Thread 1 completes the 10

User
Program e s D S
User-Level ) :" @ :"/N (4)
Runtime i g
System = =il

¥ 3 A r 3 A
Operating (A) () © (D) A’s thread and
System C1 | B’s thread can
Kernel 1 C2 C2 | continue
Processors "', ‘

\‘-\'

-
- -
hat O -

69



Example

e T4: Thread 1 resumes

User
Program

User-Level By ) l (2) (4)

<
Runtime
System :‘
Y 3 . g

Operating © (D)

System
Kernel

Processors




Example

* T5: Kernel wants to take a processor (kernel thread) away from address space A

User
Program

User-Level
Runtime
System

Operating
System
Kernel

Processors

Address Space A

(3y (y

(2) (4)

/S

Address Space B

|

A

(€)

(D)

(X)

71



Example

* T6: Thread 3 is preempted and the processor is allocated to B

User

P Address Space A Address Space B
rogram
3 1
User-Level 2 @ 2) (&) ‘/jq
Runtime
System :‘
- e
Operating (©) (D) (v) (X)
System Add
Kernel c3 Progessor

Processors ' \ ‘ ’ ‘
\ A
- “—

-~
O -
-~ - -

- -



Example

e T7:Thread 1 is preempted and kernel notifies to A

User

p Address Space A Address Space B
3 1
User-Level o & 2) &) /\4
Runtime
System '
[ [ ] B .
. C D (Y) X
Operating & EL C’s thread and )
System 1€1]  psthread can Add
Kernel c3 C1 Cc3 continue Progessor

N S

cCmme=



Upcall: kernel — user

* Add this processor (processor #)
* Execute a runnable user-level thread
* Processor has been preempted (preempted SA# and its machine state)
e Return to the ready list of that user-level in the context of preempted SA
e Scheduler activation has been blocked (blocked SA#)
 The blocked SA is no longer using its processor
e Scheduler activation has unblocked (unblocked SA# and its machine state)
* Return to the ready list the user-level thread was executing in the context of

the blocked SA



System call: user — kernel

* Add more processors

* Allocate processors along with the SAs

* The processor is idle

* Preempt this processor if another address space needs it

* The user-level thread system need not tell the kernel about every thread

operation

75



Critical sections

* What to do if a preempted or blocked thread is in the critical section?
e Poor performance or deadlock
e Solution based on “recovery”:
* Check whether the preempted thread was in a critical section
* |fso, itis continued temporarily via a user-level context switch
* Performance enhancement
 Make a copy of each critical section
* Runtime checks using the section begin/end address
* Normal execution uses the original version
* The copy returns to the scheduler at the end of the critical section

* Imposes no overhead in the common case



Application transparency

* The application can build any concurrency model
* The kernel needs no knowledge of the data structures used to represent

parallelism at the user level

* Scheduler activations provide a “mechanism”, not a “policy”

77



Basic performance

Operation FastThreads on FastThreads on Topaz threads Ultrix
g Topaz threads | Scheduler Activations | (Kernel-level) | processes

Null Fork 34us 37us 948us 11300ps

Signal-Wait 37us 42us 441ps 1840us

* Performance is slightly worse due to the cost:
* Maintaining a counter for number of busy threads
- Cost of checking whether a preempted thread is being resumed
e Upcall can contribute up to 5x slowdown
* Dynamic allocation/deallocation of SA and management of threads in user

space



Issues with scheduler activation (Solaris 2)

* M:N model is too complex:
* Signal handling
. Automatic concurrency management
Poor scalability due to synchronization in the user-level thread

- Advances in kernel thread scalability

79



Summary

* Process: An abstraction for protection
* Thread: An execution context
* \Various process models: 1:1, N:1, M:N
* Intra-process isolation is also possible with IWC:
* Follow the same model of kernel resources entirely in the userspace
* Scheduler activation gives hints to the user space to make better scheduling /

execution decisions



